1
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
2
|
Matsuka M, Otsune S, Sugimori S, Tsugita Y, Ueda H, Nakagoshi H. Fecundity is optimized by levels of nutrient signal-dependent expression of Dve and EcR in Drosophila male accessory gland. Dev Biol 2024; 508:8-23. [PMID: 38199580 DOI: 10.1016/j.ydbio.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Steroid hormones play various physiological roles including metabolism and reproduction. Steroid hormones in insects are ecdysteroids, and the major form in Drosophila melanogaster is ecdysone. In Drosophila males, the accessory gland is responsive to nutrient-dependent regulation of fertility/fecundity. The accessory gland is composed of two types of binucleated epithelial cells: a main cell and a secondary cell (SC). The transcription factors Defective proventriculus (Dve), Abdominal-B, and Ecdysone receptors (EcRs) are strongly expressed in adult SCs. We show that this EcR expression is regulated by parallel pathways of nutrient signaling and the Dve activity. Induction of Dve expression is also dependent on nutrient signaling, and it becomes nutrient signal-independent during a restricted period of development. Forced dve expression during the restricted period significantly increased the number of SCs. Here, we provide evidence that the level of nutrient signal-dependent Dve expression during the restricted period determines the number of SCs, and that ecdysone signaling is also crucial to optimize male fecundity through nutrient signal-dependent survival and maturation of SCs.
Collapse
Affiliation(s)
- Mirai Matsuka
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Shinichi Otsune
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Seiko Sugimori
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yasuhiro Tsugita
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hitoshi Ueda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hideki Nakagoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
3
|
Chen SL, Liu BT, Lee WP, Liao SB, Deng YB, Wu CL, Ho SM, Shen BX, Khoo GH, Shiu WC, Chang CH, Shih HW, Wen JK, Lan TH, Lin CC, Tsai YC, Tzeng HF, Fu TF. WAKE-mediated modulation of cVA perception via a hierarchical neuro-endocrine axis in Drosophila male-male courtship behaviour. Nat Commun 2022; 13:2518. [PMID: 35523813 PMCID: PMC9076693 DOI: 10.1038/s41467-022-30165-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/19/2022] [Indexed: 12/18/2022] Open
Abstract
The nervous and endocrine systems coordinate with each other to closely influence physiological and behavioural responses in animals. Here we show that WAKE (encoded by wide awake, also known as wake) modulates membrane levels of GABAA receptor Resistance to Dieldrin (Rdl), in insulin-producing cells of adult male Drosophila melanogaster. This results in changes to secretion of insulin-like peptides which is associated with changes in juvenile hormone biosynthesis in the corpus allatum, which in turn leads to a decrease in 20-hydroxyecdysone levels. A reduction in ecdysone signalling changes neural architecture and lowers the perception of the male-specific sex pheromone 11-cis-vaccenyl acetate by odorant receptor 67d olfactory neurons. These finding explain why WAKE-deficient in Drosophila elicits significant male-male courtship behaviour. The authors show that the Drosophila master regulator WAKE modulates the secretion of insulin-like peptides, triggering a decrease in 20-hydroxyecdysone levels. This lowers the perception of a male-specific sex pheromone and explains why WAKE-deficient Drosophila flies show male-male courtship behaviour.
Collapse
Affiliation(s)
- Shiu-Ling Chen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bo-Ting Liu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Wang-Pao Lee
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sin-Bo Liao
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yao-Bang Deng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neurology, Chang Gung Memorial Hospital, Linkou, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuk-Man Ho
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Bing-Xian Shen
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Guan-Hock Khoo
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Wei-Chiang Shiu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
| | - Chih-Hsuan Chang
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Hui-Wen Shih
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tsuo-Hung Lan
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.,Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.,Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Chien Lin
- Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chen Tsai
- Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan.
| | - Huey-Fen Tzeng
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan.
| |
Collapse
|
4
|
Liu H, Heng J, Wang L, Li Y, Tang X, Huang X, Xia Q, Zhao P. Homeodomain proteins POU-M2, antennapedia and abdominal-B are involved in regulation of the segment-specific expression of the clip-domain serine protease gene CLIP13 in the silkworm, Bombyx mori. INSECT SCIENCE 2022; 29:111-127. [PMID: 33860633 DOI: 10.1111/1744-7917.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Clip-domain serine proteases (CLIPs) play important roles in insect innate immunity and development. Our previous studies indicated that CLIP13, an epidermis-specific gene, was involved in cuticle remodeling during molting and metamorphosis in the silkworm, Bombyx mori. However, the transcriptional regulatory mechanism and regulatory pathways of CLIP13 remained unclear. In the present study, we investigated CLIP13 expression and the regulation pathway controlled by 20-hydroxyecdysone (20E) in the silkworm. At the transcriptional level, expression of CLIP13 exhibited pronounced spatial and temporal specificity in different regions of the epidermis; homeodomain transcription factors POU-M2, antennapedia (Antp), and abdominal-B (Abd-B) showed similar expression change trends as CLIP13 in the head capsule, thorax, and abdomen, respectively. Furthermore, results of cell transfection assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation demonstrated that POU-M2, Antp, and Abd-B were involved in the transcriptional regulation of CLIP13 by directly binding to their cis-response elements in CLIP13 promoter. RNA interference-mediated silencing of POU-M2, Antp, and Abd-B led to a decrease of CLIP13 expression in the head capsule, the epidermis of the 1st to 3rd thoracic segments and the 7th to 10th abdominal segments, respectively. Consistent with CLIP13, 20E treatment significantly upregulated expression of POU-M2, Antp, and Abd-B in the silkworm epidermis. Taken together, these data suggest that 20E positively regulates transcription of CLIP13 via homeodomain proteins POU-M2, Antp, and Abd-B in different regions of the silkworm epidermis during metamorphosis, thus affecting the molting process. Our findings provide new insight into the functions of homeodomain transcription factors in insect molting.
Collapse
Affiliation(s)
- Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Luoling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi Province, 723001, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| |
Collapse
|