1
|
He T, Jin X, Koh YS, Zhang Q, Zhang C, Liu F. The association of homocysteine, folate, vitamin B12, and vitamin B6 with fracture incidence in older adults: a systematic review and meta-analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1143. [PMID: 34430584 PMCID: PMC8350623 DOI: 10.21037/atm-21-2514] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022]
Abstract
Background Diverse conclusions have been drawn regarding the association of homocysteine (HCY) deficiency and supplements of B vitamins with fracture incidence in older adults. The aim of this meta-analysis was to investigate the association of HCY and B vitamins (folate, vitamin B12, and B6) with fracture incidence in older adults and whether supplements of B vitamins reduce the risk of fracture. Methods The PubMed, Embase, and Cochrane library databases were systematically searched from their inception dates to 1 July 2019 to identify relevant published articles. Meta-analysis was performed to pool hazard ratios (HRs) or risk ratios (RRs) and 95% confidence intervals (CIs) using a random effects model. Results A total of 28 studies fulfilled the inclusion criteria. High serum HCY was an independent risk factor for fractures in older persons (HR =1.25, 95% CI: 1.12 to 1.40), but only at the highest quartile level (>15 µmol/L) (HR =1.71, 95% CI: 1.37 to 2.12), rather than the second and third quartile. Multiple sensitivity and subgroup analyses supported the consistency and stability of this result. A severe deficiency of folate, instead of vitamin B12 and B6, was found to increase the risk of fracture in older adults (HR =1.46, 95% CI: 1.06 to 2.02; 1.24, 95% CI: 0.79 to 1.95; 1.36, 95% CI: 0.90 to 2.06, respectively). For the interventional effect, there was no significant association of combined folate and vitamin B12, combined folate, vitamin B12 and B6, or single vitamin B6 supplementation with the decrease of fracture risk. Discussion This meta-analysis revealed that significantly elevated serum level of HCY is positively associated with fracture incidence in older adults, yet the necessity and threshold for intervention by B vitamins require further large-scale high-quality clinical trials to validate. PROSPERO identifier CRD42019122586.
Collapse
Affiliation(s)
- Tao He
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiangyun Jin
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yee Sin Koh
- Department of Internal Medicine, Shanghai Changhang Hospital, Shanghai, China
| | - Qingyu Zhang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chao Zhang
- Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fanxiao Liu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Urano T, Shiraki M, Imai T, Iinuma N, Kuroda T, Tanaka S, Saito M. Association of advanced glycation end-products levels with vascular events in postmenopausal women. Geriatr Gerontol Int 2021; 21:651-656. [PMID: 34151495 DOI: 10.1111/ggi.14218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/26/2021] [Accepted: 05/30/2021] [Indexed: 11/28/2022]
Abstract
AIM Advanced glycation end-products (AGEs) are a known factor that accelerates vascular complications. AGEs (e.g. pentosidine or N-ε-carboxy-methyl-lysine [CML]) have been particularly investigated in patients with diabetes or chronic kidney disease and have been associated not only with arteriosclerosis, but also with novel vascular events. On the contrary, the correlation of vascular events with AGEs has not been sufficiently investigated in groups excluding those with diabetes or chronic kidney disease. The present study aimed to evaluate the impact of AGEs on the history of vascular events in postmenopausal women excluding those with diabetes or renal insufficiency. METHODS Japanese postmenopausal women were registered to the study after obtaining informed consent. Patients with critical illness, including diabetes mellitus and renal insufficiency, were excluded from the study. Participants were asked about their medical histories during the registration for the Nagano Cohort Study. Non-fasting serum and urine samples were collected to measure biochemical markers, including urinary pentosidine and serum CML levels. RESULTS Among 357 postmenopausal women, 32 had a history of vascular events. After adjusting age and other variables known to be associated with the presence of vascular event history, positive correlations between AGEs and vascular event history were observed (standardized odds ratio of log[pentosidine] 1.38, 95% CI 0.96-2.00, P = 0.086; standardized odds ratio of log[CML] 1.73, 95% CI 1.10-2.74, P = 0.019). DISCUSSION The present results showed a significant association between serum CML and the presence of vascular event history, suggesting that serum CML might play a role in vascular events. Geriatr Gerontol Int 2021; 21: 651-656.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, School of Medicine, International University of Health and Welfare, Chiba, Japan.,Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masataka Shiraki
- Research Institute and Practice for Involutional Diseases, Nagano, Japan
| | - Takumi Imai
- Department of Medical Statistics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | | | | - Shiro Tanaka
- Department of Clinical Biostatistics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuru Saito
- Department of Orthopedic Surgery, Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Devyatkin VA, Muraleva NA, Kolosova NG. Identification of Single-Nucleotide Polymorphisms in Mitochondria-Associated Genes Capable of Affecting the Development of Hypertrophic Cardiomyopathy in Senescence-Accelerated OXYS Rats. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
|
5
|
The role of folate receptor and reduced folate carrier polymorphisms in osteoporosis development. HERBA POLONICA 2019. [DOI: 10.2478/hepo-2019-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: Osteoporosis is a chronic metabolic disease with multifactorial etiology. One of possible osteoporosis causes may be impairment of osteoclasts function which leads to increased bone resorption. This may be a result of many metabolic changes. It is believed that changes of folate-methionine metabolism in osteoporosis play an essential role in the etiology of this disease.
Objective: The aim of this study was to examine how polymorphisms of SLC19A1 and FOLR3 genes may play the key role in folate-methionine pathway and influence on the etiology of osteoporosis.
Results: The statistically overrepresentation of mutated GG genotype of FOLR3 (rs11235449) was observed in the control group compared to the osteopenia (34.9% in osteopenia vs. 37.8% in controls, p=0.025, OR=0.61). As to the SLC19A1 (rs3788200) polymorphism we have noted the statistically significant over-representation of wild-type GG genotype (35.8% vs. 26.2%, p=0.046, OR=1.57) and overrepresentation of wild-type G allele (56.9% vs. 50.2%, p=0.061, OR=1.31) in osteopenia group if compared to the controls.
Conclusions: In our study we shown the protective role of mutated GG genotype of FOLR3 (rs11235449) polymorphism to osteopenia progress and possible role of wild-type GG genotype and wild-type G allele of SLC19A1 (rs3788200) polymorphism in osteopenia development.
Collapse
|
6
|
Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019; 49:144-164. [PMID: 30391754 DOI: 10.1016/j.arr.2018.10.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
There are numerous theories of aging, a process which still seems inevitable. Aging leads to cancer and multi-systemic disorders as well as chronic diseases. Decline in age- associated cellular functions leads to neurodegeneration and cognitive decline that affect the quality of life. Accumulation of damage, mutations, metabolic changes, failure in cellular energy production and clearance of altered proteins over the lifetime, and hyperhomocysteinemia, ultimately result in tissue degeneration. The decline in renal functions, nutritional deficiencies, deregulation of methionine cycle and deficiencies of homocysteine remethylation and transsulfuration cofactors cause elevation of homocysteine with advancing age. Abnormal accumulation of homocysteine is a risk factor of cardiovascular, neurodegenerative and chronic kidney disease. Moreover, approximately 50% of people, aged 65 years and older develop hypertension and are at a high risk of developing cardiovascular insufficiency and incurable neurodegenerative disorders. Increasing evidence suggests inverse relation between cognitive impairment, cerebrovascular and cardiovascular events and renal function. Oxidative stress, inactivation of nitric oxide synthase pathway and mitochondria dysfunction associated with impaired homocysteine metabolism lead to aging tissue degeneration. In this review, we examine impact of high homocysteine levels on changes observed with aging that contribute to development and progression of age associated diseases.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| | - S Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| |
Collapse
|
7
|
Kim J, Lei Y, Guo J, Kim SE, Wlodarczyk BJ, Cabrera RM, Lin YL, Nilsson TK, Zhang T, Ren A, Wang L, Yuan Z, Zheng YF, Wang HY, Finnell RH. Formate rescues neural tube defects caused by mutations in Slc25a32. Proc Natl Acad Sci U S A 2018; 115:4690-4695. [PMID: 29666258 PMCID: PMC5939102 DOI: 10.1073/pnas.1800138115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78723
| | - Yunping Lei
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
| | - Jin Guo
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100700 Beijing, China
| | - Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
| | - Bogdan J Wlodarczyk
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
| | - Robert M Cabrera
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
| | - Ying Linda Lin
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
| | - Torbjorn K Nilsson
- Department of Medical Biosciences, Clinical Chemistry, Umea University, SE-90185 Umea, Sweden
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100700 Beijing, China
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Peking University, 100191 Beijing, China
| | - Linlin Wang
- Institute of Reproductive and Child Health, Peking University, 100191 Beijing, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, 117004 Shenyang, China
| | - Yu-Fang Zheng
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences of Fudan University, 20043 Shanghai, China
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Institute of Reproduction & Development and Children's Hospital of Fudan University, 200011 Shanghai, China
| | - Hong-Yan Wang
- Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences of Fudan University, 20043 Shanghai, China;
- Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Institute of Reproduction & Development and Children's Hospital of Fudan University, 200011 Shanghai, China
| | - Richard H Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723;
- Collaborative Innovation Center for Genetics & Development, School of Life Sciences, Fudan University, 200438 Shanghai, China
| |
Collapse
|
8
|
3'-UTR Polymorphisms of MTHFR and TS Associated with Osteoporotic Vertebral Compression Fracture Susceptibility in Postmenopausal Women. Int J Mol Sci 2018. [PMID: 29534533 PMCID: PMC5877685 DOI: 10.3390/ijms19030824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Postmenopausal osteoporosis is one of the most prominent diseases in postmenopausal women and it is increasing in prevalence with the aging population. Furthermore, osteoporosis and osteoporotic vertebral compression fractures (OVCFs) are related to mortality and decreased quality of life. Therefore, searching for biomarkers that are able to identify postmenopausal women who are at high risk of developing OVCFs is an effective strategy for improving the quality of life of patients and alleviating social and economic burdens. In this study, we investigated methylenetetrahydrofolate reductase (MTHFR) and thymidylate synthase (TS) gene polymorphisms in postmenopausal women with OVCF. We recruited 301 postmenopausal women and performed genotyping for the presence of MTHFR 2572C>A, 4869C>G and TS 1100C>T, 1170A>G. Genotyping was analyzed using the polymerization chain reaction restriction fragment length polymorphism assay. MTHFR 2572C>A and TS 1100C>T were associated with the prevalence of osteoporosis (MTHFR 2572CC versus CA+AA: odd ratio [OR] adjusted age, hypertention [HTN], and diabetes mellitus [DM] = 0.49, p = 0.012) and the occurrence of OVCFs (MTHFR 2572CC versus CA+AA: OR adjusted age, HTN, and DM = 0.38, p = 0.013; TS 1100CC versus CT+TT: OR adjusted age, HTN, and DM = 0.46, p = 0.02). Our novel finding is the identification of MTHFR and TS genetic variants that decrease susceptibility to OVCFs. Our findings suggest that polymorphisms in the MTHFR and TS genes are associated with susceptibility to osteoporosis and OVCFs in postmenopausal women.
Collapse
|
9
|
Findley TO, Tenpenny JC, O'Byrne MR, Morrison AC, Hixson JE, Northrup H, Au KS. Mutations in folate transporter genes and risk for human myelomeningocele. Am J Med Genet A 2017; 173:2973-2984. [PMID: 28948692 DOI: 10.1002/ajmg.a.38472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 07/21/2017] [Accepted: 08/21/2017] [Indexed: 11/09/2022]
Abstract
The molecular mechanisms linking folate deficiency and neural tube defect (NTD) risk in offspring remain unclear. Folate transporters (SLC19A1, SLC46A1, SLC25A32, and FOLH1) and folate receptors (FOLR1, FOLR2, and FOLR3) are suggested to play essential roles in transporting folate from maternal intestinal lumen to the developing embryo. Loss of function variants in these genes may affect folate availability and contribute to NTD risk. This study examines whether variants within the folate transporter and receptor genes are associated with an increased risk for myelomeningocele (MM). Exons and their flanking intron sequences of 348 MM subjects were sequenced using the Sanger sequencing method and/or next generation sequencing to identify variants. Frequencies of alleles of single nucleotide polymorphisms (SNPs) in MM subjects were compared to those from ethnically matched reference populations to evaluate alleles' associated risk for MM. We identified eight novel variants in SLC19A1 and twelve novel variants in FOLR1, FOLR2, and FOLR3. Pathogenic variants include c.1265delG in SLC19A1 resulting in an early stop codon, four large insertion deletion variants in FOLR3, and a stop_gain variant in FOLR3. No new variants were identified in SLC46A1, SLC25A32, or FOLH1. In SLC19A1, c.80A>G (rs1051266) was not associated with our MM cohort; we did observe a variant allele G frequency of 61.7%, higher than previously reported in other NTD populations. In conclusion, we discovered novel loss of function variants in genes involved in folate transport in MM subjects. Our results support the growing evidence of associations between genes involved in folate transport and susceptibility to NTDs.
Collapse
Affiliation(s)
- Tina O Findley
- Division of Neonatology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Joy C Tenpenny
- Division of Neonatology, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Michelle R O'Byrne
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Alanna C Morrison
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - James E Hixson
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Shriners Hospital for Children, Houston, Texas
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
10
|
SLC25 Family Member Genetic Interactions Identify a Role for HEM25 in Yeast Electron Transport Chain Stability. G3-GENES GENOMES GENETICS 2017; 7:1861-1873. [PMID: 28404662 PMCID: PMC5473764 DOI: 10.1534/g3.117.041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The SLC25 family member SLC25A38 (Hem25 in yeast) was recently identified as a mitochondrial glycine transporter that provides substrate to initiate heme/hemoglobin synthesis. Mutations in the human SLC25A38 gene cause congenital sideroblastic anemia. The full extent to which SLC25 family members coregulate heme synthesis with other mitochondrial functions is not clear. In this study, we surveyed 29 nonessential SLC25 family members in Saccharomyces cerevisiae for their ability to support growth in the presence and absence of HEM25. Six SLC25 family members were identified that were required for growth or for heme synthesis in cells lacking Hem25 function. Importantly, we determined that loss of function of the SLC25 family member Flx1, which imports FAD into mitochondria, together with loss of function of Hem25, resulted in inability to grow on media that required yeast cells to supply energy using mitochondrial respiration. We report that specific components of complexes of the electron transport chain are decreased in the absence of Flx1 and Hem25 function. In addition, we show that mitochondria from flx1Δ hem25Δ cells contain uncharacterized Cox2-containing high molecular weight aggregates. The functions of Flx1 and Hem25 provide a facile explanation for the decrease in heme level, and in specific electron transport chain complex components.
Collapse
|
11
|
Abstract
Osteoporosis is a skeletal disorder characterized by low bone mineral density (BMD) and an increased susceptibility to fractures. Evidence from genetic studies indicates that BMD, a complex quantitative trait with a normal distribution, is genetically controlled. Genome-wide association studies (GWAS) as well as studies using candidate gene approaches have identified single-nucleotide polymorphisms (SNPs) that are associated with BMD, osteoporosis and osteoporotic fractures. These SNPs have been mapped close to or within genes including those encoding WNT/β-catenin signaling proteins. Understanding the genetics of osteoporosis will help to identify novel candidates for diagnostic and therapeutic targets. Genetic factors are also important for the development of sarcopenia, which is characterized by a loss of lean body mass, and obesity, which is characterized by high fat mass. Hence, in this review, we discuss the genetic factors, identified by genetic studies, which regulate the body components related to osteoporosis, sarcopenia, and obesity.
Collapse
Affiliation(s)
- Tomohiko Urano
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | | |
Collapse
|