1
|
Lear SK, Nunez JA, Shipman SL. A High-Throughput Colocalization Pipeline for Quantification of Mitochondrial Targeting across Different Protein Types. ACS Synth Biol 2023; 12:2498-2504. [PMID: 37506292 PMCID: PMC10561668 DOI: 10.1021/acssynbio.3c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Efficient metabolic engineering and the development of mitochondrial therapeutics often rely upon the specific and strong import of foreign proteins into mitochondria. Fusing a protein to a mitochondria-bound signal peptide is a common method to localize proteins to mitochondria, but this strategy is not universally effective, with particular proteins empirically failing to localize. To help overcome this barrier, this work develops a generalizable and open-source framework to design proteins for mitochondrial import and quantify their specific localization. This Python-based pipeline quantitatively assesses the colocalization of different proteins previously used for precise genome editing in a high-throughput manner to reveal signal peptide-protein combinations that localize well in mitochondria.
Collapse
Affiliation(s)
- Sierra K Lear
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, California 94720, United States
| | - Jose A Nunez
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub - San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
2
|
Liu R, Li K, Yang T, Yang L, Qin M, Yu H, Wu M, Ge Q, Bao W, Wu S. Exploring the role of protein DJ-1 in quality of pale, soft and exudative (PSE) and red, firm and non-exudative (RFN) pork during post-mortem aging. Food Chem 2022; 398:133817. [DOI: 10.1016/j.foodchem.2022.133817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
3
|
Smith AJ, Advani J, Brock DC, Nellissery J, Gumerson J, Dong L, Aravind L, Kennedy B, Swaroop A. GATD3A, a mitochondrial deglycase with evolutionary origins from gammaproteobacteria, restricts the formation of advanced glycation end products. BMC Biol 2022; 20:68. [PMID: 35307029 PMCID: PMC8935817 DOI: 10.1186/s12915-022-01267-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functional complexity of the eukaryotic mitochondrial proteome is augmented by independent gene acquisition from bacteria since its endosymbiotic origins. Mammalian homologs of many ancestral mitochondrial proteins have uncharacterized catalytic activities. Recent forward genetic approaches attributed functions to proteins in established metabolic pathways, thereby limiting the possibility of identifying novel biology relevant to human disease. We undertook a bottom-up biochemistry approach to discern evolutionarily conserved mitochondrial proteins with catalytic potential. RESULTS Here, we identify a Parkinson-associated DJ-1/PARK7-like protein-glutamine amidotransferase-like class 1 domain-containing 3A (GATD3A), with bacterial evolutionary affinities although not from alphaproteobacteria. We demonstrate that GATD3A localizes to the mitochondrial matrix and functions as a deglycase. Through its amidolysis domain, GATD3A removes non-enzymatic chemical modifications produced during the Maillard reaction between dicarbonyls and amines of nucleotides and amino acids. GATD3A interacts with factors involved in mitochondrial mRNA processing and translation, suggestive of a role in maintaining integrity of important biomolecules through its deglycase activity. The loss of GATD3A in mice is associated with accumulation of advanced glycation end products (AGEs) and altered mitochondrial dynamics. CONCLUSIONS An evolutionary perspective helped us prioritize a previously uncharacterized but predicted mitochondrial protein GATD3A, which mediates the removal of early glycation intermediates. GATD3A restricts the formation of AGEs in mitochondria and is a relevant target for diseases where AGE deposition is a pathological hallmark.
Collapse
Affiliation(s)
- Andrew J. Smith
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Daniel C. Brock
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Lijin Dong
- Genome Engineering Core, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892 USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
4
|
Storey CL, Williams RSB, Fisher PR, Annesley SJ. Dictyostelium discoideum: A Model System for Neurological Disorders. Cells 2022; 11:cells11030463. [PMID: 35159273 PMCID: PMC8833889 DOI: 10.3390/cells11030463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background: The incidence of neurological disorders is increasing due to population growth and extended life expectancy. Despite advances in the understanding of these disorders, curative strategies for treatment have not yet eventuated. In part, this is due to the complexities of the disorders and a lack of identification of their specific underlying pathologies. Dictyostelium discoideum has provided a useful, simple model to aid in unraveling the complex pathological characteristics of neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, neuronal ceroid lipofuscinoses and lissencephaly. In addition, D. discoideum has proven to be an innovative model for pharmaceutical research in the neurological field. Scope of review: This review describes the contributions of D. discoideum in the field of neurological research. The continued exploration of proteins implicated in neurological disorders in D. discoideum may elucidate their pathological roles and fast-track curative therapeutics.
Collapse
Affiliation(s)
- Claire Louise Storey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Robin Simon Brooke Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK;
| | - Paul Robert Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
| | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora 3086, Australia; (C.L.S.); (P.R.F.)
- Correspondence: ; Tel.: +61-394-791-412
| |
Collapse
|
5
|
Queliconi BB, Kojima W, Kimura M, Imai K, Udagawa C, Motono C, Hirokawa T, Tashiro S, Caaveiro JMM, Tsumoto K, Yamano K, Tanaka K, Matsuda N. Unfolding is the driving force for mitochondrial import and degradation of the Parkinson's disease-related protein DJ-1. J Cell Sci 2021; 134:273535. [PMID: 34676411 PMCID: PMC8645234 DOI: 10.1242/jcs.258653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/13/2021] [Indexed: 11/24/2022] Open
Abstract
Diverse genes associated with familial Parkinson's disease (familial Parkinsonism) have been implicated in mitochondrial quality control. One such gene, PARK7 encodes the protein DJ-1, pathogenic mutations of which trigger its translocation from the cytosol to the mitochondrial matrix. The translocation of steady-state cytosolic proteins like DJ-1 to the mitochondrial matrix upon missense mutations is rare, and the underlying mechanism remains to be elucidated. Here, we show that the protein unfolding associated with various DJ-1 mutations drives its import into the mitochondrial matrix. Increasing the structural stability of these DJ-1 mutants restores cytosolic localization. Mechanistically, we show that a reduction in the structural stability of DJ-1 exposes a cryptic N-terminal mitochondrial-targeting signal (MTS), including Leu10, which promotes DJ-1 import into the mitochondrial matrix for subsequent degradation. Our work describes a novel cellular mechanism for targeting a destabilized cytosolic protein to the mitochondria for degradation. Summary: Several mutations in Parkinson's disease-related protein DJ-1 cause its mitochondrial import and degradation. We reveal that protein unfolding is the driving force for the import and degradation of DJ-1.
Collapse
Affiliation(s)
- Bruno Barros Queliconi
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Mayumi Kimura
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Kenichiro Imai
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Chisato Udagawa
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takatsugu Hirokawa
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinya Tashiro
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
6
|
Chen S, Annesley SJ, Jasim RAF, Fisher PR. The Parkinson's Disease-Associated Protein DJ-1 Protects Dictyostelium Cells from AMPK-Dependent Outcomes of Oxidative Stress. Cells 2021; 10:cells10081874. [PMID: 34440642 PMCID: PMC8392454 DOI: 10.3390/cells10081874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathology of Parkinson’s disease (PD). In Dictyostelium discoideum, strains with mitochondrial dysfunction present consistent, AMPK-dependent phenotypes. This provides an opportunity to investigate if the loss of function of specific PD-associated genes produces cellular pathology by causing mitochondrial dysfunction with AMPK-mediated consequences. DJ-1 is a PD-associated, cytosolic protein with a conserved oxidizable cysteine residue that is important for the protein’s ability to protect cells from the pathological consequences of oxidative stress. Dictyostelium DJ-1 (encoded by the gene deeJ) is located in the cytosol from where it indirectly inhibits mitochondrial respiration and also exerts a positive, nonmitochondrial role in endocytosis (particularly phagocytosis). Its loss in unstressed cells impairs endocytosis and causes correspondingly slower growth, while also stimulating mitochondrial respiration. We report here that oxidative stress in Dictyostelium cells inhibits mitochondrial respiration and impairs phagocytosis in an AMPK-dependent manner. This adds to the separate impairment of phagocytosis caused by DJ-1 knockdown. Oxidative stress also combines with DJ-1 loss in an AMPK-dependent manner to impair or exacerbate defects in phototaxis, morphogenesis and growth. It thereby phenocopies mitochondrial dysfunction. These results support a model in which the oxidized but not the reduced form of DJ-1 inhibits AMPK in the cytosol, thereby protecting cells from the adverse consequences of oxidative stress, mitochondrial dysfunction and the resulting AMPK hyperactivity.
Collapse
Affiliation(s)
- Suwei Chen
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, China
| | - Sarah J. Annesley
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
| | - Rasha A. F. Jasim
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
- Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Hillah 51002, Iraq
| | - Paul R. Fisher
- Discipline of Microbiology, Department of Physiology Anatomy and Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3086, Australia; (S.C.); (S.J.A.); (R.A.F.J.)
- Correspondence: ; Tel.: +61-3-9479-2229
| |
Collapse
|
7
|
Huang M, Chen S. DJ-1 in neurodegenerative diseases: Pathogenesis and clinical application. Prog Neurobiol 2021; 204:102114. [PMID: 34174373 DOI: 10.1016/j.pneurobio.2021.102114] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 12/23/2022]
Abstract
Neurodegenerative diseases (NDs) are one of the major health threats to human characterized by selective and progressive neuronal loss. The mechanisms of NDs are still not fully understood. The study of genetic defects and disease-related proteins offers us a window into the mystery of it, and the extension of knowledge indicates that different NDs share similar features, mechanisms, and even genetic or protein abnormalities. Among these findings, PARK7 and its production DJ-1 protein, which was initially found implicated in PD, have also been found altered in other NDs. PARK7 mutations, altered expression and posttranslational modification (PTM) cause DJ-1 abnormalities, which in turn lead to downstream mechanisms shared by most NDs, such as mitochondrial dysfunction, oxidative stress, protein aggregation, autophagy defects, and so on. The knowledge of DJ-1 derived from PD researches might apply to other NDs in both basic research and clinical application, and might yield novel insights into and alternative approaches for dealing with NDs.
Collapse
Affiliation(s)
- Maoxin Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China; Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
8
|
Singh F, Ganley IG. Parkinson's disease and mitophagy: an emerging role for LRRK2. Biochem Soc Trans 2021; 49:551-562. [PMID: 33769432 PMCID: PMC8106497 DOI: 10.1042/bst20190236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects around 2% of individuals over 60 years old. It is characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain, which is thought to account for the major clinical symptoms such as tremor, slowness of movement and muscle stiffness. Its aetiology is poorly understood as the physiological and molecular mechanisms leading to this neuronal loss are currently unclear. However, mitochondrial and lysosomal dysfunction seem to play a central role in this disease. In recent years, defective mitochondrial elimination through autophagy, termed mitophagy, has emerged as a potential contributing factor to disease pathology. PINK1 and Parkin, two proteins mutated in familial PD, were found to eliminate mitochondria under distinct mitochondrial depolarisation-induced stress. However, PINK1 and Parkin are not essential for all types of mitophagy and such pathways occur in most cell types and tissues in vivo, even in the absence of overt mitochondrial stress - so-called basal mitophagy. The most common mutation in PD, that of glycine at position 2019 to serine in the protein kinase LRRK2, results in increased activity and this was recently shown to disrupt basal mitophagy in vivo. Thus, different modalities of mitophagy are affected by distinct proteins implicated in PD, suggesting impaired mitophagy may be a common denominator for the disease. In this short review, we discuss the current knowledge about the link between PD pathogenic mutations and mitophagy, with a particular focus on LRRK2.
Collapse
Affiliation(s)
- Francois Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, U.K
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
9
|
Mitochondrial LonP1 protease is implicated in the degradation of unstable Parkinson's disease-associated DJ-1/PARK 7 missense mutants. Sci Rep 2021; 11:7320. [PMID: 33795807 PMCID: PMC8016953 DOI: 10.1038/s41598-021-86847-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/19/2021] [Indexed: 01/03/2023] Open
Abstract
DJ-1/PARK7 mutations are linked with familial forms of early-onset Parkinson's disease (PD). We have studied the degradation of untagged DJ-1 wild type (WT) and missense mutants in mouse embryonic fibroblasts obtained from DJ-1-null mice, an approach closer to the situation in patients carrying homozygous mutations. The results showed that the mutants L10P, M26I, A107P, P158Δ, L166P, E163K, and L172Q are unstable proteins, while A39S, E64D, R98Q, A104T, D149A, A171S, K175E, and A179T are as stable as DJ-1 WT. Inhibition of proteasomal and autophagic-lysosomal pathways had little effect on their degradation. Immunofluorescence and biochemical fractionation studies indicated that M26I, A107P, P158Δ, L166P, E163K, and L172Q mutants associate with mitochondria. Silencing of mitochondrial matrix protease LonP1 produced a strong reduction of the degradation of the mitochondrial-associated DJ-1 mutants A107P, P158Δ, L166P, E163K, and L172Q but not of mutant L10P. These results demonstrated a mitochondrial pathway of degradation of those DJ-1 missense mutants implicated in PD pathogenesis.
Collapse
|
10
|
Goyal S, Chaturvedi RK. Mitochondrial Protein Import Dysfunction in Pathogenesis of Neurodegenerative Diseases. Mol Neurobiol 2020; 58:1418-1437. [PMID: 33180216 DOI: 10.1007/s12035-020-02200-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play an essential role in maintaining energy homeostasis and cellular survival. In the brain, higher ATP production is required by mature neurons for communication. Most of the mitochondrial proteins transcribe in the nucleus and import in mitochondria through different pathways of the mitochondrial protein import machinery. This machinery plays a crucial role in determining mitochondrial morphology and functions through mitochondrial biogenesis. Failure of this machinery and any alterations during mitochondrial biogenesis underlies neurodegeneration resulting in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and Parkinson's disease (PD) etc. Current knowledge has revealed the different pathways of mitochondrial protein import machinery such as translocase of the outer mitochondrial membrane complex, the presequence pathway, carrier pathway, β-barrel pathway, and mitochondrial import and assembly machinery etc. In this review, we have discussed the recent studies regarding protein import machinery, beyond the well-known effects of increased oxidative stress and bioenergetics dysfunctions. We have elucidated in detail how these types of machinery help to import and locate the precursor proteins to their specific location inside the mitochondria and play a major role in mitochondrial biogenesis. We further discuss their involvement in mitochondrial dysfunctioning and the induction of toxic aggregates in neurodegenerative diseases like AD and PD. The review supports the importance of import machinery in neuronal functions and its association with toxic aggregated proteins in mitochondrial impairment, suggesting a critical role in fostering and maintaining neurodegeneration and therapeutic response.
Collapse
Affiliation(s)
- Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Koyano F, Yamano K, Kosako H, Kimura Y, Kimura M, Fujiki Y, Tanaka K, Matsuda N. Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes. EMBO Rep 2019; 20:e47728. [PMID: 31602805 PMCID: PMC6893362 DOI: 10.15252/embr.201947728] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Ubiquitylation of outer mitochondrial membrane (OMM) proteins is closely related to the onset of familial Parkinson's disease. Typically, a reduction in the mitochondrial membrane potential results in Parkin-mediated ubiquitylation of OMM proteins, which are then targeted for proteasomal and mitophagic degradation. The role of ubiquitylation of OMM proteins with non-degradative fates, however, remains poorly understood. In this study, we find that the mitochondrial E3 ubiquitin ligase MITOL/March5 translocates from depolarized mitochondria to peroxisomes following mitophagy stimulation. This unusual redistribution is mediated by peroxins (peroxisomal biogenesis factors) Pex3/16 and requires the E3 ligase activity of Parkin, which ubiquitylates K268 in the MITOL C-terminus, essential for p97/VCP-dependent mitochondrial extraction of MITOL. These findings imply that ubiquitylation directs peroxisomal translocation of MITOL upon mitophagy stimulation and reveal a novel role for ubiquitin as a sorting signal that allows certain specialized proteins to escape from damaged mitochondria.
Collapse
Affiliation(s)
- Fumika Koyano
- Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Koji Yamano
- Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hidetaka Kosako
- Division of Cell SignalingFujii Memorial Institute of Medical SciencesTokushima UniversityTokushimaJapan
| | - Yoko Kimura
- Department of Agriculture Graduate School of Integrated Science and TechnologyShizuoka UniversityShizuokaJapan
| | - Mayumi Kimura
- Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Yukio Fujiki
- Medical Institute of BioregulationKyushu UniversityHigashi‐kuFukuokaJapan
| | - Keiji Tanaka
- Laboratory of Protein MetabolismTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Noriyuki Matsuda
- Ubiquitin ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| |
Collapse
|
12
|
Moutaoufik MT, Malty R, Amin S, Zhang Q, Phanse S, Gagarinova A, Zilocchi M, Hoell L, Minic Z, Gagarinova M, Aoki H, Stockwell J, Jessulat M, Goebels F, Broderick K, Scott NE, Vlasblom J, Musso G, Prasad B, Lamantea E, Garavaglia B, Rajput A, Murayama K, Okazaki Y, Foster LJ, Bader GD, Cayabyab FS, Babu M. Rewiring of the Human Mitochondrial Interactome during Neuronal Reprogramming Reveals Regulators of the Respirasome and Neurogenesis. iScience 2019; 19:1114-1132. [PMID: 31536960 PMCID: PMC6831851 DOI: 10.1016/j.isci.2019.08.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial protein (MP) assemblies undergo alterations during neurogenesis, a complex process vital in brain homeostasis and disease. Yet which MP assemblies remodel during differentiation remains unclear. Here, using mass spectrometry-based co-fractionation profiles and phosphoproteomics, we generated mitochondrial interaction maps of human pluripotent embryonal carcinoma stem cells and differentiated neuronal-like cells, which presented as two discrete cell populations by single-cell RNA sequencing. The resulting networks, encompassing 6,442 high-quality associations among 600 MPs, revealed widespread changes in mitochondrial interactions and site-specific phosphorylation during neuronal differentiation. By leveraging the networks, we show the orphan C20orf24 as a respirasome assembly factor whose disruption markedly reduces respiratory chain activity in patients deficient in complex IV. We also find that a heme-containing neurotrophic factor, neuron-derived neurotrophic factor [NENF], couples with Parkinson disease-related proteins to promote neurotrophic activity. Our results provide insights into the dynamic reorganization of mitochondrial networks during neuronal differentiation and highlights mechanisms for MPs in respirasome, neuronal function, and mitochondrial diseases. Rewiring of mitochondrial (mt) protein interaction network in distinct cell states Dramatic changes in site-specific phosphorylation during neuronal differentiation C20orf24 is a respirasome assembly factor depleted in patients deficient in CIV NENF binding with DJ-1/PINK1 promotes neurotrophic activity and neuronal survival
Collapse
Affiliation(s)
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Alla Gagarinova
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Larissa Hoell
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Zoran Minic
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Maria Gagarinova
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Jocelyn Stockwell
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Florian Goebels
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Kirsten Broderick
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Nichollas E Scott
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James Vlasblom
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gabriel Musso
- Department of Medicine, Harvard Medical School and Cardiovascular Division, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bhanu Prasad
- Department of Medicine, Regina Qu'Appelle Health Region, Regina, SK S4P 0W5, Canada
| | - Eleonora Lamantea
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, via L. Temolo, 4, 20126 Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, via L. Temolo, 4, 20126 Milan, Italy
| | - Alex Rajput
- Department of Medicine, Division of Neurology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori, Chiba 266-0007, Japan
| | - Yasushi Okazaki
- Graduate School of Medicine, Intractable Disease Research Center, Juntendo University, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Francisco S Cayabyab
- Department of Surgery, Neuroscience Research Group, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
13
|
The effect of cysteine oxidation on DJ-1 cytoprotective function in human alveolar type II cells. Cell Death Dis 2019; 10:638. [PMID: 31474749 PMCID: PMC6717737 DOI: 10.1038/s41419-019-1833-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
DJ-1 is a multifunctional protein with cytoprotective functions. It is localized in the cytoplasm, nucleus, and mitochondria. The conserved cysteine residue at position 106 (Cys106) within DJ-1 serves as a sensor of redox state and can be oxidized to both the sulfinate (-SO2−) and sulfonate (-SO3−) forms. DJ-1 with Cys106-SO2− has cytoprotective activity but high levels of reactive oxygen species can induce its overoxidation to Cys106-SO3−. We found increased oxidative stress in alveolar type II (ATII) cells isolated from emphysema patients as determined by 4-HNE expression. DJ-1 with Cys106-SO3− was detected in these cells by mass spectrometry analysis. Moreover, ubiquitination of Cys106-SO3− DJ-1 was identified, which suggests that this oxidized isoform is targeted for proteasomal destruction. Furthermore, we performed controlled oxidation using H2O2 in A549 cells with DJ-1 knockout generated using CRISPR-Cas9 strategy. Lack of DJ-1 sensitized cells to apoptosis induced by H2O2 as detected using Annexin V and propidium iodide by flow cytometry analysis. This treatment also decreased both mitochondrial DNA amount and mitochondrial ND1 (NADH dehydrogenase 1, subunit 1) gene expression, as well as increased mitochondrial DNA damage. Consistent with the decreased cytoprotective function of overoxidized DJ-1, recombinant Cys106-SO3− DJ-1 exhibited a loss of its thermal unfolding transition, mild diminution of secondary structure in CD spectroscopy, and an increase in picosecond–nanosecond timescale dynamics as determined using NMR. Altogether, our data indicate that very high oxidative stress in ATII cells in emphysema patients induces DJ-1 overoxidation to the Cys106-SO3− form, leading to increased protein flexibility and loss of its cytoprotective function, which may contribute to this disease pathogenesis.
Collapse
|
14
|
Osuagwu N, Dölle C, Tzoulis C. Poly-ADP-ribose assisted protein localization resolves that DJ-1, but not LRRK2 or α-synuclein, is localized to the mitochondrial matrix. PLoS One 2019; 14:e0219909. [PMID: 31323073 PMCID: PMC6641658 DOI: 10.1371/journal.pone.0219909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022] Open
Abstract
Several proteins linked to familial Parkinson disease have been associated with mitochondrial (dys-)function and have been described to reside within mitochondria. The putative mitochondrial and sub-mitochondrial localization of these proteins remains disputed, however, potentially due to conflicting results obtained by diverging technical approaches. Using the high-resolution poly-ADP-ribose assisted protein localization assay that also allows for detection of low level and even partial mitochondrial matrix localization, we demonstrate here that DJ-1, but not LRRK2 or α-synuclein, resides in the mitochondrial matrix. The localization of the proteins was not changed in cellular stress models of Parkinson disease and, in case of α-synuclein, not affected by pathological mutations. Our results verify the ability of DJ-1 to carry out its role also from within mitochondria and suggest that LRRK2 and α-synuclein may interact with and affect mitochondria from outside the mitochondrial matrix.
Collapse
Affiliation(s)
- Nelson Osuagwu
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital and University of Bergen, Bergen, Norway
| | - Christian Dölle
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital and University of Bergen, Bergen, Norway
- * E-mail: (CD); (CT)
| | - Charalampos Tzoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Neuro-SysMed Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital and University of Bergen, Bergen, Norway
- * E-mail: (CD); (CT)
| |
Collapse
|
15
|
Sorrentino ZA, Giasson BI, Chakrabarty P. α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease. Acta Neuropathol 2019; 138:1-21. [PMID: 30798354 DOI: 10.1007/s00401-019-01977-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/25/2022]
Abstract
α-Synuclein is a soluble protein that is present in abundance in the brain, though its normal function in the healthy brain is poorly defined. Intraneuronal inclusions of α-synuclein, commonly referred to as Lewy pathology, are pathological hallmarks of a spectrum of neurodegenerative disorders referred to as α-synucleinopathies. Though α-synuclein is expressed predominantly in neurons, α-synuclein aggregates in astrocytes are a common feature in these neurodegenerative diseases. How and why α-synuclein ends up in the astrocytes and the consequences of this dysfunctional proteostasis in immune cells is a major area of research that can have far-reaching implications for future immunobiotherapies in α-synucleinopathies. Accumulation of aggregated α-synuclein can disrupt astrocyte function in general and, more importantly, can contribute to neurodegeneration in α-synucleinopathies through various pathways. Here, we summarize our current knowledge on how astrocytic α-synucleinopathy affects CNS function in health and disease and propose a model of neuroglial connectome altered by α-synuclein proteostasis that might be amenable to immune-based therapies.
Collapse
|
16
|
Weinert M, Millet A, Jonas EA, Alavian KN. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β. FASEB J 2019; 33:8925-8934. [PMID: 31034784 PMCID: PMC6988861 DOI: 10.1096/fj.201802754r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondrial metabolic plasticity is a key adaptive mechanism in response to changes in cellular metabolic demand. Changes in mitochondrial metabolic efficiency have been linked to pathophysiological conditions, including cancer, neurodegeneration, and obesity. The ubiquitously expressed DJ-1 (Parkinsonism-associated deglycase) is known as a Parkinson's disease gene and an oncogene. The pleiotropic functions of DJ-1 include reactive oxygen species scavenging, RNA binding, chaperone activity, endocytosis, and modulation of major signaling pathways involved in cell survival and metabolism. Nevertheless, how these functions are linked to the role of DJ-1 in mitochondrial plasticity is not fully understood. In this study, we describe an interaction between DJ-1 and 14-3-3β that regulates the localization of DJ-1, in a hypoxia-dependent manner, either to the cytosol or to mitochondria. This interaction acts as a modulator of mitochondrial metabolic efficiency and a switch between glycolysis and oxidative phosphorylation. Modulation of this novel molecular mechanism of mitochondrial metabolic efficiency is potentially involved in the neuroprotective function of DJ-1 as well as its role in proliferation of cancer cells.-Weinert, M., Millet, A., Jonas, E. A., Alavian, K. N. The mitochondrial metabolic function of DJ-1 is modulated by 14-3-3β.
Collapse
Affiliation(s)
- Maria Weinert
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aurelie Millet
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| | - Elizabeth A Jonas
- Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom.,Division of Endocrinology, Department of Internal Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
17
|
Raza C, Anjum R, Shakeel NUA. Parkinson's disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226:77-90. [PMID: 30980848 DOI: 10.1016/j.lfs.2019.03.057] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder. The classical motor symptoms include resting tremors, bradykinesia, rigidity and postural instability and are accompanied by the loss of dopaminergic neurons and Lewy pathology. Diminished neurotransmitter level, oxidative stress, mitochondrial dysfunction and perturbed protein homeostasis over time worsen the disease manifestations in elderly people. Current management strategies aim to provide symptomatic relief and to slow down the disease progression. However, no pharmacological breakthrough has been made to protect dopaminergic neurons and associated motor circuitry components. Deep brain stimulation, stem cells-derived dopaminergic neurons transplantation, gene editing and gene transfer remain promising approaches for the potential management of neurodegenerative disease. Toxin or genetically induced rodent models replicating Parkinson's disease pathology are of high predictive value for translational research. This review addresses the current understanding, management strategies and the Parkinson's disease models for translational research. Preclinical research may provide powerful tools to quest the potential therapeutic and neuroprotective compounds for dopaminergic neurons and hence possible cure for the Parkinson's disease.
Collapse
Affiliation(s)
- Chand Raza
- Department of Zoology, Government College University, Lahore 54000, Pakistan.
| | - Rabia Anjum
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| | - Noor Ul Ain Shakeel
- Department of Zoology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|
18
|
Tashiro S, Caaveiro JMM, Nakakido M, Tanabe A, Nagatoishi S, Tamura Y, Matsuda N, Liu D, Hoang QQ, Tsumoto K. Discovery and Optimization of Inhibitors of the Parkinson's Disease Associated Protein DJ-1. ACS Chem Biol 2018; 13:2783-2793. [PMID: 30063823 DOI: 10.1021/acschembio.8b00701] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DJ-1 is a Parkinson's disease associated protein endowed with enzymatic, redox sensing, regulatory, chaperoning, and neuroprotective activities. Although DJ-1 has been vigorously studied for the past decade and a half, its exact role in the progression of the disease remains uncertain. In addition, little is known about the spatiotemporal regulation of DJ-1, or the biochemical basis explaining its numerous biological functions. Progress has been hampered by the lack of inhibitors with precisely known mechanisms of action. Herein, we have employed biophysical methodologies and X-ray crystallography to identify and to optimize a family of compounds inactivating the critical Cys106 residue of human DJ-1. We demonstrate these compounds are potent inhibitors of various activities of DJ-1 in vitro and in cell-based assays. This study reports a new family of DJ-1 inhibitors with a defined mechanism of action, and contributes toward the understanding of the biological function of DJ-1.
Collapse
Affiliation(s)
- Shinya Tashiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jose M. M. Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Aki Tanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
19
|
Natkańska U, Skoneczna A, Skoneczny M. Oxidative stress triggers aggregation of GFP-tagged Hsp31p, the budding yeast environmental stress response chaperone, and glyoxalase III. Cell Stress Chaperones 2018; 23:595-607. [PMID: 29264711 PMCID: PMC6045530 DOI: 10.1007/s12192-017-0868-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022] Open
Abstract
The Saccharomyces cerevisiae Hsp31p protein belongs to the ubiquitous DJ-1/ThiJ/PfpI family. The most prominent member of this family is human DJ-1; defects of this protein are associated with Parkinson's disease pathogenesis. Numerous recent findings reported by our group and others have revealed the importance of Hsp31p for survival in the post-diauxic phase of cell growth and under diverse environmental stresses. Hsp31p was shown to possess glutathione-independent glyoxalase III activity and to function as a protein chaperone, suggesting that it has multiple cellular roles. Our previous work also revealed that HSP31 gene expression was controlled by multiple stress-related transcription factors, which mediated HSP31 promoter responses to oxidative, osmotic, and thermal stresses, toxic products of glycolysis, and the diauxic shift. Nevertheless, the exact role of Hsp31p within budding yeast cells remains elusive. Here, we aimed to obtain insights into the function of Hsp31p based on its intracellular localization. We have demonstrated that the Hsp31p-GFP fusion protein is localized to the cytosol under most environmental conditions and that it becomes particulate in response to oxidative stress. However, the particles do not colocalize with other granular subcellular structures present in budding yeast cells. The observed particulate localization does not seem to be important for Hsp31p functionality. Instead, it is likely the result of oxidative damage, as the particle abundance increases when Hsp31p is nonfunctional, when the cellular oxidative stress response is affected, or when cellular maintenance systems that optimize the state of the proteome are compromised.
Collapse
Affiliation(s)
- Urszula Natkańska
- Institute of Biochemistry and Biophysics, Department of Genetics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics, Laboratory of Mutagenesis and DNA Repair, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland
| | - Marek Skoneczny
- Institute of Biochemistry and Biophysics, Department of Genetics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warszawa, Poland.
| |
Collapse
|
20
|
Matsuda N, Kimura M, Queliconi BB, Kojima W, Mishima M, Takagi K, Koyano F, Yamano K, Mizushima T, Ito Y, Tanaka K. Parkinson's disease-related DJ-1 functions in thiol quality control against aldehyde attack in vitro. Sci Rep 2017; 7:12816. [PMID: 28993701 PMCID: PMC5634459 DOI: 10.1038/s41598-017-13146-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
DJ-1 (also known as PARK7) has been identified as a causal gene for hereditary recessive Parkinson’s disease (PD). Consequently, the full elucidation of DJ-1 function will help decipher the molecular mechanisms underlying PD pathogenesis. However, because various, and sometimes inconsistent, roles for DJ-1 have been reported, the molecular function of DJ-1 remains controversial. Recently, a number of papers have suggested that DJ-1 family proteins are involved in aldehyde detoxification. We found that DJ-1 indeed converts methylglyoxal (pyruvaldehyde)-adducted glutathione (GSH) to intact GSH and lactate. Based on evidence that DJ-1 functions in mitochondrial homeostasis, we focused on the possibility that DJ-1 protects co-enzyme A (CoA) and its precursor in the CoA synthetic pathway from aldehyde attack. Here, we show that intact CoA and β-alanine, an intermediate in CoA synthesis, are recovered from methylglyoxal-adducts by recombinant DJ-1 purified from E. coli. In this process, methylglyoxal is converted to L-lactate rather than the D-lactate produced by a conventional glyoxalase. PD-related pathogenic mutations of DJ-1 (L10P, M26I, A104T, D149A, and L166P) impair or abolish detoxification activity, suggesting a pathological significance. We infer that a key to understanding the biological function of DJ-1 resides in its methylglyoxal-adduct hydrolase activity, which protects low-molecular thiols, including CoA, from aldehydes.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Mayumi Kimura
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Bruno Barros Queliconi
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Waka Kojima
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Masaki Mishima
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Kenji Takagi
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Fumika Koyano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamighori, Ako, Hyogo, 678-1297, Japan
| | - Yutaka Ito
- Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo, 156-8506, Japan. .,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
| |
Collapse
|