1
|
Oner M, Chen MC, Cheng PT, Li YH, Cheng YC, Celik A, Soong SW, Hsu LW, Lin DY, Hossain Prince GMS, Dhar T, Cheng HC, Tang PC, Lin H. Impact of metformin on neocortical development during pregnancy: Involvement of ERK and p35/CDK5 pathways. CHEMOSPHERE 2024; 358:142124. [PMID: 38677614 DOI: 10.1016/j.chemosphere.2024.142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Metformin, the most commonly prescribed drug for the treatment of diabetes, is increasingly used during pregnancy to address various disorders such as diabetes, obesity, preeclampsia, and metabolic diseases. However, its impact on neocortex development remains unclear. Here, we investigated the direct effects of metformin on neocortex development, focusing on ERK and p35/CDK5 regulation. Using a pregnant rat model, we found that metformin treatment during pregnancy induces small for gestational age (SGA) and reduces relative cortical thickness in embryos and neonates. Additionally, we discovered that metformin inhibits neural progenitor cell proliferation in the sub-ventricular zone (SVZ)/ventricular zone (VZ) of the developing neocortex, a process possibly mediated by ERK inactivation. Furthermore, metformin induces neuronal apoptosis in the SVZ/VZ area of the developing neocortex. Moreover, metformin retards neuronal migration, cortical lamination, and differentiation, potentially through p35/CDK5 inhibition in the developing neocortex. Remarkably, compensating for p35 through in utero electroporation partially rescues metformin-impaired neuronal migration and development. In summary, our study reveals that metformin disrupts neocortex development by inhibiting neuronal progenitor proliferation, neuronal migration, cortical layering, and cortical neuron maturation, likely via ERK and p35/CDK5 inhibition. Consequently, our findings advocate for caution in metformin usage during pregnancy, given its potential adverse effects on fetal brain development.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Pang-Ting Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Hsuan Li
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Yu-Chiao Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ayse Celik
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Shiuan-Woei Soong
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Li-Wen Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Din-You Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | - Trayee Dhar
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsu-Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
2
|
Gavrish M, Kustova A, Celis Suescún JC, Bessa P, Mitina N, Tarabykin V. Molecular mechanisms of corpus callosum development: a four-step journey. Front Neuroanat 2024; 17:1276325. [PMID: 38298831 PMCID: PMC10827913 DOI: 10.3389/fnana.2023.1276325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024] Open
Abstract
The Corpus Callosum (CC) is a bundle of axons connecting the cerebral hemispheres. It is the most recent structure to have appeared during evolution of placental mammals. Its development is controlled by a very complex interplay of many molecules. In humans it contains almost 80% of all commissural axons in the brain. The formation of the CC can be divided into four main stages, each controlled by numerous intracellular and extracellular molecular factors. First, a newborn neuron has to specify an axon, leave proliferative compartments, the Ventricular Zone (VZ) and Subventricular Zone (SVZ), migrate through the Intermediate Zone (IZ), and then settle at the Cortical Plate (CP). During the second stage, callosal axons navigate toward the midline within a compact bundle. Next stage is the midline crossing into contralateral hemisphere. The last step is targeting a defined area and synapse formation. This review provides an insight into these four phases of callosal axons development, as well as a description of the main molecular players involved.
Collapse
Affiliation(s)
- Maria Gavrish
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Angelina Kustova
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Juan C. Celis Suescún
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Paraskevi Bessa
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| | - Natalia Mitina
- Laboratory of Genetics of Brain Development, Research Institute of Neurosciences, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victor Tarabykin
- Charité Hospital, Institute of Cell Biology and Neurobiology, Berlin, Germany
| |
Collapse
|
3
|
Gu X, Jia C, Wang J. Advances in Understanding the Molecular Mechanisms of Neuronal Polarity. Mol Neurobiol 2023; 60:2851-2870. [PMID: 36738353 DOI: 10.1007/s12035-023-03242-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/22/2023] [Indexed: 02/05/2023]
Abstract
The establishment and maintenance of neuronal polarity are important for neural development and function. Abnormal neuronal polarity establishment commonly leads to a variety of neurodevelopmental disorders. Over the past three decades, with the continuous development and improvement of biological research methods and techniques, we have made tremendous progress in the understanding of the molecular mechanisms of neuronal polarity establishment. The activity of positive and negative feedback signals and actin waves are both essential in this process. They drive the directional transport and aggregation of key molecules of neuronal polarity, promote the spatiotemporal regulation of ordered and coordinated interactions of actin filaments and microtubules, stimulate the specialization and growth of axons, and inhibit the formation of multiple axons. In this review, we focus on recent advances in these areas, in particular the important findings about neuronal polarity in two classical models, in vitro primary hippocampal/cortical neurons and in vivo cortical pyramidal neurons, and discuss our current understanding of neuronal polarity..
Collapse
Affiliation(s)
- Xi Gu
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| | - Chunhong Jia
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Junhao Wang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Sokpor G, Kerimoglu C, Nguyen H, Pham L, Rosenbusch J, Wagener R, Nguyen HP, Fischer A, Staiger JF, Tuoc T. Loss of BAF Complex in Developing Cortex Perturbs Radial Neuronal Migration in a WNT Signaling-Dependent Manner. Front Mol Neurosci 2021; 14:687581. [PMID: 34220450 PMCID: PMC8243374 DOI: 10.3389/fnmol.2021.687581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders. Epigenetic factors, including chromatin remodelers have emerged as formidable regulators of corticogenesis. Notably, the chromatin remodeler BAF complex has been shown to regulate several aspects of cortical histogenesis. Nonetheless, our understanding of how BAF complex regulates neuronal migration is limited. Here, we report that BAF complex is required for neuron migration during cortical development. Ablation of BAF complex in the developing mouse cortex caused alteration in the cortical gene expression program, leading to loss of radial migration-related factors critical for proper cortical layer formation. Of note, BAF complex inactivation in cortex caused defective neuronal polarization resulting in diminished multipolar-to-bipolar transition and eventual disruption of radial migration of cortical neurons. The abnormal radial migration and cortical mis-lamination can be partly rescued by downregulating WNT signaling hyperactivity in the BAF complex mutant cortex. By implication, the BAF complex modulates WNT signaling to establish the gene expression program required for glial fiber-dependent neuronal migration, and cortical lamination. Overall, BAF complex has been identified to be crucial for cortical morphogenesis through instructing multiple aspects of radial neuronal migration in a WNT signaling-dependent manner.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Cemil Kerimoglu
- German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Huong Nguyen
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Linh Pham
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Robin Wagener
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Neurology, University Medical Center Heidelberg, Heidelberg, Germany.,Neurooncology Clinical Cooperation Unit, German Cancer Research Center, Heidelberg, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| | - Andre Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany.,Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center Goettingen, Göttingen, Germany.,Department of Human Genetics, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
5
|
Involvement of JNK1 in Neuronal Polarization During Brain Development. Cells 2020; 9:cells9081897. [PMID: 32823764 PMCID: PMC7466125 DOI: 10.3390/cells9081897] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022] Open
Abstract
The c-Jun N-terminal Kinases (JNKs) are a group of regulatory elements responsible for the control of a wide array of functions within the cell. In the central nervous system (CNS), JNKs are involved in neuronal polarization, starting from the cell division of neural stem cells and ending with their final positioning when migrating and maturing. This review will focus mostly on isoform JNK1, the foremost contributor of total JNK activity in the CNS. Throughout the text, research from multiple groups will be summarized and discussed in order to describe the involvement of the JNKs in the different steps of neuronal polarization. The data presented support the idea that isoform JNK1 is highly relevant to the regulation of many of the processes that occur in neuronal development in the CNS.
Collapse
|
6
|
Takashima S, Watanabe C, Ema M, Mizutani KI. Interaction of the nervous system and vascular system is required for the proper assembly of the neocortex. Neurochem Int 2019; 129:104481. [DOI: 10.1016/j.neuint.2019.104481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022]
|
7
|
Xu Z, Chen Y, Chen Y. Spatiotemporal Regulation of Rho GTPases in Neuronal Migration. Cells 2019; 8:cells8060568. [PMID: 31185627 PMCID: PMC6627650 DOI: 10.3390/cells8060568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Neuronal migration is essential for the orchestration of brain development and involves several contiguous steps: interkinetic nuclear movement (INM), multipolar–bipolar transition, locomotion, and translocation. Growing evidence suggests that Rho GTPases, including RhoA, Rac, Cdc42, and the atypical Rnd members, play critical roles in neuronal migration by regulating both actin and microtubule cytoskeletal components. This review focuses on the spatiotemporal-specific regulation of Rho GTPases as well as their regulators and effectors in distinct steps during the neuronal migration process. Their roles in bridging extracellular signals and cytoskeletal dynamics to provide optimal structural support to the migrating neurons will also be discussed.
Collapse
Affiliation(s)
- Zhenyan Xu
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
| | - Yuewen Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| | - Yu Chen
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, Guangdong, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen 518057, Guangdong, China.
| |
Collapse
|