1
|
Pipis N, James BD, Allen JB. Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications. ACS Biomater Sci Eng 2025. [PMID: 39869382 DOI: 10.1021/acsbiomaterials.4c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials. These complexes form structures across length scales, including nanoparticles, microfibers, and hydrogels, a process controlled by the relative amount of each component and the type of nucleic acid and collagen. The broad distribution of different types of collagen within the body contributes to the extensive biological relevance of DNA-collagen complexes. Functional nucleic acids can form these complexes, such as siRNA, antisense oligonucleotides, DNA origami nanostructures, and, in particular, single-stranded DNA aptamers, often distinguished by their rapid self-assembly at room temperature and formation without external stimuli and modifications. The simple and seamless integration of nucleic acids within collagenous matrices enhances biomimicry and targeted bioactivity, and provides stability against enzymatic degradation, positioning DNA-collagen complexes as an advanced biomaterial system for many applications including angiogenesis, bone tissue regeneration, wound healing, and more.
Collapse
Affiliation(s)
- Nikolaos Pipis
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Bryan D James
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Josephine B Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Materials Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Chen X, Li H, Ma Y, Jiang Y. Calcium Phosphate-Based Nanomaterials: Preparation, Multifunction, and Application for Bone Tissue Engineering. Molecules 2023; 28:4790. [PMID: 37375345 DOI: 10.3390/molecules28124790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Calcium phosphate is the main inorganic component of bone. Calcium phosphate-based biomaterials have demonstrated great potential in bone tissue engineering due to their superior biocompatibility, pH-responsive degradability, excellent osteoinductivity, and similar components to bone. Calcium phosphate nanomaterials have gained more and more attention for their enhanced bioactivity and better integration with host tissues. Additionally, they can also be easily functionalized with metal ions, bioactive molecules/proteins, as well as therapeutic drugs; thus, calcium phosphate-based biomaterials have been widely used in many other fields, such as drug delivery, cancer therapy, and as nanoprobes in bioimaging. Thus, the preparation methods of calcium phosphate nanomaterials were systematically reviewed, and the multifunction strategies of calcium phosphate-based biomaterials have also been comprehensively summarized. Finally, the applications and perspectives of functionalized calcium phosphate biomaterials in bone tissue engineering, including bone defect repair, bone regeneration, and drug delivery, were illustrated and discussed by presenting typical examples.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Huizhang Li
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yinhua Ma
- Department of Orthopedics, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai 201800, China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Qiu C, Wu Y, Guo Q, Shi Q, Zhang J, Meng Y, Xia F, Wang J. Preparation and application of calcium phosphate nanocarriers in drug delivery. Mater Today Bio 2022; 17:100501. [DOI: 10.1016/j.mtbio.2022.100501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/05/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
|
4
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
5
|
Hrvat A, Schmidt M, Obholzer M, Benders S, Kollenda S, Horn PA, Epple M, Brandau S, Mallmann-Gottschalk N. Reactivity of NK Cells Against Ovarian Cancer Cells Is Maintained in the Presence of Calcium Phosphate Nanoparticles. Front Immunol 2022; 13:830938. [PMID: 35251021 PMCID: PMC8895254 DOI: 10.3389/fimmu.2022.830938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Calcium phosphate nanoparticles (CaP-NPs) are biodegradable carriers that can be functionalized with biologically active molecules. As such, they are potential candidates for delivery of therapeutic molecules in cancer therapies. In this context, it is important to explore whether CaP-NPs impair the natural or therapy-induced immune cell activity against cancer cells. Therefore, in this study, we have investigated the effects of different CaP-NPs on the anti-tumor activity of natural killer (NK) cells using different ovarian cancer (OC) cell line models. We explored these interactions in coculture systems consisting of NK cells, OC cells, CaP-NPs, and therapeutic Cetuximab antibodies (anti-EGFR, ADCC-inducing antibody). Our experiments revealed that aggregated CaP-NPs can serve as artificial targets, which activate NK cell degranulation and impair ADCC directed against tumor targets. However, when CaP-NPs were properly dissolved by sonication, they did not cause substantial activation. CaP-NPs with SiO2-SH-shell induced some activation of NK cells that was not observed with polyethyleneimine-coated CaP-NPs. Addition of CaP-NPs to NK killing assays did not impair conjugation of NK with OC and subsequent tumor cytolytic NK degranulation. Therapeutic antibody coupled to functionalized CaP-NPs maintained substantial levels of antibody-dependent cellular cytotoxic activity. Our study provides a cell biological basis for the application of functionalized CaP-NPs in immunologic anti-cancer therapies.
Collapse
Affiliation(s)
- Antonio Hrvat
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Mathias Schmidt
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Martin Obholzer
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sonja Benders
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Sebastian Kollenda
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Sven Brandau
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- German Cancer Consortium, Partner Site Essen-Düsseldorf, Essen, Germany
- *Correspondence: Sven Brandau,
| | - Nina Mallmann-Gottschalk
- Experimental and Translational Research, Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Experimental Protocol for Induction of Transgene Expression in Neural Stem Cells Through Polymeric Nanoparticles. Methods Mol Biol 2021. [PMID: 31392588 DOI: 10.1007/7651_2019_256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Therapy based on stem cells utilizes these cells in neurodegeneration, brain/spinal cord injury, and much recently in repairing of severe heart diseases. Owning to their stemness, these cells are the potential source of progenitors that can offer a therapeutic remedy to a variety of diseases and/or disorders. The ability of these cells to regenerate and differentiate into specified phenotypes has great utility in tissue regeneration applications. This chapter provides a detailed account for isolation of neural stem cells from the mice embryo. Furthermore, the fabrication of chitosan-tripolyphosphate/hyaluronic acid-based nanoparticles and evaluating their efficiency in inducing transfection in the isolated neural stem cells as an approach for the treatment of neurodegenerative disorders.
Collapse
|
7
|
Sadallah L, Boukhris A, Hannache H, Gmouh S. Entrapment of organic fluorophores in calcium phosphate nanoparticles with slow release. Turk J Chem 2021; 44:142-154. [PMID: 33488149 PMCID: PMC7751825 DOI: 10.3906/kim-1902-57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/26/2019] [Indexed: 11/30/2022] Open
Abstract
Two organic fluorophores, fluorescein (F) and rhodamine B (Rd), were entrapped in calcium phosphate nanoparticles. The as-obtained nanoparticles can be used for biological release applications. For this aim, calcium phosphate nanoparticles were synthesized using the precipitation method. Structural analysis of these nanoparticles was performed using XRD, FTIR, and Raman spectroscopy, confirming that the synthesized nanoparticles were hydroxyapatite. TEM and SEM analyses demonstrated that these nanoparticles had a size of 20 nm and a well-defined morphology. F and Rd (about 0.5 wt.%) were entrapped in these nanoparticles and their release, as a function of time, was studied via UV-Vis spectroscopy. The obtained results showed that the release of both fluorophores was progressive over time. The trapping efficiencies of the fluorophores were 67.15% and 90.76% for F and Rd, respectively.
Collapse
Affiliation(s)
- Laila Sadallah
- Department of Chemistry, Faculty of Science Ben M'sik, Hassan II University of Casablanca, Casablanca Morocco.,Higher School of Textile and Clothing Industries, Casablanca Morocco.,Department of Materials Science and Nanoengineering, Mohamed VI Polytechnic University, Benguerir Morocco
| | - Aicha Boukhris
- Department of Chemistry, Faculty of Science Ben M'sik, Hassan II University of Casablanca, Casablanca Morocco.,Higher School of Textile and Clothing Industries, Casablanca Morocco.,Department of Materials Science and Nanoengineering, Mohamed VI Polytechnic University, Benguerir Morocco
| | - Hassan Hannache
- Department of Chemistry, Faculty of Science Ben M'sik, Hassan II University of Casablanca, Casablanca Morocco.,Higher School of Textile and Clothing Industries, Casablanca Morocco.,Department of Materials Science and Nanoengineering, Mohamed VI Polytechnic University, Benguerir Morocco
| | - Said Gmouh
- Department of Chemistry, Faculty of Science Ben M'sik, Hassan II University of Casablanca, Casablanca Morocco.,Higher School of Textile and Clothing Industries, Casablanca Morocco.,Department of Materials Science and Nanoengineering, Mohamed VI Polytechnic University, Benguerir Morocco
| |
Collapse
|
8
|
Xiang C, Tenkumo T, Ogawa T, Kanda Y, Nakamura K, Shirato M, Sokolova V, Epple M, Kamano Y, Egusa H, Sasaki K. Gene transfection achieved by utilizing antibacterial calcium phosphate nanoparticles for enhanced regenerative therapy. Acta Biomater 2021; 119:375-389. [PMID: 33166711 DOI: 10.1016/j.actbio.2020.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Protamine-coated multi-shell calcium phosphate (CaP) was developed as a non-viral vector for tissue regeneration therapy. CaP nanoparticles loaded with different amounts of plasmid DNA encoding bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) were used to treat MC3T3E1 cells, and the yield of the released BMP-2 or IGF-1 was measured using ELISA 3 days later. Collagen scaffolds containing CaP nanoparticles were implanted into rat cranial bone defects, and BMP-2 and IGF-1 yields, bone formation, and bone mineral density enhancement were evaluated 28 days after gene transfer. The antibacterial effects of CaP nanoparticles against Streptococcus mutans and Aggregatibacter actinomycetemcomitans increased with an increase in the protamine dose, while they were lower for Staphylococcus aureus and Porphyromonas gingivalis. In the combination treatment with BMP-2 and IGF-1, the concentration ratio of BMP-2 and IGF-1 is an important factor affecting bone formation activity. The calcification activity and OCN mRNA of MC3T3E1 cells subjected to a BMP-2:IGF-1 concentration ratio of 1:4 was higher at 14 days. During gene transfection treatment, BMP-2 and IGF-1 were released simultaneously after gene transfer; the loaded dose of the plasmid DNA encoding IGF-1 did not impact the BMP-2 or IGF-1 yield or new bone formation ratio in vitro and in vivo. In conclusion, two growth factor-releasing systems were developed using an antibacterial gene transfer vector, and the relationship between the loaded plasmid DNA dose and resultant growth factor yield was determined in vitro and in vivo.
Collapse
|
9
|
Hosseini S, Epple M. Suppositories with bioactive calcium phosphate nanoparticles for intestinal transfection and gene silencing. NANO SELECT 2020. [DOI: 10.1002/nano.202000150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Shabnam Hosseini
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg‐Essen (CeNIDE) University of Duisburg‐Essen Essen Germany
| |
Collapse
|
10
|
James BD, Guerin P, Iverson Z, Allen JB. Mineralized DNA-collagen complex-based biomaterials for bone tissue engineering. Int J Biol Macromol 2020; 161:1127-1139. [PMID: 32561285 PMCID: PMC7494536 DOI: 10.1016/j.ijbiomac.2020.06.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
DNA is a highly polyanionic biomolecule that complexes with both collagen and hydroxyapatite. By combining these complexes, we synthesized nucleic-acid collagen complexes (NACC) mineralized with hydroxyapatite. The composite complexes were made using a short, monodisperse single-stranded DNA, type I collagen, and mineralizing medium. They rapidly self-assembled into both mineralized NACC microfibers and 3D NACC gels. At the nanoscale, these complexes are hierarchical, interwoven, curly nanofibrils resembling native extracellular matrix, which mineralized an interpenetrating nanocrystalline hydroxyapatite phase. Mineralization was able to be done either before or after NACC formation enabling temporal control of the process. In response to the NACC material, primary human osteoblasts took on an osteocyte-like morphology. Moreover, the cells agglomerated and remodeled the NACC gels into densified, tissue-like structures within 3 days. NACC fibers and gels have promise not only as osteoconductive coatings and scaffolds, but as coatings and scaffolds for any tissue using this new form of naturally-derived biomaterials.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL 32611-6400, USA
| | - Paxton Guerin
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL 32611-6400, USA
| | - Zion Iverson
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL 32611-6400, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, 206 Rhines Hall, PO Box 116400, Gainesville, FL 32611-6400, USA.
| |
Collapse
|
11
|
Xue PP, Yuan JD, Yao Q, Zhao YZ, Xu HL. Bioactive Factors-imprinted Scaffold Vehicles for Promoting Bone Healing: The Potential Strategies and the Confronted Challenges for Clinical Production. BIO INTEGRATION 2020. [DOI: 10.15212/bioi-2020-0010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract Wound repair of bone is a complicated multistep process orchestrated by inflammation, angiogenesis, callus formation, and bone remodeling. Many bioactive factors (BFs) including cytokine and growth factors (GFs) have previously been reported to be involved in regulating
wound healing of bone and some exogenous BFs such as bone morphogenetic proteins (BMPs) were proven to be helpful for improving bone healing. In this regard, the BFs reported for boosting bone repair were initially categorized according to their regulatory mechanisms. Thereafter, the challenges
including short half-life, poor stability, and rapid enzyme degradation and deactivation for these exogenous BFs in bone healing are carefully outlined in this review. For these issues, BFs-imprinted scaffold vehicles have recently been reported to promote the stability of BFs and enhance
their half-life in vivo. This review is focused on the incorporation of BFs into the modulated biomaterials with various forms of bone tissue engineering applications: firstly, rigid bone graft substitutes (BGSs) were used to imprint BFs for large scale bone defect repair; secondly,
the soft sponge-like scaffold carrying BFs is discussed as filling materials for the cavity of bone defects; thirdly, various injectable vehicles including hydrogel, nanoparticles, and microspheres for the delivery of BFs were also introduced for irregular bone fracture repair. Meanwhile,
the challenges for BFs-imprinted scaffold vehicles are also analyzed in this review.
Collapse
Affiliation(s)
- Peng-Peng Xue
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Jian-dong Yuan
- Department of Orthopaedics, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China
| | - Qing Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| | - He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China
| |
Collapse
|
12
|
Bactericidal activity and recovery effect of hydroxyl radicals generated by ultraviolet irradiation and silver ion application on an infected titanium surface. Sci Rep 2020; 10:8553. [PMID: 32444858 PMCID: PMC7244495 DOI: 10.1038/s41598-020-65411-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/05/2020] [Indexed: 12/03/2022] Open
Abstract
This study investigated the bactericidal effect, the underlying mechanisms of treatment, and recovery of biocompatibility of the infected titanium surface using a combination treatment of silver ion application and ultraviolet-A (UV-A) light irradiation. Streptococcus mutans and Aggregatibacter actinomycetemcomitans were used in suspension and as a biofilm on a titanium surface to test for the bactericidal effect. The bactericidal effect of the combination treatment was significantly higher than that of silver ion application or UV-A light irradiation alone. The bactericidal effect of the combination treatment was attributable to hydroxyl radicals, which generated from the bacterial cell wall and whose yield increased with the silver concentration. To assess the biocompatibility, proliferation and calcification of MC3T3E1 cells were evaluated on the treated titanium surface. The treated titanium screws were implanted into rat tibias and the removal torques were measured 28 days post-surgery. The titanium surface that underwent the combination treatment exhibited recovery of biocompatibility by allowing cellular proliferation or calcification at levels observed in the non-infected titanium surfaces. The removal torque 28 days after surgery was also comparable to the control values. This approach is a novel treatment option for peri-implantitis.
Collapse
|
13
|
Levingstone TJ, Herbaj S, Redmond J, McCarthy HO, Dunne NJ. Calcium Phosphate Nanoparticles-Based Systems for RNAi Delivery: Applications in Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E146. [PMID: 31947548 PMCID: PMC7023416 DOI: 10.3390/nano10010146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Abstract
Bone-related injury and disease constitute a significant global burden both socially and economically. Current treatments have many limitations and thus the development of new approaches for bone-related conditions is imperative. Gene therapy is an emerging approach for effective bone repair and regeneration, with notable interest in the use of RNA interference (RNAi) systems to regulate gene expression in the bone microenvironment. Calcium phosphate nanoparticles represent promising materials for use as non-viral vectors for gene therapy in bone tissue engineering applications due to their many favorable properties, including biocompatibility, osteoinductivity, osteoconductivity, and strong affinity for binding to nucleic acids. However, low transfection rates present a significant barrier to their clinical use. This article reviews the benefits of calcium phosphate nanoparticles for RNAi delivery and highlights the role of surface functionalization in increasing calcium phosphate nanoparticles stability, improving cellular uptake and increasing transfection efficiency. Currently, the underlying mechanistic principles relating to these systems and their interplay during in vivo bone formation is not wholly understood. Furthermore, the optimal microRNA targets for particular bone tissue regeneration applications are still unclear. Therefore, further research is required in order to achieve the optimal calcium phosphate nanoparticles-based systems for RNAi delivery for bone tissue regeneration.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland; (T.J.L.); (S.H.); (J.R.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, 9 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, 9 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, 2 Dublin, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK;
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, 2 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, 2 Dublin, Ireland
| |
Collapse
|
14
|
|
15
|
Levingstone TJ, Herbaj S, Dunne NJ. Calcium Phosphate Nanoparticles for Therapeutic Applications in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1570. [PMID: 31698700 PMCID: PMC6915504 DOI: 10.3390/nano9111570] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
Abstract
Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients' quality of life and the costs on the health systems. This impended need has led the research community's efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors' loading and release, and their application in bone tissue engineering.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
16
|
Wu B, Li Y, Nie N, Xu J, An C, Liu Y, Wang Y, Chen Y, Gong L, Li Q, Giusto E, Bunpetch V, Zhang D, Ouyang H, Zou X. Nano genome altas (NGA) of body wide organ responses. Biomaterials 2019; 205:38-49. [DOI: 10.1016/j.biomaterials.2019.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/01/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
|
17
|
Schlickewei C, Klatte TO, Wildermuth Y, Laaff G, Rueger JM, Ruesing J, Chernousova S, Lehmann W, Epple M. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:15. [PMID: 30671652 DOI: 10.1007/s10856-019-6217-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to prepare an injectable DNA-loaded nano-calcium phosphate paste that is suitable as bioactive bone substitution material. For this we used the well-known potential of calcium phosphate in bone contact and supplemented it with DNA for the in-situ transfection of BMP-7 and VEGF-A in a critical-size bone defect. 24 New Zealand white rabbits were randomly divided into two groups: One group with BMP-7- and VEGF-A-encoding DNA on calcium phosphate nanoparticles and a control group with calcium phosphate nanoparticles only. The bone defect was created at the proximal medial tibia and filled with the DNA-loaded calcium phosphate paste. As control, a bone defect was filled with the calcium phosphate paste without DNA. The proximal tibia was investigated 2, 4 and 12 weeks after the operation. A histomorphological analysis of the dynamic bone parameters was carried out with the Osteomeasure system. The animals treated with the DNA-loaded calcium phosphate showed a statistically significantly increased bone volume per total volume after 4 weeks in comparison to the control group. Additionally, a statistically significant increase of the trabecular number and the number of osteoblasts per tissue area were observed. These results were confirmed by radiological analysis. The DNA-loaded bone paste led to a significantly faster healing of the critical-size bone defect in the rabbit model after 4 weeks. After 12 weeks, all defects had equally healed in both groups. No difference in the quality of the new bone was found. The injectable DNA-loaded calcium phosphate paste led to a faster and more sustained bone healing and induced an accelerated bone formation after 4 weeks. The material was well integrated into the bone defect and new bone was formed on its surface. The calcium phosphate paste without DNA led to a regular healing of the critical-size bone defect, but the healing was slower than the DNA-loaded paste. Thus, the in-situ transfection with BMP-7 and VEGF-A significantly improved the potential of calcium phosphate as pasty bone substitution material.
Collapse
Affiliation(s)
- Carsten Schlickewei
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Till O Klatte
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yasmin Wildermuth
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Georg Laaff
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Svitlana Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Orthopaedics and Plastic Surgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
18
|
Yousefi F, Lavi Arab F, Saeidi K, Amiri H, Mahmoudi M. Various strategies to improve efficacy of stem cell transplantation in multiple sclerosis: Focus on mesenchymal stem cells and neuroprotection. J Neuroimmunol 2018; 328:20-34. [PMID: 30557687 DOI: 10.1016/j.jneuroim.2018.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/30/2018] [Indexed: 02/09/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which predominantly affect young adults and undergo heavy socioeconomic burdens. Conventional therapeutic modalities for MS mostly downregulate aggressive immune responses and are almost insufficient for management of progressive course of the disease. Mesenchymal stem cells (MSCs), due to both immunomodulatory and neuroprotective properties have been known as practical cells for treatment of neurodegenerative diseases like MS. However, clinical translation of MSCs is associated with some limitations such as short-life engraftment duration, little in vivo trans-differentiation and restricted accessibility into damaged sites. Therefore, laboratory manipulation of MSCs can improve efficacy of MSCs transplantation in MS patients. In this review, we discuss several novel approaches, which can potentially enhance MSCs capabilities for treating MS.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kolsoum Saeidi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Tenkumo T, Vanegas Sáenz JR, Nakamura K, Shimizu Y, Sokolova V, Epple M, Kamano Y, Egusa H, Sugaya T, Sasaki K. Prolonged release of bone morphogenetic protein-2 in vivo by gene transfection with DNA-functionalized calcium phosphate nanoparticle-loaded collagen scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:172-183. [PMID: 30184740 DOI: 10.1016/j.msec.2018.06.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/13/2018] [Accepted: 06/21/2018] [Indexed: 01/28/2023]
Abstract
In the combination of scaffolds immersed in growth factor solutions, the release of growth factors mainly depends on scaffold degradation. However, the release of bone morphogenetic protein (BMP)-2 at an appropriate concentration during the stage of tissue regeneration would enhance bone regeneration. To achieve this condition, the present study was performed to investigate the effects of scaffolds combined with gene transfection using non-viral vectors. Nanohydroxyapatite-collagen (nHAC) scaffolds cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) or ascorbic acid/copper chloride, and a collagen scaffold (Terdermis®) were prepared, loaded with BMP-2-encoding plasmid DNA-functionalized calcium phosphate nanoparticles (CaP), naked plasmid DNA, or BMP-2 solution, and implanted in rats. The yield of released BMP-2 and its releasing period, respectively, were larger and longer from the scaffolds loaded with CaP than from those incubated with BMP-2 solution. In addition, the alkaline phosphatase activity induced by the CaP-loaded scaffolds was higher. Histological analysis showed that released BMP-2 could be observed on the macrophages or multinuclear giant cells surrounding the nHAC fragments or collagen fibres. TRAP-positive or OCN-positive sites were observed in all groups and a mineralization area was observed in the Terdermis®/CaP sample. The present study demonstrates that gene transfection by scaffold loaded with CaP gene transfer vectors induces a larger yield of BMP-2 for a longer period than by scaffolds loaded with BMP-2 solution or naked plasmid.
Collapse
Affiliation(s)
- Taichi Tenkumo
- Laboratory for Redox Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Juan Ramón Vanegas Sáenz
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Keisuke Nakamura
- Laboratory for Redox Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yoshinaka Shimizu
- Division of Oral Pathology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Viktoriya Sokolova
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Matthias Epple
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Yuya Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Division of Oral Health Science, Graduate School of Dental Medicine, Hokkaido University, W7 Kita-ku, Sapporo 060-8586, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
20
|
Hsieh MK, Wu CJ, Chen CC, Tsai TT, Niu CC, Wu SC, Lai PL. BMP-2 gene transfection of bone marrow stromal cells to induce osteoblastic differentiation in a rat calvarial defect model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:806-816. [PMID: 30033316 DOI: 10.1016/j.msec.2018.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 05/09/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022]
Abstract
Gene therapy for bone tissue engineering has been widely developed. Recently, non-viral DNA-based gene therapy has been reported to be a safer and more efficient method of delivering DNA into target cells. We used a non-viral gene transfection reagent to delivery bone morphogenetic protein-2 (BMP-2) gene into bone marrow stromal cells (BMSCs). Primary BMSCs were isolated from rat femurs and transfected with BMP-2 plasmids. The transfection rate was analyzed using flow cytometry. The concentration of BMP-2 protein was quantified using an enzyme-linked immunosorbent assay. Levels of osteopontin and osteocalcin were measured to evaluate osteogenic differentiation. In vivo, we designed a critical-size calvarial defect rat model to study new bone regeneration, using Matrigel as a scaffold to carry BMP-2-transfected bone marrow stromal cells into the defect site. New bone formation was assessed by micro-computed tomography, X-ray, immunohistochemical staining and histomophometry. The transfection rate after 72 h was 31.5%. The BMP-2 protein level as well as osteopontin and osteocalcin expressions were higher in the experimental group (transfected with BMP-2) than the control group (transfected with green fluorescent protein, GFP). The in vivo study suggested that bone healing occurred 12 weeks after scaffold implantation. In addition, BMP-2-transfected bone marrow stromal cells provided better osteogenic differentiation than primary bone marrow stromal cells. Our findings suggest that non-viral gene therapy may be useful in bone tissue engineering. SIGNIFICANCE The study has clinical implications for the wider use of BMP-2-transfected BMSCs for cell-based transplantation therapy in bone regeneration.
Collapse
Affiliation(s)
- Ming-Kai Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Jung Wu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Chieh Chen
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chien Niu
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shinn-Chih Wu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Po-Liang Lai
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
21
|
Zhang Q, Gerlach JC, Nettleship I, Schmelzer E. Calcium-Infiltrated Biphasic Hydroxyapatite Scaffolds for Human Hematopoietic Stem Cell Culture. Tissue Eng Part A 2018; 24:1563-1573. [PMID: 29724158 DOI: 10.1089/ten.tea.2018.0025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Long-term in vitro expansion of hematopoietic stem cells (HSCs), while maintaining their functionality and multilineage differentiation potential, is still challenging. In this study, three-dimensional (3D) high-porosity hydroxyapatite (HA) foams have been designed to closely mimic the chemistry and physical structure of cancellous bone. Furthermore, calcium oxide was distributed in the HA ceramics to provide surface calcium ion release, hypothesizing that a local surface calcium gradient supports HSC localization and maintenance. Primary human HSCs and osteoblasts were cocultured for 6 weeks. Controls were cultured in two-dimensional dishes, while scaffold cultures were performed with calcium nitrate-infiltrated HA scaffolds and untreated HA scaffolds. Cells were analyzed for surface markers by flow cytometry, metabolic activity, and hematopoietic multilineage differentiation potential. The release of calcium into culture medium was also determined. The implementation of HA scaffolds had a positive effect on erythrocyte colony formation capacity of HSCs, with an increased osteoblast fraction observed when compared to control cultures without scaffolds. The presentation of scaffolds did not affect metabolic turnover when compared to control cultures. In conclusion, 3D open-porous HA scaffolds provide a bone-like structure and enable the long-term maintenance of primary HSCs.
Collapse
Affiliation(s)
- Qinghao Zhang
- 1 Department of Mechanical Engineering and Materials Science, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jörg C Gerlach
- 2 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Ian Nettleship
- 1 Department of Mechanical Engineering and Materials Science, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Eva Schmelzer
- 2 Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Sokolova V, Shi Z, Huang S, Du Y, Kopp M, Frede A, Knuschke T, Buer J, Yang D, Wu J, Westendorf AM, Epple M. Delivery of the TLR ligand poly(I:C) to liver cells in vitro and in vivo by calcium phosphate nanoparticles leads to a pronounced immunostimulation. Acta Biomater 2017; 64:401-410. [PMID: 28963016 DOI: 10.1016/j.actbio.2017.09.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
Abstract
The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action was discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. A modular system where the immunoactive toll-like-receptor ligand 3 (TLR-3) poly(I:C) was incorporated into calcium phosphate nanoparticles was developed. The nanoparticles had a hydrodynamic diameter of 275nm and a zeta potential of +20mV, measured by dynamic light scattering. The diameter of the solid core was 120nm by scanning electron microscopy. In vitro, the nanoparticle uptake was investigated after 1 and 24h of incubation of THP-1 cells (macrophages) with nanoparticles by fluorescence microscopy. After intravenous injection into BALB/c and C57BL/6J mice, respectively, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. Pronounced immunostimulatory effects of the nanoparticles were found in vitro with primary liver cells, i.e. Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) from wild-type C57BL/6J mice. Thus, they represent a suitable alternative to hydrodynamic injection treatments for future vaccination concepts. STATEMENT OF SIGNIFICANCE The selective activation of the immune system is a concurrent problem in the treatment of persistent diseases like viral infections (e.g. hepatitis). For the delivery of the toll-like receptor ligand poly(I:C), an immunostimulatory action has been discovered earlier by hydrodynamic injection. However, this technique is not clinically transferable to human patients. We have developed a modular system where poly(I:C) was incorporated into calcium phosphate nanoparticles. The uptake into relevant liver cells was studied both in vitro and in vivo. After intravenous injection into mice, the in vivo uptake was especially prominent in lung and liver, 1 and 3h after the injection. The corresponding strong immune reaction proves their high potential to turn up the immune system, e.g. against viral infections, without adverse side reactions.
Collapse
Affiliation(s)
- Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Zou Shi
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Yanqin Du
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Annika Frede
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Torben Knuschke
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jan Buer
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, 430030 Wuhan, PR China
| | - Astrid Maria Westendorf
- Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
Collapse
|
23
|
Zhang Q, Gerlach JC, Schmelzer E, Nettleship I. Effect of Calcium-Infiltrated Hydroxyapatite Scaffolds on the Hematopoietic Fate of Human Umbilical Vein Endothelial Cells. J Vasc Res 2017; 54:376-385. [PMID: 29166642 DOI: 10.1159/000481778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 09/23/2017] [Indexed: 02/01/2023] Open
Abstract
Foamed hydroxyapatite offers a three-dimensional scaffold for the development of bone constructs, mimicking perfectly the in vivo bone structure. In vivo, calcium release at the surface is assumed to provide a locally increased gradient supporting the maintenance of the hematopoietic stem cells niche. We fabricated hydroxyapatite scaffolds with high surface calcium concentration by infiltration, and used human umbilical vein endothelial cells (HUVECs) as a model to study the effects on hematopoietic lineage direction. HUVECs are umbilical vein-derived and thus possess progenitor characteristics, with a prospective potential to give rise to hematopoietic lineages. HUVECs were cultured for long term on three-dimensional porous hydroxyapatite scaffolds, which were either infiltrated biphasic foams or untreated. Controls were cultured in two-dimensional dishes. The release of calcium into culture medium was determined, and cells were analyzed for typical hematopoietic and endothelial gene expressions, surface markers by flow cytometry, and hematopoietic potential using colony-forming unit assays. Our results indicate that the biphasic foams promoted a hematopoietic lineage direction of HUVECs, suggesting an improved in vivo-like scaffold for hematopoietic bone tissue engineering.
Collapse
Affiliation(s)
- Qinghao Zhang
- Department of Mechanical Engineering and Materials Science, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
24
|
Vanegas Sáenz JR, Tenkumo T, Kamano Y, Egusa H, Sasaki K. Amiloride-enhanced gene transfection of octa-arginine functionalized calcium phosphate nanoparticles. PLoS One 2017; 12:e0188347. [PMID: 29145481 PMCID: PMC5690608 DOI: 10.1371/journal.pone.0188347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/06/2017] [Indexed: 11/25/2022] Open
Abstract
Nanoparticles represent promising gene delivery systems in biomedicine to facilitate prolonged gene expression with low toxicity compared to viral vectors. Specifically, nanoparticles of calcium phosphate (nCaP), the main inorganic component of human bone, exhibit high biocompatibility and good biodegradability and have been reported to have high affinity for protein or DNA, having thus been used as gene transfer vectors. On the other hand, Octa-arginine (R8), which has a high permeability to cell membrane, has been reported to improve intracellular delivery systems. Here, we present an optimized method for nCaP-mediated gene delivery using an octa-arginine (R8)-functionalized nCaP vector containing a marker or functional gene construct. nCaP particle size was between 220–580 nm in diameter and all R8-functionalized nCaPs carried a positive charge. R8 concentration significantly improved nCaP transfection efficiency with high cell compatibility in human mesenchymal stem cells (hMSC) and human osteoblasts (hOB) in particular, suggesting nCaPs as a good option for non-viral vector gene delivery. Furthermore, pre-treatment with different endocytosis inhibitors identified that the endocytic pathway differed among cell lines and functionalized nanoparticles, with amiloride increasing transfection efficiency of R8-functionalized nCaPs in hMSC and hOB.
Collapse
Affiliation(s)
- Juan Ramón Vanegas Sáenz
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- * E-mail: ,
| | - Taichi Tenkumo
- Laboratory for Redox Regulation, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Yuya Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| |
Collapse
|
25
|
Kopp M, Rotan O, Papadopoulos C, Schulze N, Meyer H, Epple M. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells. PLoS One 2017; 12:e0178260. [PMID: 28586345 PMCID: PMC5460861 DOI: 10.1371/journal.pone.0178260] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Collapse
Affiliation(s)
- Mathis Kopp
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | | | - Nina Schulze
- Imaging Centre Campus Essen (ICCE), University of Duisburg-Essen, Essen, Germany
| | - Hemmo Meyer
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
26
|
Rotan O, Severin KN, Pöpsel S, Peetsch A, Merdanovic M, Ehrmann M, Epple M. Uptake of the proteins HTRA1 and HTRA2 by cells mediated by calcium phosphate nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:381-393. [PMID: 28326227 PMCID: PMC5331334 DOI: 10.3762/bjnano.8.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/22/2017] [Indexed: 06/06/2023]
Abstract
The efficient intracellular delivery of (bio)molecules into living cells remains a challenge in biomedicine. Many biomolecules and synthetic drugs are not able to cross the cell membrane, which is a problem if an intracellular mode of action is desired, for example, with a nuclear receptor. Calcium phosphate nanoparticles can serve as carriers for small and large biomolecules as well as for synthetic compounds. The nanoparticles were prepared and colloidally stabilized with either polyethyleneimine (PEI; cationic nanoparticles) or carboxymethyl cellulose (CMC; anionic nanoparticles) and loaded with defined amounts of the fluorescently labelled proteins HTRA1, HTRA2, and BSA. The nanoparticles were purified by ultracentrifugation and characterized by dynamic light scattering and scanning electron microscopy. Various cell types (HeLa, MG-63, THP-1, and hMSC) were incubated with fluorescently labelled proteins alone or with protein-loaded cationic and anionic nanoparticles. The cellular uptake was followed by light and fluorescence microscopy, confocal laser scanning microscopy (CLSM), and flow cytometry. All proteins were readily transported into the cells by cationic calcium phosphate nanoparticles. Notably, only HTRA1 was able to penetrate the cell membrane of MG-63 cells in dissolved form. However, the application of endocytosis inhibitors revealed that the uptake pathway was different for dissolved HTRA1 and HTRA1-loaded nanoparticles.
Collapse
Affiliation(s)
- Olga Rotan
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Katharina N Severin
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Simon Pöpsel
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Alexander Peetsch
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Melisa Merdanovic
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Michael Ehrmann
- Centre for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany
| |
Collapse
|
27
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Althoff K, Schulte JH, Schramm A. Towards diagnostic application of non-coding RNAs in neuroblastoma. Expert Rev Mol Diagn 2016; 16:1307-1313. [PMID: 27813435 DOI: 10.1080/14737159.2016.1256207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Neuroblastoma is a solid cancer of childhood, which is devastating upon recurrence. Markers for minimal residual disease and early detection of relapse are eagerly awaited to improve the outcome of affected patients. Several miRNAs have been identified as key regulators of neuroblastoma pathogenesis. Areas covered: Here, we focus on miRNAs that have been linked to MYCN, a prominent oncogenic driver, and we review the hitherto known interactions between miRNAs and other important players in neuroblastoma. Expert commentary: Existing diagnostic miRNA signatures remain to be established in clinical settings. Moreover, inhibition of individual oncogenic miRNAs or enhancement of tumor suppressive miRNA function could represent a new therapeutic approach in cancer treatment, including NB.
Collapse
Affiliation(s)
- Kristina Althoff
- a Department of Pediatric Oncology and Hematology , University Children's Hospital Essen , Essen , Germany
| | - Johannes H Schulte
- b Department of Pediatric Oncology and Hematology , Charité University Medicine , Berlin , Germany.,c Berlin Institute of Health (BIH) , Germany.,d German Cancer Consortium (DKTK Berlin) , Germany
| | - Alexander Schramm
- a Department of Pediatric Oncology and Hematology , University Children's Hospital Essen , Essen , Germany
| |
Collapse
|