1
|
Janža M. Optimization of well field management to mitigate groundwater contamination using a simulation model and evolutionary algorithm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150811. [PMID: 34626637 DOI: 10.1016/j.scitotenv.2021.150811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Groundwater represents the most important available freshwater reserves and is of critical importance to global water and food security. Old environmental burdens that have led to the spread of contaminants in groundwater limit its use, thus interventions to mitigate contamination must often be carried out to ensure a safe drinking water supply. This study presents the optimization of well field management designs to reduce the desethylatrazine (DEA) concentration in the deep wells of the Brest Water Works (Central Slovenia). It investigates artificial recharge by injection wells using water from the nearby river and elaborates five well field management scenarios prioritizing different objectives. A multi-objective simulation-optimization framework was developed. A transient groundwater flow and solute transport model was applied to simulate the effects of the proposed recharge and pumping regimes. The shuffled complex evolution method was used to identify optimal values of well field management variables (location of injection well(s), minimum required injection rate, maximum pumping rate from production well) in the proposed scenarios. Model simulations showed that optimized well field management designs can significantly reduce DEA concentration in production wells (below 0.05 μg/L), assure compliance with water quality standards with (26%) reduced injection rate, and, with the implementation of two injection wells, achieve lower DEA concentration and higher pumping rate (up to 27 L/s). The optimization solutions depend on the defined well field management priorities and reveal a trade-off between the objectives (reduction of DEA concentration, increase of pumping rate, and reduction of injection rate). The impact of management variables on mitigation efficiency is not uniform and largely depends on the location of the injection well(s), which increases the complexity of mitigation design. The study has shown that the presented approach can be efficiently used for finding optimal mitigation designs and supporting water managers with information for planning mitigation measures.
Collapse
Affiliation(s)
- Mitja Janža
- Geological Survey of Slovenia, Dimičeva ulica 14, 1000 Ljubljana, Slovenia.
| |
Collapse
|
2
|
Stochastic Particle Tracking Application in Different Urban Areas in Central Europe: The Milano (IT) and Jaworzno (PL) Case Study to Secure the Drinking Water Resources. SUSTAINABILITY 2021. [DOI: 10.3390/su131810291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Urban areas are typically characterized by the presence of industrial sites, which are often sources of groundwater contamination, posing a serious threat for the groundwater. In such cases, a crucial step is to find a link between the contaminant sources and freshwater supply wells at risk. As a part of the AMIIGA Project, two different stochastic approaches were applied to assess drinking water supply wells vulnerability in Functional Urban Areas in the presence of several chlorinated hydrocarbons sources in an alluvial aquifer in Milano and a pesticide mega site in a complex geological setting in Poland. In the first case study, the innovative Pilot Point Null-Space Monte Carlo forward particle tracking was used, applying a forward solution instead of the classical backtracking, while in the second case was chosen the classical Monte Carlo methodology. Both case studies represent useful application examples, allowing an effective prioritization of expensive remediation actions in order to protect freshwater wells.
Collapse
|
3
|
Pollicino LC, Colombo L, Formentin G, Alberti L. Stochastic modelling of solute mass discharge to identify potential source zones of groundwater diffuse pollution. WATER RESEARCH 2021; 200:117240. [PMID: 34038822 DOI: 10.1016/j.watres.2021.117240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
In heavily urbanised areas, groundwater diffuse pollution is recognised as one of the most insidious threats to groundwater quality. Diffuse pollution originates from multiple small sources releasing a low contaminant mass over a relatively large area; the lack of a defined plume in groundwater, the limited leaked mass, and the fact that leakage may have occurred in the past and be now ceased, make these sources difficult to locate and characterise. In addressing this environmental issue, an inverse approach based on the Null space Monte Carlo stochastic method has been applied in the framework of an innovative methodology with the aim to locate potential source areas distributed in a large (120 km2) urban area. To simplify the problem and better understand the limitations and effectiveness of the proposed methodology, the analysis has been performed using a groundwater model with fixed (i.e., determined by a previous calibration) hydraulic conductivity and flow boundary conditions. The only source of uncertainty considered in the study is the PCE mass discharge from all model cells of the topmost layer. After implementing and calibrating a deterministic solute transport model, multiple random realisations of mass discharge fields were generated, all of which are history-match constrained and hydrogeologically plausible. The obtained stochastic parameter sets were used to investigate the statistical distribution of the solute mass discharge and map the areas that are more likely to host unknown sources of PCE. Although the application of the NSMC stochastic method on the synthetic case study has provided promising results, it has also highlighted that multiple sources of uncertainty (e.g., continuity and duration of each source, attenuation processes) could adversely affect the reliability of the results in a real-world context, in which the effect of other uncertain parameters (hydraulic conductivity amongst all) would need to be considered in addition. This study offers new insights to the problem of aquifer diffuse pollution by providing key information on the potential source zones and on the areas that urgently need to be prioritised for further investigations.
Collapse
Affiliation(s)
- Licia C Pollicino
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, Milan 20133, Italy
| | - Loris Colombo
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, Milan 20133, Italy.
| | | | - Luca Alberti
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, Milan 20133, Italy
| |
Collapse
|
4
|
Moeck C, Popp AL, Brennwald MS, Kipfer R, Schirmer M. Combined method of 3H/ 3He apparent age and on-site helium analysis to identify groundwater flow processes and transport of perchloroethylene (PCE) in an urban area. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 238:103773. [PMID: 33540239 DOI: 10.1016/j.jconhyd.2021.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Urban groundwater management requires a thorough and robust scientific understanding of flow and transport processes. 3H/3He apparent ages have been shown to efficiently help provide important groundwater-related information. However, this type of analysis is expensive as well as labor- and time-intensive, and hence limits the number of potential sampling locations. To overcome this limitation, we established an inter-relationship between 3H/3He apparent groundwater ages and 4He concentrations analyzed in the field with a newly developed portable gas equilibrium membrane inlet mass spectrometer (GE-MIMS) system, and demonstrated that the results of the simpler GE-MIMS system are an accurate and reliable alternative to sophisticated laboratory based analyses. The combined use of 3H/3He lab-based ages and predicted ages from the 3H/3He-4He age relationship opens new opportunities for site characterization, and reveals insights into the conceptual understanding of groundwater systems. For our study site, we combined groundwater ages with hydrochemical data, water isotopes (18O and 2H), and perchloroethylene (PCE) concentrations (1) to identify spatial inter-aquifer mixing between artificially infiltrated groundwater and water originating from regional flow paths and (2) to explain the spatial differences in PCE contamination within the observed groundwater system. Overall, low PCE concentrations and young ages occur when the fraction of artificially infiltrated water is high. The results obtained from the age distribution analysis are strongly supported by the information gained from the isotopic and hydrochemical data. Moreover, for some wells, fault-induced aquifer connectivity is identified as a preferential flow path for the transport of older groundwater, leading to elevated PCE concentrations.
Collapse
Affiliation(s)
- Christian Moeck
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | - Andrea L Popp
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Matthias S Brennwald
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Rolf Kipfer
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland; Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Mario Schirmer
- Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
5
|
Pollicino LC, Colombo L, Alberti L, Masetti M. PCE point source apportionment using a GIS-based statistical technique combined with stochastic modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142366. [PMID: 33182200 DOI: 10.1016/j.scitotenv.2020.142366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
To meet the continuous growth of urbanised areas with the ever-increasing demand for safe water supplies, the implementation of new scientifically based methodologies can represent a key support for preventing groundwater quality deterioration. In this study, a new combined approach based on the application of the Weights of Evidence and the Null-Space Monte Carlo particle back-tracking methods was set up to assess tetrachloroethylene (PCE) contamination due to Point Sources in the densely urbanised north-eastern sector of the Milano FUA (Functional Urban Area). This combined approach offers the advantage of further enhancing the power of each individual technique by integrating both the advective transport mechanism, neglected by the Weights of Evidence, and the influence of specific factors, such as the land use variation, not considered by the Null-Space Monte Carlo particle tracking. To accurately test and explore the performance of this new approach, the analysis was carried out based on the simulation of synthetic PCE plumes using a groundwater numerical model already implemented in a previous study. The Weights of Evidence method revealed that the areas characterised by a groundwater depth lower than 17 m, a groundwater velocity higher than 2.6 × 10-6 m/s, a recharge higher than 0.26 m/y and a significant variation of the industrial activities extent are the most susceptible to groundwater pollution. The Null-Space Monte Carlo particle back-tracking has proved to be effective in delineating the potential source zones and contaminant travel path. The proposed approach can offer additional insights for the protection of groundwater resource. The end-product provides crucial information on the zones that require to be prioritised for investigations and can be easily understood by non-expert decision-makers constituting an advanced tool for enhancing groundwater protection strategies.
Collapse
Affiliation(s)
- Licia C Pollicino
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, 20133 Milan, Italy
| | - Loris Colombo
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, 20133 Milan, Italy.
| | - Luca Alberti
- Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, 20133 Milan, Italy
| | - Marco Masetti
- Dipartimento di Scienze della Terra "A. Desio", Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
6
|
Abstract
Watershed models are used worldwide to assist with water and nutrient management under conditions of changing climate, land use, and population. Of these models, the Soil and Water Assessment Tool (SWAT) and SWAT+ are the most widely used, although their performance in groundwater-driven watersheds can sometimes be poor due to a simplistic representation of groundwater processes. The purpose of this paper is to introduce a new physically-based spatially-distributed groundwater flow module called gwflow for the SWAT+ watershed model. The module is embedded in the SWAT+ modeling code and is intended to replace the current SWAT+ aquifer module. The model accounts for recharge from SWAT+ Hydrologic Response Units (HRUs), lateral flow within the aquifer, Evapotranspiration (ET) from shallow groundwater, groundwater pumping, groundwater–surface water interactions through the streambed, and saturation excess flow. Groundwater head and groundwater storage are solved throughout the watershed domain using a water balance equation for each grid cell. The modified SWAT+ modeling code is applied to the Little River Experimental Watershed (LREW) (327 km2) in southern Georgia, USA for demonstration purposes. Using the gwflow module for the LREW increased run-time by 20% compared to the original SWAT+ modeling code. Results from an uncalibrated model are compared against streamflow discharge and groundwater head time series. Although further calibration is required if the LREW model is to be used for scenario analysis, results highlight the capabilities of the new SWAT+ code to simulate both land surface and subsurface hydrological processes and represent the watershed-wide water balance. Using the modified SWAT+ model can provide physically realistic groundwater flow gradients, fluxes, and interactions with streams for modeling studies that assess water supply and conservation practices. This paper also serves as a tutorial on modeling groundwater flow for general watershed modelers.
Collapse
|
7
|
Investigations into the First Operational Aquifer Thermal Energy Storage System in Wallonia (Belgium): What Can Potentially Be Expected? GEOSCIENCES 2020. [DOI: 10.3390/geosciences10010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the context of energy transition, new and renovated buildings often include heating and/or air conditioning energy-saving technologies based on sustainable energy sources, such as groundwater heat pumps with aquifer thermal energy storage. A new aquifer thermal energy storage system was designed and is under construction in the city of Liège, Belgium, along the Meuse River. This system will be the very first to operate in Wallonia (southern Belgium) and should serve as a reference for future shallow geothermal developments in the region. The targeted alluvial aquifer reservoir was thoroughly characterized using geophysics, pumping tests, and dye and heat tracer tests. A 3D groundwater flow heterogeneous numerical model coupled to heat transport was then developed, automatically calibrated with the state-of-the-art pilot points method, and used for simulating and assessing the future system efficiency. A transient simulation was run over a 25 year-period. The potential thermal impact on the aquifer, based on thermal needs from the future building, was simulated at its full capacity in continuous mode and quantified. While the results show some thermal feedback within the wells of the aquifer thermal energy storage system and heat loss to the aquifer, the thermal affected zone in the aquifer extends up to 980 m downstream of the building and the system efficiency seems suitable for long-term thermal energy production.
Collapse
|