1
|
Belo TCA, Santos NCDM, Souto BS, Rosa CP, Santos ADS, Oliveira KC, Corsetti PP, de Almeida LA. Ivermectin-induced bacterial gut dysbiosis does not increase susceptibility to Pseudomonas aeruginosa lung infection but exacerbates liver damage. Microbes Infect 2022; 25:105080. [PMID: 36503045 DOI: 10.1016/j.micinf.2022.105080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/22/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
Excessive use of medications, including the antiparasitic drug ivermectin, can lead to bacterial gut dysbiosis, an imbalance in the intestinal microbiome, which in turn may increase or decrease susceptibility to infectious processes. To better understand the effects of continuous ivermectin usage on the gut bacterial community, C57BL/6 isogenic mice were treated by gavage with ivermectin or saline. Ivermectin-induced bacterial gut dysbiosis is characterized by a decrease in Bacteroidetes, Firmicutes, Proteobacteria and Tenericutes and an increase in species of the phylum Verrucomicrobia. A pro-inflammatory immunostimulatory caecal content, as well as disruption of caecal tissue organization and liver tissue damage, was observed in mice with gut dysbiosis. However, ivermectin-induced gut dysbiosis did not lead to acute susceptibility to Pseudomonas aeruginosa lung infection: infected mice with and without gut dysbiosis showed similar rates of recovery of viable bacteria in organs, histopathology and differential cytokine expression in the lung. Therefore, an extension of liver damage was observed in ivermectin-treated and P. aeruginosa-infected mice, which was exacerbated by infection.
Collapse
Affiliation(s)
- Thiago Caetano Andrade Belo
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Natália Cristina de Melo Santos
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Bianca Silva Souto
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Caio Pupin Rosa
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Ana de Souza Santos
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Karen Cristina Oliveira
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo Augusto de Almeida
- Department of Microbiology and Immunology, Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil.
| |
Collapse
|
2
|
Paeonia lactiflora Pallas extract alleviates antibiotics and DNCB-induced atopic dermatitis symptoms by suppressing inflammation and changing the gut microbiota composition in mice. Biomed Pharmacother 2022; 154:113574. [DOI: 10.1016/j.biopha.2022.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
|
3
|
Ozaka S, Sonoda A, Ariki S, Minata M, Kamiyama N, Hidano S, Sachi N, Ito K, Kudo Y, Dewayani A, Chalalai T, Ozaki T, Soga Y, Fukuda C, Mizukami K, Ishizawa S, Nishiyama M, Fujitsuka N, Mogami S, Kubota K, Murakami K, Kobayashi T. Saireito, a Japanese herbal medicine, alleviates leaky gut associated with antibiotic-induced dysbiosis in mice. PLoS One 2022; 17:e0269698. [PMID: 35704618 PMCID: PMC9200308 DOI: 10.1371/journal.pone.0269698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotics disrupt normal gut microbiota and cause dysbiosis, leading to a reduction in intestinal epithelial barrier function. Disruption of the intestinal epithelial barrier, which is known as “leaky gut”, results in increased intestinal permeability and contributes to the development or exacerbation of gastrointestinal diseases such as inflammatory bowel disease and irritable bowel syndrome. We have previously reported on a murine model of intestinal epithelial barrier dysfunction associated with dysbiosis induced by the administration of ampicillin and vancomycin. Saireito, a traditional Japanese herbal medicine, is often used to treat autoimmune disorders including ulcerative colitis; the possible mechanism of action and its efficacy, however, remains unclear. In this study, we examined the efficacy of Saireito in our animal model for leaky gut associated with dysbiosis. C57BL/6 mice were fed a Saireito diet for the entirety of the protocol (day1-28). To induce colitis, ampicillin and vancomycin were administered in drinking water for the last seven consecutive days (day22-28). As previously demonstrated, treatment with antibiotics caused fecal occult bleeding, cecum enlargement with black discoloration, colon inflammation with epithelial cell apoptosis, and upregulation of pro-inflammatory cytokines. Oral administration of Saireito significantly improved antibiotics-induced fecal occult bleeding and cecum enlargement by suppressing inflammation in the colon. Furthermore, Saireito treatment ensured the integrity of the intestinal epithelial barrier by suppressing apoptosis and inducing cell adhesion proteins including ZO-1, occludin, and E-cadherin in intestinal epithelial cells, which in turn decreased intestinal epithelial permeability. Moreover, the reduced microbial diversity seen in the gut of mice treated with antibiotics was remarkably improved with the administration of Saireito. In addition, Saireito altered the composition of gut microbiota in these mice. These results suggest that Saireito alleviates leaky gut caused by antibiotic-induced dysbiosis. Our findings provide a potentially new therapeutic strategy for antibiotic-related gastrointestinal disorders.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Mizuki Minata
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Astri Dewayani
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Takashi Ozaki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Kazuhiro Mizukami
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Shiori Ishizawa
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Mitsue Nishiyama
- Tsumura Advanced Technology Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Sachiko Mogami
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Kunitsugu Kubota
- Tsumura Kampo Research Laboratories, Tsumura & Co., Ibaraki, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Oita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Oita, Japan
- * E-mail:
| |
Collapse
|
4
|
Hiraga Y, Kubota T, Katoh M, Horai Y, Suzuki H, Yamashita Y, Hirata R, Moroi M. AST-120 Treatment Alters the Gut Microbiota Composition and Suppresses Hepatic Triglyceride Levels in Obese Mice. Endocr Res 2021; 46:178-185. [PMID: 34060951 DOI: 10.1080/07435800.2021.1927074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide. The existence of a relationship between the microbiota and the pathology of hepatic steatosis is also becoming increasingly clear. AST-120, an oral spherical carbon adsorbent, has been shown to be useful for delaying dialysis initiation and improving uremic symptoms in patients with chronic kidney disease. However, little is known about the effect of AST-120 on fatty liver.Methods: AST-120 (5% w/w) was administrated to 6-week-old male db/db mice for 8 weeks. The body weight, blood glucose and food consumption were examined. Hepatic triglyceride (TG) levels, lipid droplets and epididymal fat cell size were measured. The gut microbiota compositions were investigated in feces and cecum.Results: Significant decreases of the hepatic weight and hepatic TG levels were observed in the AST-120-treated db/db mice. Furthermore, AST-120 treatment was also associated with a decrease of Bacteroidetes, increase of Firmicutes, and a reduced ratio of Bacteroidetes to Firmicutes (B/F ratio) in the feces in the db/db mice. The B/F ratio in the feces was correlated with the liver weight and area of the liver occupied by lipid droplets in the db/db mice.Conclusions: These data suggest that AST-120 treatment alters the composition of the fecal microbiota and suppresses hepatic TG levels in the db/db mice.
Collapse
Affiliation(s)
- Yuki Hiraga
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
- Sohyaku Project Planning & Management Department Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Tokyo, Japan
| | - Tetsuya Kubota
- Faculty of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine (Ohashi), Toho University, Tokyo, Japan
- Division of Diabetes and Metabolism, The Institute for Medical Science Asahi Life Foundation, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan
- Department of Clinical Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Tokyo, Japan
- Analysis Tool Development Group, Intestinal Microbiota Project, Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Makoto Katoh
- Naka Kinen Clinic, Ibaraki, Japan
- Research Administration Center, Saitama Medical University, Saitama, Japan
- Department of Cardiology, International Medical Center, Saitama Medical University, Saitama, Japan
| | - Yasushi Horai
- Research Unit/Frontier Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kanagawa, Japan
| | - Hiroyuki Suzuki
- Medical Materials Laboratory, Medical Materials Research Laboratories, Kureha Corporation, Fukushima, Japan
| | - Yusuke Yamashita
- Medical Materials Laboratory, Medical Materials Research Laboratories, Kureha Corporation, Fukushima, Japan
| | - Rieko Hirata
- Medical Materials Laboratory, Medical Materials Research Laboratories, Kureha Corporation, Fukushima, Japan
| | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
- Faculty of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine (Ohashi), Toho University, Tokyo, Japan
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Ozaka S, Sonoda A, Ariki S, Kamiyama N, Hidano S, Sachi N, Ito K, Kudo Y, Minata M, Saechue B, Dewayani A, Chalalai T, Soga Y, Takahashi Y, Fukuda C, Mizukami K, Okumura R, Kayama H, Murakami K, Takeda K, Kobayashi T. Protease inhibitory activity of secretory leukocyte protease inhibitor ameliorates murine experimental colitis by protecting the intestinal epithelial barrier. Genes Cells 2021; 26:807-822. [PMID: 34379860 DOI: 10.1111/gtc.12888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder in the intestine, and the dysfunction of intestinal epithelial barrier (IEB) may trigger the onset of IBD. Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor that has been implicated in the tissue-protective effect in the skin and lung. We found that SLPI was induced in lipopolysaccharides-treated colon carcinoma cell line and in the colon of dextran sulfate sodium (DSS)-treated mice. SLPI-deficient mice were administered DSS to induce colitis and sustained severe inflammation compared with wild-type mice. The colonic mucosa of SLPI-deficient mice showed more severe inflammation with neutrophil infiltration and higher levels of proinflammatory cytokines compared with control mice. Moreover, neutrophil elastase (NE) activity in SLPI-deficient mice was increased and IEB function was severely impaired in the colon, accompanied with the increased number of apoptotic cells. Importantly, we demonstrated that DSS-induced colitis was ameliorated by administration of protease inhibitor SSR69071 and recombinant SLPI. These results suggest that the protease inhibitory activity of SLPI protects from colitis by preventing IEB dysfunction caused by excessive NE activity, which provides insight into the novel function of SLPI in the regulation of gut homeostasis and therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Sotaro Ozaka
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Akira Sonoda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shimpei Ariki
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Naganori Kamiyama
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Nozomi Sachi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kanako Ito
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yoko Kudo
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Mizuki Minata
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Benjawan Saechue
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Astri Dewayani
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Thanyakorn Chalalai
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yasuhiro Soga
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Yuya Takahashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Chiaki Fukuda
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kazuhiro Mizukami
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan.,Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ryu Okumura
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, Yufu, Japan
| |
Collapse
|
6
|
Ding G, Gong Q, Ma J, Liu X, Wang Y, Cheng X. Immunosuppressive activity is attenuated by Astragalus polysaccharides through remodeling the gut microenvironment in melanoma mice. Cancer Sci 2021; 112:4050-4063. [PMID: 34289209 PMCID: PMC8486201 DOI: 10.1111/cas.15078] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/24/2022] Open
Abstract
Astragalus polysaccharides (APS), the main effective component of Astragalus membranaceus, can inhibit tumor growth, but the underlying mechanisms remain unclear. Previous studies have suggested that APS can regulate the gut microenvironment, including the gut microbiota and fecal metabolites. In this work, our results showed that APS could control tumor growth in melanoma-bearing mice. It could reduce the number of myeloid-derived suppressor cells (MDSC), as well as the expression of MDSC-related molecule Arg-1 and cytokines IL-10 and TGF-β, so that CD8+ T cells could kill tumor cells more effectively. However, while APS were administered with an antibiotic cocktail (ABX), MDSC could not be reduced, and the growth rate of tumors was accelerated. Consistent with the changes in MDSC, the serum levels of IL-6 and IL-1β were lowest in the APS group. Meanwhile, we found that fecal suspension from mice in the APS group could also reduce the number of MDSC in tumor tissues. These results revealed that APS regulated the immune function in tumor-bearing mice through remodeling the gut microbiota. Next, we focused on the results of 16S rRNA, which showed that APS significantly regulated most microorganisms, such as Bifidobacterium pseudolongum, Lactobacillus johnsonii and Lactobacillus. According to the Spearman analysis, the changes in abundance of these microorganisms were related to the increase of metabolites like glutamate and creatine, which could control tumor growth. The present study demonstrates that APS attenuate the immunosuppressive activity of MDSC in melanoma-bearing mice by remodeling the gut microbiota and fecal metabolites. Our findings reveal the therapeutic potential of APS to control tumor growth.
Collapse
Affiliation(s)
- Guiqing Ding
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianyi Gong
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Liu
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yueyang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Stewart C, Jang T, Mo G, Mohamed N, Poplawska M, Egini O, Dutta D, Lim SH. Antibiotics to modify sickle cell disease vaso-occlusive crisis? Blood Rev 2021; 50:100867. [PMID: 34304939 DOI: 10.1016/j.blre.2021.100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Despite the availability of hydroxyurea, the clinical use of the medication among patients with sickle cell disease (SCD) remains low in the United States. Given the high healthcare utilization cost, SCD requires new therapeutic approaches. Recent studies demonstrated bacterial overgrowth and dysbiosis-related intestinal pathophysiological changes in SCD. Intestinal microbes regulate neutrophil ageing. Aged and activated neutrophils contribute to the pathogenesis of vaso-occlusive crisis (VOC) in SCD. In this paper, we will review the pre-clinical and clinical data on how antibiotics might reduce the intestinal microbial density and influence the course of VOC. Based on these observations, we will discuss rationales for and potential challenges to antibiotic-based therapeutic approaches that may modify the clinical course of VOC in SCD.
Collapse
Affiliation(s)
- Connor Stewart
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Tim Jang
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - George Mo
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Nader Mohamed
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Maria Poplawska
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Ogechukwu Egini
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America.
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America.
| |
Collapse
|
8
|
Lv L, Jiang H, Chen Y, Gu S, Xia J, Zhang H, Lu Y, Yan R, Li L. The faecal metabolome in COVID-19 patients is altered and associated with clinical features and gut microbes. Anal Chim Acta 2021; 1152:338267. [PMID: 33648648 PMCID: PMC7847702 DOI: 10.1016/j.aca.2021.338267] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Although SARS-CoV-2 can invade the intestine, though its effect on digestion and absorption is not fully understood. In the present study, 56 COVID-19 patients and 47 age- and sex-matched healthy subjects were divided into a discovery cohort and a validation cohort. Blood, faeces and clinical information were collected from the patients in the hospital and at discharge. The faecal metabolome was analysed using gas chromatography-mass spectrometry, and Spearman's correlation analyses of clinical features, the serum metabolome, and the faecal micro- and mycobiota were conducted. The results showed that, the faeces of COVID-19 patients were enriched with important nutrients that should be metabolized or absorbed, such as sucrose and 2-palmitoyl-glycerol; diet-related components that cannot be synthesized by humans, such as 1,5-anhydroglucitol and D-pinitol; and harmful metabolites, such as oxalate, were also detected. In contrast, purine metabolites such as deoxyinosine and hypoxanthine, low-water-soluble long-chain fatty alcohols/acids such as behenic acid, compounds rarely occurring in nature such as D-allose and D-arabinose, and microbe-related compounds such as 2,4-di-tert-butylphenol were depleted in the faeces of COVID-19 patients. Moreover, these metabolites significantly correlated with altered serum metabolites such as oxalate and gut microbesincluding Ruminococcaceae, Actinomyces, Sphingomonas and Aspergillus. Although levels of several faecal metabolites, such as sucrose, 1,5-anhydroglucitol and D-pinitol, of discharged patients were not different from those of healthy controls (HCs), those of oxalate and 2-palmitoyl-glycerol did differ. Therefore, alterations in the faecal metabolome of COVID-19 patients may reflect malnutrition and intestinal inflammation and warrant greater attention. The results of present study provide new insights into the pathogenesis and treatment of COVID-19.
Collapse
Affiliation(s)
- Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Huiyong Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Silan Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| |
Collapse
|
9
|
Chen Y, Ye Z, Seidler U, Tian D, Xiao F. Microenvironmental regulation of intestinal stem cells in the inflamed intestine. Life Sci 2021; 273:119298. [PMID: 33667519 DOI: 10.1016/j.lfs.2021.119298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/14/2021] [Accepted: 02/23/2021] [Indexed: 01/21/2023]
Abstract
The rapid renewal of intestinal epithelium during homeostasis requires balanced proliferation and differentiation of intestinal stem cells (ISCs) at the base of crypt. Upon intestinal inflammation, the vigorous expansion of surviving ISCs is responsible for epithelial repair. However, it is not well depicted how ISCs adapt to the inflammatory conditions within intestinal tissue and support epithelial repair. In the intestinal inflammation, niche cells around ISCs along with their secreted niche factors can facilitate the regeneration of ISCs via niche signals. Additionally, the growth of ISCs can respond to inflammatory cells, inflammatory cytokines, and inflammatory signals. Understanding the adaptive mechanism of ISCs in supporting intestinal epithelial regeneration during inflammation is a focus on the treatment for patients with intestinal inflammation. Here, we aim to present an overview of how ISCs adapt to the acute inflammation to support intestinal repair, with a focus on the roles and interaction of niche signals.
Collapse
Affiliation(s)
- Yu Chen
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhenghao Ye
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Ursula Seidler
- Department of Gastroenterology of Hannover Medical School, Hannover, Germany
| | - Dean Tian
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Fang Xiao
- Department of Gastsroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
10
|
Li L, Wang Q, Gao Y, Liu L, Duan Y, Mao D, Luo Y. Colistin and amoxicillin combinatorial exposure alters the human intestinal microbiota and antibiotic resistome in the simulated human intestinal microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141415. [PMID: 32846251 DOI: 10.1016/j.scitotenv.2020.141415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 05/26/2023]
Abstract
Antibiotics treatment could cause the dysbiosis of human intestinal microbiota and antibiotic resistome. Fecal microbiota transplantation (FMT) has been an efficacious treatment to restore the dysbiosis of intestinal microbiota in a variety of intestinal diseases. However, to data, the effect of the combinatorial antibiotic treatment on microbiota, antibiotic resistome and the FMT for restoration affected by combinatorial antibiotic exposure in the human intestinal microbiota remain unclear. In this study, we systematically investigated the effect of the colistin and amoxicillin combinatorial exposure in the simulator of the human intestinal microbial ecosystem (SHIME) and found that this combinatorial exposure significantly altered (p < 0.05) the human intestinal microbiota and antibiotic resistome. The shift of bacterial community and antibiotic resistome could incompletely recovery to baseline by FMT treatment after combinatorial antibiotic exposure. Additionally, the variance of antibiotic resistome was dominantly driven by the bacterial community (41.18%-68.03%) after the combinatorial antibiotic exposure. Overall, this study first to investigate the influence of the colistin and amoxicillin combinatorial exposure on the intestinal microbiota and antibiotic resistome, and assess the FMT recovery in the simulated human intestinal microbiota, which may potentially provide a correct administration of antibiotics and application of FMT in the clinic.
Collapse
Affiliation(s)
- Linyun Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Qing Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact (preparatory), Handan 056038, China
| | - Yanyu Gao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Lei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yujing Duan
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China.
| |
Collapse
|
11
|
Quinn L, Sheh A, Ellis JL, Smith DE, Booth SL, Fu X, Muthupalani S, Ge Z, Puglisi DA, Wang TC, Gonda TA, Holcombe H, Fox JG. Helicobacter pylori antibiotic eradication coupled with a chemically defined diet in INS-GAS mice triggers dysbiosis and vitamin K deficiency resulting in gastric hemorrhage. Gut Microbes 2020; 11:820-841. [PMID: 31955643 PMCID: PMC7524293 DOI: 10.1080/19490976.2019.1710092] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infection with Helicobacter pylori causes chronic inflammation and is a risk factor for gastric cancer. Antibiotic treatment or increased dietary folate prevents gastric carcinogenesis in male INS-GAS mice. To determine potential synergistic effects, H. pylori-infected male INS-GAS mice were fed an amino acid defined (AAD) diet with increased folate and were treated with antibiotics after 18 weeks of H. pylori infection. Antibiotic therapy decreased gastric pathology, but dietary folate had no effect. However, the combination of antibiotics and the AAD diet induced anemia, gastric hemorrhage, and mortality. Clinical presentation suggested hypovitaminosis K potentially caused by dietary deficiency and dysbiosis. Based on current dietary guidelines, the AAD diet was deficient in vitamin K. Phylloquinone administered subcutaneously and via a reformulated diet led to clinical improvement with no subsequent mortalities and increased hepatic vitamin K levels. We characterized the microbiome and menaquinone profiles of antibiotic-treated and antibiotic-free mice. Antibiotic treatment decreased the abundance of menaquinone producers within orders Bacteroidales and Verrucomicrobiales. PICRUSt predicted decreases in canonical menaquinone biosynthesis genes, menA and menD. Reduction of menA from Akkermansia muciniphila, Bacteroides uniformis, and Muribaculum intestinale were confirmed in antibiotic-treated mice. The fecal menaquinone profile of antibiotic-treated mice had reduced MK5 and MK6 and increased MK7 and MK11 compared to antibiotic-free mice. Loss of menaquinone-producing microbes due to antibiotics altered the enteric production of vitamin K. This study highlights the role of diet and the microbiome in maintaining vitamin K homeostasis.
Collapse
Affiliation(s)
- Lisa Quinn
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alexander Sheh
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA,CONTACT Alexander Sheh Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessie L Ellis
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Donald E Smith
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Sarah L Booth
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Xueyan Fu
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | | | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dylan A Puglisi
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy C Wang
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Tamas A Gonda
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Hilda Holcombe
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
12
|
Nakada C, Hijiya N, Tsukamoto Y, Yano S, Kai T, Uchida T, Kimoto M, Takahashi M, Daa T, Matsuura K, Shin T, Mimata H, Moriyama M. A transgenic mouse expressing miR-210 in proximal tubule cells shows mitochondrial alteration: possible association of miR-210 with a shift in energy metabolism. J Pathol 2020; 251:12-25. [PMID: 32073141 DOI: 10.1002/path.5394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/21/2019] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Previously we reported that the microRNA miR-210 is aberrantly upregulated in clear cell renal cell carcinoma (ccRCC) via deregulation of the VHL-HIF pathway. In the present study, to investigate the biological impact of miR-210 in ccRCC tumorigenesis, we developed a transgenic mouse line expressing miR-210 in proximal tubule cells under control of the mouse SGLT2/Slc5a2 promoter. Light microscopy revealed desquamation of the tubule cells and regeneration of the proximal tubule, suggesting that miR-210 expression led to damage of the proximal tubule cells. Electron microscopy revealed alterations to the mitochondria in proximal tubule cells, with marked reduction of the mitochondrial inner membrane, which is the main site of ATP production via oxidative phosphorylation (OxPhos). An additional in vitro study revealed that this loss of the inner membrane was associated with downregulation of Iscu and Ndufa4, the target genes of miR-210, suggesting that the miR-210-ISCU/NDUFA4 axis may affect mitochondrial energy metabolism. Furthermore, metabolome analysis revealed activation of anaerobic glycolysis in miR-210-transfected cells, and consistent with this the secretion of lactate, the final metabolite of anaerobic glycolysis, was significantly increased. Lactate concentration was higher in the kidney cortex of transgenic mice relative to wild-type mice, although the difference was not significant (p = 0.070). On the basis of these findings, we propose that miR-210 may induce a shift of energy metabolism from OxPhos to glycolysis by acting on the mitochondrial inner membrane. In addition to activation of glycolysis, we observed activation of the pentose phosphate pathway (PPP) and an increase in the total amount of amino acids in miR-210-transfected cells. This may help cells synthesize nucleotides and proteins for building new cells. These results suggest that miR-210 may be involved in the metabolic changes in the early stage of ccRCC development, helping the cancer cells to acquire growth and survival advantages. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chisato Nakada
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan.,Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Shinji Yano
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomoki Kai
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tomohisa Uchida
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mami Kimoto
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Mika Takahashi
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Keiko Matsuura
- Department of Biomedicine, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Toshitaka Shin
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Hiromitsu Mimata
- Department of Urology, Faculty of Medicine, Oita University, Yufu City, Japan
| | - Masatsugu Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu City, Japan
| |
Collapse
|