1
|
Nguyet VTA, Ando R, Furutani N, Izawa S. Severe ethanol stress inhibits yeast proteasome activity at moderate temperatures but not at low temperatures. Genes Cells 2023; 28:736-745. [PMID: 37550872 DOI: 10.1111/gtc.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Since yeast research under laboratory conditions is usually conducted at 25-30°C (moderate temperature range), most of the findings on yeast physiology are based on analyses in this temperature range. Due to inefficiencies in cultivation and analysis, insufficient information is available on yeast physiology in the low-temperature range, although alcoholic beverage production is often conducted at relatively low temperatures (around 15°C). Recently, we reported that severe ethanol stress (10% v/v) inhibits proteasomal proteolysis in yeast cells under laboratory conditions at 28°C. In this study, proteasomal proteolysis at a low temperature (15°C) was evaluated using cycloheximide chase analysis of a short-lived protein (Gic2-3HA), an auxin-inducible degron system (Paf1-AID*-6FLAG), and Spe1-3HA, which is degraded ubiquitin-independently by the proteasome. At 15°C, proteasomal proteolysis was not inhibited under severe ethanol stress, and sufficient proteasomal activity was maintained. These results provide novel insights into the effects of low temperature and ethanol on yeast physiology.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Ryoko Ando
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Noboru Furutani
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
2
|
Nguyet VTA, Furutani N, Ando R, Izawa S. Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130241. [PMID: 36075516 DOI: 10.1016/j.bbagen.2022.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely unknown. METHODS We examined the effects of ethanol on proteasomal proteolysis in yeast cells through the cycloheximide-chase analysis of short-lived proteins. We also assayed protein degradation in the auxin-inducible degron system and the ubiquitin-independent degradation of Spe1 under ethanol stress conditions. RESULTS We demonstrated that severe ethanol stress strongly inhibited the degradation of the short-lived proteins Rim101 and Gic2. Severe ethanol stress also inhibited protein degradation in the auxin-inducible degron system (Paf1-AID*-6FLAG) and the ubiquitin-independent degradation of Spe1. Proteasomal degradation of these proteins, which was inhibited by severe ethanol stress, resumed rapidly once the ethanol was removed. These results suggested that proteasomal proteolysis in yeast cells is reversibly inhibited by severe ethanol stress. Furthermore, yeast cells pretreated with mild ethanol stress (6% v/v) showed proteasomal proteolysis even with 10% (v/v) ethanol, indicating that yeast cells acquired resistance to proteasome inhibition caused by severe ethanol stress. However, yeast cells failed to acquire sufficient resistance to severe ethanol stress-induced proteasome inhibition when new protein synthesis was blocked with cycloheximide during pretreatment, or when Rpn4 was lost. CONCLUSIONS AND GENERAL SIGNIFICANCE Our results provide novel insights into the adverse effects of severe ethanol stress on proteasomal proteolysis and ethanol adaptability in yeast.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoko Ando
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
3
|
Zhou X, Suo J, Liu C, Niu C, Zheng F, Li Q, Wang J. Genome comparison of three lager yeasts reveals key genes affecting yeast flocculation during beer fermentation. FEMS Yeast Res 2021; 21:6284804. [PMID: 34037755 DOI: 10.1093/femsyr/foab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/24/2021] [Indexed: 11/14/2022] Open
Abstract
Yeast flocculation plays an essential role in industrial application. Appropriate flocculation of yeast cells at the end of fermentation benefits the cell separation in production, which is an important characteristic of lager yeast for beer production. Due to the complex fermentation environment and diverse genetic background of yeast strains, it is difficult to explain the flocculation mechanism and find key genes that affect yeast flocculation during beer brewing. By analyzing the genomic mutation of two natural mutant yeasts with stronger flocculation ability compared to the parental strain, it was found that the mutated genes common in both mutants were enriched in protein processing in endoplasmic reticulum, membrane lipid metabolism and other pathways or biological processes involved in stress responses. Further functional verification of genes revealed that regulation of RIM101 and VPS36 played a role in lager yeast flocculation under the brewing condition. This work provided new clues for improving yeast flocculation in beer brewing.
Collapse
Affiliation(s)
- Xuefei Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Jingyi Suo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Chunfeng Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Chengtuo Niu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Feiyun Zheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Qi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| | - Jinjing Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China.,Laboratory of Brewing Science and Technology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Binhu District, Wuxi 214122, Jiangsu, China
| |
Collapse
|
4
|
The Rim101 pathway mediates adaptation to external alkalization and altered lipid asymmetry: hypothesis describing the detection of distinct stresses by the Rim21 sensor protein. Curr Genet 2020; 67:213-218. [PMID: 33184698 DOI: 10.1007/s00294-020-01129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Yeast cells adapt to alkaline conditions by activating the Rim101 alkali-responsive pathway. Rim21 acts as a sensor in the Rim101 pathway and detects extracellular alkalization. Interestingly, Rim21 is also known to be activated by alterations involving the lipid asymmetry of the plasma membrane. In this study, we briefly summarize the mechanism of activation and the signal transduction cascade of the Rim101 pathway and propose a hypothesis on how Rim21 is able to detect distinct signals, particularly external alkalization, and altered lipid asymmetry. We found that external alkalization can suppress transbilayer movements of phospholipids between the two leaflets of the plasma membrane, which may lead to the disturbance of the lipid asymmetry of the plasma membrane. Therefore, we propose that external alteration is at least partly sensed by Rim21 through alterations in lipid asymmetry. Understanding this activation mechanism could greatly contribute to drug development against fungal infections.
Collapse
|