1
|
Carr JMJR, Hoiland RL, Fernandes IA, Schrage WG, Ainslie PN. Recent insights into mechanisms of hypoxia-induced vasodilatation in the human brain. J Physiol 2024; 602:5601-5618. [PMID: 37655827 DOI: 10.1113/jp284608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for Researching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor A Fernandes
- Department of Health and Kinesiology, Purdue University, Indiana, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
2
|
Zhang W, Zhang Y, Wang H, Sun X, Chen L, Zhou J. Animal Models of Chronic Migraine: From the Bench to Therapy. Curr Pain Headache Rep 2024; 28:1123-1133. [PMID: 38954246 DOI: 10.1007/s11916-024-01290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE OF REVIEW Chronic migraine is a disabling progressive disorder without effective management approaches. Animal models have been developed and used in chronic migraine research. However, there are several problems with existing models. Therefore, we aimed to summarize and analyze existing animal models to facilitate translation from basic to clinical. RECENT FINDINGS The most commonly used models are the inflammatory soup induction model and the nitric oxide donor induction model. In addition, KATP openers have also been used in model induction. Based on the above models, some molecular targets have been identified, such as glutamate receptors. However, each model has its shortcomings and characteristics, and there are still some common problems that need to be solved, such as spontaneous headache, evaluation criteria after model establishment, and identification methods. In this review, we summarized and highlighted the advantages and limitations of the currently commonly used animal models of chronic migraine with a special focus on drug discovery and current therapeutic strategies, and discussed the directions that can be worked on in the future.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Yun Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China
| | - Xuechun Sun
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, 1 You Yi Road, Yu Zhong District, Chongqing, 400016, China.
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Daoud HAS, Kokoti L, Al-Karagholi MAM. K ATP channels in cerebral hemodynamics: a systematic review of preclinical and clinical studies. Front Neurol 2024; 15:1417421. [PMID: 39022739 PMCID: PMC11252034 DOI: 10.3389/fneur.2024.1417421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Cumulative evidence suggests that ATP-sensitive potassium (KATP) channels act as a key regulator of cerebral blood flow (CBF). This implication seems to be complicated, since KATP channels are expressed in several vascular-related structures such as smooth muscle cells, endothelial cells and pericytes. In this systematic review, we searched PubMed and EMBASE for preclinical and clinical studies addressing the involvement of KATP channels in CBF regulation. A total of 216 studies were screened by title and abstract. Of these, 45 preclinical and 6 clinical studies were included. Preclinical data showed that KATP channel openers (KCOs) caused dilation of several cerebral arteries including pial arteries, the middle cerebral artery and basilar artery, and KATP channel inhibitor (KCI) glibenclamide, reversed the dilation. Glibenclamide affected neither the baseline CBF nor the baseline vascular tone. Endothelium removal from cerebral arterioles resulted in an impaired response to KCO/KCI. Clinical studies showed that KCOs dilated cerebral arteries and increased CBF, however, glibenclamide failed to attenuate these vascular changes. Endothelial KATP channels played a major role in CBF regulation. More studies investigating the role of KATP channels in CBF-related structures are needed to further elucidate their actual role in cerebral hemodynamics in humans. Systematic review registration: Prospero: CRD42023339278 (preclinical data) and CRD42022339152 (clinical data).
Collapse
Affiliation(s)
- Hassan Ali Suleiman Daoud
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Lili Kokoti
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital- Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Nordsjaellands Hospital- Hilleroed, Hilleroed, Denmark
| |
Collapse
|
4
|
Al-Khazali HM, Christensen RH, Dodick DW, Chaudhry BA, Melchior AG, Burstein R, Ashina H. Hypersensitivity to BK Ca channel opening in persistent post-traumatic headache. J Headache Pain 2024; 25:102. [PMID: 38890563 PMCID: PMC11186171 DOI: 10.1186/s10194-024-01808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Large conductance calcium-activated potassium (BKCa) channels have been implicated in the neurobiological underpinnings of migraine. Considering the clinical similarities between migraine and persistent post-traumatic headache (PPTH), we aimed to examine whether MaxiPost (a BKCa channel opener) could induce migraine-like headache in persons with PPTH. METHODS This is a randomized double-blind, placebo-controlled, two-way crossover study from September 2023 to December 2023. Eligible participants were adults with PPTH after mild traumatic brain injury who reported having no personal history of migraine. The randomized participants received a single dose of either MaxiPost (0.05 mg/min) or placebo (isotonic saline) that was infused intravenously over 20 minutes. The two experiment sessions were scheduled at least one week apart to avoid potential carryover effects. The primary endpoint was the induction of migraine-like headache after MaxiPost as compared to placebo within 12 hours of drug administration. The secondary endpoint was the area under the curve (AUC) values for headache intensity scores between MaxiPost and placebo over the same 12-hour observation period. RESULTS Twenty-one adult participants (comprising 14 females and 7 males) with PPTH were enrolled and completed both experiment sessions. The proportion of participants who developed migraine-like headache was 11 (52%) of 21 participants after MaxiPost infusion, in contrast to four (19%) participants following placebo (P = .02). Furthermore, the median headache intensity scores, represented by AUC values, were higher following MaxiPost than after placebo (P < .001). CONCLUSIONS Our results indicate that BKCa channel opening can elicit migraine-like headache in persons with PPTH. Thus, pharmacologic blockade of BKCa channels might present a novel avenue for drug discovery. Additional investigations are nonetheless needed to confirm these insights and explore the therapeutic prospects of BKCa channel blockers in managing PPTH. CLINICALTRIALS GOV IDENTIFIER NCT05378074.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, BIDMC Comprehensive Headache Center, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - David W Dodick
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anna G Melchior
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Center for Life Science, 3 Blackfan Circle, Boston, MA, 02215, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
5
|
Kokoti L, Al-Karagholi MAM, Zhuang ZA, Amirguliyev S, Amin FM, Ashina M. Non-vascular ATP-sensitive potassium channel activation does not trigger migraine attacks: A randomized clinical trial. Cephalalgia 2024; 44:3331024241248211. [PMID: 38729773 DOI: 10.1177/03331024241248211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
OBJECTIVE To investigate the role of NN414, a selective KATP channel opener for the Kir6.2/SUR1 channel subtype found in neurons and β-pancreatic cells, in inducing migraine attacks in individuals with migraine without aura. METHODS Thirteen participants were randomly allocated to receive NN414 and placebo on two days separated by at least one week. The primary endpoint was the difference in the incidence of migraine attacks after NN414 compared with placebo. The secondary endpoints were the difference in the area under the curve for headache intensity scores, middle cerebral artery blood flow velocity (VMCA), superficial temporal artery diameter, heart rate and mean arterial pressure. RESULTS Twelve participants completed the study, with two (16.6%) reporting migraine attacks after NN414 compared to one (8.3%) after placebo (p = 0.53). The area under the curve for headache intensity, VMCA, superficial temporal artery diameter, heart rate and mean arterial pressure did not differ between NN414 and placebo (p > 0.05, all comparisons). CONCLUSION The lack of migraine induction upon activation of the Kir6.2/SUR1 channel subtype suggests it may not contribute to migraine pathogenesis. Our findings point to KATP channel blockers that target the Kir6.1/SUR2B subtype, found in cerebral vasculature, as potential candidates for innovative antimigraine treatments.Registration number: NCT04744129.
Collapse
Affiliation(s)
- Lili Kokoti
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zixuan Alice Zhuang
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sarkhan Amirguliyev
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Headache Knowledge Center, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
6
|
Al-Khazali HM, Christensen RH, Dodick DW, Chaudhry BA, Amin FM, Burstein R, Ashina H. Hypersensitivity to PACAP-38 in post-traumatic headache: a randomized clinical trial. Brain 2024; 147:1312-1320. [PMID: 37864847 PMCID: PMC10994530 DOI: 10.1093/brain/awad367] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38), known for its role in migraine pathogenesis, has been identified as a novel drug target. Given the clinical parallels between post-traumatic headache (PTH) and migraine, we explored the possible role of PACAP-38 in the pathogenesis of PTH. To this end, we conducted a randomized, double-blind, placebo-controlled, two-way crossover trial involving adult participants diagnosed with persistent PTH resulting from mild traumatic brain injury. Participants were randomly assigned to receive a 20-min continuous intravenous infusion of either PACAP-38 (10 pmol/kg/min) or placebo (isotonic saline) on two separate experimental days, with a 1-week washout period in between. The primary outcome was the difference in incidence of migraine-like headache between PACAP-38 and placebo during a 12-h observational period post-infusion. The secondary outcome was the difference in the area under the curve (AUC) for baseline-corrected median headache intensity scores during the same 12-h observational period. Of 49 individuals assessed for eligibility, 21 were enrolled and completed the trial. The participants had a mean age of 35.2 years, and 16 (76%) were female. Most [19 of 21 (90%)] had a migraine-like phenotype. During the 12-h observational period, 20 of 21 (95%) participants developed migraine-like headache after intravenous infusion of PACAP-38, compared with two (10%) participants after placebo (P < 0.001). Furthermore, the baseline-corrected AUC values for median headache intensity scores during the 12-h observational period was higher after PACAP-38 than placebo (P < 0.001). These compelling results demonstrate that PACAP-38 is potent inducer of migraine-like headache in people with persistent PTH. Thus, targeting PACAP-38 signalling might be a promising avenue for the treatment of PTH.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Rune H Christensen
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - David W Dodick
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Neurology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| | - Rami Burstein
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Håkan Ashina
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| |
Collapse
|
7
|
Chiang CC, Porreca F, Robertson CE, Dodick DW. Potential treatment targets for migraine: emerging options and future prospects. Lancet Neurol 2024; 23:313-324. [PMID: 38365382 DOI: 10.1016/s1474-4422(24)00003-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
Migraine is a leading cause of disability worldwide. Despite the recent approval of several calcitonin gene-related peptide-targeted therapies, many people with migraine do not achieve satisfactory headache improvement with currently available therapies and there continues to be an unmet need for effective and tolerable migraine-specific treatments. Exploring additional targets that have compelling evidence for their involvement in modulating migraine pathways is therefore imperative. Potential new therapies for migraine include pathways involved in nociception, regulation of homoeostasis, modulation of vasodilation, and reward circuits. Animal and human studies show that these targets are expressed in regions of the CNS and peripheral nervous system that are involved in pain processing, indicating that these targets might be regarded as promising for the discovery of new migraine therapies. Future studies will require assessment of whether targets are suitable for therapeutic modulation, including assessment of specificity, affinity, solubility, stability, efficacy, and safety.
Collapse
Affiliation(s)
| | - Frank Porreca
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | | | - David W Dodick
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA; Atria Academy of Science and Medicine, New York, NY, USA
| |
Collapse
|
8
|
Baldwin SN, Jepps TA, Greenwood IA. Cycling matters: Sex hormone regulation of vascular potassium channels. Channels (Austin) 2023; 17:2217637. [PMID: 37243715 PMCID: PMC10228406 DOI: 10.1080/19336950.2023.2217637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023] Open
Abstract
Sex hormones and the reproductive cycle (estrus in rodents and menstrual in humans) have a known impact on arterial function. In spite of this, sex hormones and the estrus/menstrual cycle are often neglected experimental factors in vascular basic preclinical scientific research. Recent research by our own laboratory indicates that cyclical changes in serum concentrations of sex -hormones across the rat estrus cycle, primary estradiol, have significant consequences for the subcellular trafficking and function of KV. Vascular potassium channels, including KV, are essential components of vascular reactivity. Our study represents a small part of a growing field of literature aimed at determining the role of sex hormones in regulating arterial ion channel function. This review covers key findings describing the current understanding of sex hormone regulation of vascular potassium channels, with a focus on KV channels. Further, we highlight areas of research where the estrus cycle should be considered in future studies to determine the consequences of physiological oscillations in concentrations of sex hormones on vascular potassium channel function.
Collapse
Affiliation(s)
- Samuel N Baldwin
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Iain A Greenwood
- Vascular Biology Research Centre, Institute of Molecular and Clinical Sciences, St George’s University of London, London, UK
| |
Collapse
|
9
|
Do TP, Deligianni C, Amirguliyev S, Snellman J, Lopez CL, Al-Karagholi MAM, Guo S, Ashina M. Second messenger signalling bypasses CGRP receptor blockade to provoke migraine attacks in humans. Brain 2023; 146:5224-5234. [PMID: 37540009 PMCID: PMC10690017 DOI: 10.1093/brain/awad261] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/25/2023] [Accepted: 07/16/2023] [Indexed: 08/05/2023] Open
Abstract
There are several endogenous molecules that can trigger migraine attacks when administered to humans. Notably, calcitonin gene-related peptide (CGRP) has been identified as a key player in a signalling cascade involved in migraine attacks, acting through the second messenger cyclic adenosine monophosphate (cAMP) in various cells, including intracranial vascular smooth muscle cells. However, it remains unclear whether intracellular cAMP signalling requires CGRP receptor activation during a migraine attack in humans. To address this question, we conducted a randomized, double-blind, placebo-controlled, parallel trial using a human provocation model involving the administration of CGRP and cilostazol in individuals with migraine pretreated with erenumab or placebo. Our study revealed that migraine attacks can be provoked in patients by cAMP-mediated mechanisms using cilostazol, even when the CGRP receptor is blocked by erenumab. Furthermore, the dilation of cranial arteries induced by cilostazol was not influenced by the CGRP receptor blockade. These findings provide clinical evidence that cAMP-evoked migraine attacks do not require CGRP receptor activation. This discovery opens up new possibilities for the development of mechanism-based drugs for the treatment of migraine.
Collapse
Affiliation(s)
- Thien Phu Do
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christina Deligianni
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Sarkhan Amirguliyev
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | | | - Cristina Lopez Lopez
- Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | | | - Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Al-Khazali HM, Christensen RH, Dodick DW, Chaudhry BA, Burstein R, Ashina H. Hypersensitivity to opening of ATP-sensitive potassium channels in post-traumatic headache. Cephalalgia 2023; 43:3331024231210930. [PMID: 37917826 DOI: 10.1177/03331024231210930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To investigate whether levcromakalim (a KATP channel opener) induces migraine-like headache in people with persistent post-traumatic headache who had no known history of migraine. METHODS In a randomized, double-blind, placebo-controlled, 2-way crossover trial, participants were randomly assigned to receive a 20-minute continuous intravenous infusion of levcromakalim (50 µg/mL) or placebo (isotonic saline) on two separate experimental days with a 1-week wash-out period in between. The primary endpoint was the difference in incidence of migraine-like headache between levcromakalim and placebo during a 12-hour observational period after infusion start. The secondary endpoint was the difference in area under the curve for baseline-corrected median headache intensity scores between levcromakalim and placebo during the 12-hour observational period. RESULTS A total of 21 participants with persistent post-traumatic headache were randomized and completed the trial. During the 12-hour observational period, 12 (57%) of 21 participants reported experiencing migraine-like headache following the levcromakalim infusion, compared with three after placebo (P = 0.013). Moreover, the baseline-corrected median headache intensity scores were higher following the levcromakalim infusion than after placebo (P = 0.003). CONCLUSION Our findings suggest that KATP channels play an important role in the pathogenesis of migraine-like headache in people with persistent post-traumatic headache. This implies that KATP channel blockers might represent a promising avenue for drug development. Further research is warranted to explore the potential therapeutic benefits of KATP channel blockers in managing post-traumatic headache.Trial Registration: ClinicalTrials.gov Identifier: NCT05243953.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune H Christensen
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David W Dodick
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Håkan Ashina
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
11
|
Clement A, Christensen SL, Jansen-Olesen I, Olesen J, Guo S. The ATP sensitive potassium channel (K ATP) is a novel target for migraine drug development. Front Mol Neurosci 2023; 16:1182515. [PMID: 37456521 PMCID: PMC10338883 DOI: 10.3389/fnmol.2023.1182515] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Migraine is one of the leading causes of disability worldwide, affecting work and social life. It has been estimated that sales of migraine medicines will reach 12.9 billion USD in 2027. To reduce social impact, migraine treatments must improve, and the ATP-sensitive potassium (KATP) channel is a promising target because of the growing evidence of its implications in the pathogenesis of migraine. Strong human data show that opening of the KATP channel using levcromakalim is the most potent headache and migraine trigger ever tested as it induces headache in almost all healthy subjects and migraine attacks in 100% of migraine sufferers. This review will address the basics of the KATP channel together with clinical and preclinical data on migraine implications. We argue that KATP channel blocking, especially the Kir6.1/SUR2B subtype, may be a target for migraine drug development, however translational issues remain. There are no human data on the closure of the KATP channel, although blocking the channel is effective in animal models of migraine. We believe there is a good likelihood that an antagonist of the Kir6.1/SUR2B subtype of the KATP channel will be effective in the treatment of migraine. The side effects of such a blocker may be an issue for clinical use, but the risk is likely only moderate. Future clinical trials of a selective Kir6.1/SUR2B blocker will answer these questions.
Collapse
Affiliation(s)
- Amalie Clement
- Glostrup Research Institute, Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Glostrup Research Institute, Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Glostrup Research Institute, Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Glostrup Research Institute, Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Song Guo
- Glostrup Research Institute, Department of Neurology, Danish Headache Center, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Odontology, Panum Institute, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
13
|
Kokoti L, Al-Karagholi MAM, Waldorff Nielsen CA, Ashina M. Glibenclamide Posttreatment Does Not Inhibit Levcromakalim Induced Headache in Healthy Participants: A Randomized Clinical Trial. Neurotherapeutics 2023; 20:389-398. [PMID: 36763326 PMCID: PMC10121935 DOI: 10.1007/s13311-023-01350-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2023] [Indexed: 02/11/2023] Open
Abstract
Intravenous infusion of ATP-sensitive potassium channel (KATP) opener levcromakalim causes headache in humans and implicates KATP channels in headache pathophysiology. Whether KATP channel blocker glibenclamide inhibits levcromakalim-induced headache has not yet been elucidated. We aimed to investigate the effect of posttreatment with glibenclamide on levcromakalim-induced headache in healthy participants. In a double blind, randomized, three-arm, placebo-controlled, crossover study, 20 healthy participants were randomized to receive 20 mL of levcromakalim (0.05 mg/min (50 mg/mL)) or 20 mL placebo (isotonic saline) intravenously over 20 min followed by oral administration of 10 mg glibenclamide or placebo. Fifteen participants completed all three study days. The primary endpoint was the difference in incidence of headache (0-12 h) between glibenclamide and placebo. More participants developed headache on levcromakalim-placebo day (15/15, 100%) (P = 0.013) and levcromakalim-glibenclamide day (13/15, 86%) compared to placebo-placebo day (7/15, 46%) (P = 0.041). We found no difference in headache incidence between levcromakalim-placebo day and levcromakalim-glibenclamide day (P = 0.479). The AUC0-12 h for headache intensity was significantly larger in levcromakalim-placebo day and levcromakalim-glibenclamide day compared to placebo-placebo day (106.3 ± 215.8) (P < 0.01). There was no difference in the AUC0-12 h for headache intensity between the levcromakalim-placebo day (494 ± 336.6) and the levcromakalim-glibenclamide day (417 ± 371.6) (P = 0.836). We conclude that non-specific KATP channel inhibitor glibenclamide did not attenuate levcromakalim-induced headache in healthy volunteers. Future studies should clarify the involvement of the distinct isoforms of sulfonylurea receptor subunits of KATP channels in the pathogenesis of headache and migraine.
Collapse
Affiliation(s)
- Lili Kokoti
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet – Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansen Vej 5, 2600 Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet – Glostrup, Glostrup, Denmark
| |
Collapse
|
14
|
Novel Therapeutic Targets for Migraine. Biomedicines 2023; 11:biomedicines11020569. [PMID: 36831105 PMCID: PMC9952984 DOI: 10.3390/biomedicines11020569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Migraine, a primary headache disorder involving a dysfunctional trigeminal vascular system, remains a major debilitating neurological condition impacting many patients' quality of life. Despite the success of multiple new migraine therapies, not all patients achieve significant clinical benefits. The success of CGRP pathway-targeted therapy highlights the importance of translating the mechanistic understanding toward effective therapy. Ongoing research has identified multiple potential mechanisms in migraine signaling and nociception. In this narrative review, we discuss several potential emerging therapeutic targets, including pituitary adenylate cyclase-activating polypeptide (PACAP), adenosine, δ-opioid receptor (DOR), potassium channels, transient receptor potential ion channels (TRP), and acid-sensing ion channels (ASIC). A better understanding of these mechanisms facilitates the discovery of novel therapeutic targets and provides more treatment options for improved clinical care.
Collapse
|
15
|
Dyhring T, Jansen-Olesen I, Christophersen P, Olesen J. Pharmacological Profiling of K ATP Channel Modulators: An Outlook for New Treatment Opportunities for Migraine. Pharmaceuticals (Basel) 2023; 16:225. [PMID: 37259373 PMCID: PMC9966414 DOI: 10.3390/ph16020225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 12/23/2023] Open
Abstract
Migraine is a highly disabling pain disorder with huge socioeconomic and personal costs. It is genetically heterogenous leading to variability in response to current treatments and frequent lack of response. Thus, new treatment strategies are needed. A combination of preclinical and clinical data indicate that ATP-sensitive potassium (KATP) channel inhibitors could be novel and highly effective drugs in the treatment of migraine. The subtype Kir6.1/SUR2B is of particular interest and inhibitors specific for this cranio-vascular KATP channel subtype may qualify as future migraine drugs. Historically, different technologies and methods have been undertaken to characterize KATP channel modulators and, therefore, a head-to-head comparison of potency and selectivity between the different KATP subtypes is difficult to assess. Here, we characterize available KATP channel activators and inhibitors in fluorescence-based thallium-flux assays using HEK293 cells stably expressing human Kir6.1/SUR2B, Kir6.2/SUR1, and Kir6.2/SUR2A KATP channels. Among the openers tested, levcromakalim, Y-26763, pinacidil, P-1075, ZM226600, ZD0947, and A-278637 showed preference for the KATP channel subtype Kir6.1/SUR2B, whereas BMS-191095, NN414, and VU0071306 demonstrated preferred activation of the Kir6.2/SUR1 subtype. In the group of KATP channel blockers, only Rosiglitazone and PNU-37783A showed selective inhibition of the Kir6.1/SUR2B subtype. PNU-37783A was stopped in clinical development and Rosiglitazone has a low potency for the vascular KATP channel subtype. Therefore, development of novel selective KATP channel blockers, having a benign side effect profile, are needed to clinically prove inhibition of Kir6.1/SUR2B as an effective migraine treatment.
Collapse
Affiliation(s)
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, University of Copenhagen, 2600 Glostrup, Denmark
| | | | - Jes Olesen
- Danish Headache Center, Department of Neurology, University of Copenhagen, 2600 Glostrup, Denmark
| |
Collapse
|
16
|
Ali MD, Gayasuddin Qur F, Alam MS, M Alotaibi N, Mujtaba MA. Global Epidemiology, Clinical Features, Diagnosis and Current Therapeutic Novelties in Migraine Therapy and their Prevention: A Narrative Review. Curr Pharm Des 2023; 29:3295-3311. [PMID: 38270151 DOI: 10.2174/0113816128266227231205114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/21/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION The current article reviews the latest information on epidemiology, clinical features, diagnosis, recent advancements in clinical management, current therapeutic novelties, and the prevention of migraines. In a narrative review, all studies as per developed MeSH terms published until February 2023, excluding those irrelevant, were identified through a PubMed literature search. METHODS Overall, migraine affects more than a billion people annually and is one of the most common neurological illnesses. A wide range of comorbidities is associated with migraines, including stress and sleep disturbances. To lower the worldwide burden of migraine, comprehensive efforts are required to develop and enhance migraine treatment, which is supported by informed healthcare policy. Numerous migraine therapies have been successful, but not all patients benefit from them. RESULTS CGRP pathway-targeted therapy demonstrates the importance of translating mechanistic understanding into effective treatment. In this review, we discuss clinical features, diagnosis, and recently approved drugs, as well as a number of potential therapeutic targets, including pituitary adenylate cyclase-activating polypeptide (PACAP), adenosine, opioid receptors, potassium channels, transient receptor potential ion channels (TRP), and acid-sensing ion channels (ASIC). CONCLUSION In addition to providing more treatment options for improved clinical care, a better understanding of these mechanisms facilitates the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa, Dammam 34222, Saudi Arabia
| | - Fehmida Gayasuddin Qur
- Department of Obstetrics and Gynecology, Princess Royal Maternity Hospital, Glasgow, Scotland
| | - Md Sarfaraz Alam
- Department of Pharmaceutics, HIMT College of Pharmacy, Rajpura 8, Institutional Area, Knowledge Park I, Greater Noida, Uttar Pradesh 201301, India
| | - Nawaf M Alotaibi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha Campus, Arar, Saudi Arabia
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha Campus, Arar, Saudi Arabia
| |
Collapse
|
17
|
ATP-Sensitive Potassium Channels in Migraine: Translational Findings and Therapeutic Potential. Cells 2022; 11:cells11152406. [PMID: 35954249 PMCID: PMC9367966 DOI: 10.3390/cells11152406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 12/10/2022] Open
Abstract
Globally, migraine is a leading cause of disability with a huge impact on both the work and private life of affected persons. To overcome the societal migraine burden, better treatment options are needed. Increasing evidence suggests that ATP-sensitive potassium (KATP) channels are involved in migraine pathophysiology. These channels are essential both in blood glucose regulation and cardiovascular homeostasis. Experimental infusion of the KATP channel opener levcromakalim to healthy volunteers and migraine patients induced headache and migraine attacks in 82-100% of participants. Thus, this is the most potent trigger of headache and migraine identified to date. Levcromakalim likely induces migraine via dilation of cranial arteries. However, other neuronal mechanisms are also proposed. Here, basic KATP channel distribution, physiology, and pharmacology are reviewed followed by thorough review of clinical and preclinical research on KATP channel involvement in migraine. KATP channel opening and blocking have been studied in a range of preclinical migraine models and, within recent years, strong evidence on the importance of their opening in migraine has been provided from human studies. Despite major advances, translational difficulties exist regarding the possible anti-migraine efficacy of KATP channel blockage. These are due to significant species differences in the potency and specificity of pharmacological tools targeting the various KATP channel subtypes.
Collapse
|
18
|
Kokoti L, Al-Mahdi Al-Karagholi M, Elbahi FA, Coskun H, Ghanizada H, Amin FM, Ashina M. Effect of K ATP channel blocker glibenclamide on PACAP38-induced headache and hemodynamic. Cephalalgia 2022; 42:846-858. [PMID: 35301859 DOI: 10.1177/03331024221080574] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine whether glibenclamide, a non-selective adenosine 5'-triphosphate-sensitive K+ (KATP) channel blocker, attenuates pituitary adenylate cyclase-activating polypeptide-38 (PACAP38)-induced headache and vascular changes in healthy volunteers. METHODS In a double-blind, randomized, placebo controlled and crossover design, 22 healthy volunteers were assigned to receive an intravenous infusion of 10 picomole/kg/min pituitary adenylate cyclase-activating polypeptide-38 over 20 minutes followed by oral administration of 10 mg glibenclamide or placebo. The primary endpoint was the difference in incidence of headache (0-12 hours) between glibenclamide and placebo. The secondary endpoints were a difference in area under the curve for headache intensity scores, middle cerebral artery velocity (VmeanMCA), superficial temporal artery diameter, radial artery diameter, heart rate, mean arterial blood pressure and facial skin blood flow between the two study days. RESULTS Twenty participants completed the study. We found no difference in the incidence of pituitary adenylate cyclase-activating polypeptide-38-induced headache after glibenclamide (19/20, 95%) compared to placebo (18/20, 90%) (P = 0.698). The area under the curve for headache intensity, middle cerebral artery velocity, superficial temporal artery diameter, radial artery diameter, facial skin blood flow, heart rate and mean arterial blood pressure did not differ between pituitary adenylate cyclase-activating polypeptide-38-glibenclamide day compared to pituitary adenylate cyclase-activating polypeptide-38-placebo day (P > 0.05). CONCLUSIONS Posttreatment with 5'-triphosphate-sensitive K+ channel inhibitor glibenclamide did not attenuate pituitary adenylate cyclase-activating polypeptide-38-induced headache and hemodynamic changes in healthy volunteers. We suggest that pituitary adenylate cyclase-activating polypeptide-38-triggered signaling pathway could be mediated by specific isoforms of sulfonylurea receptor subunits of 5'-triphosphate-sensitive K+ channels and other types of potassium channels.
Collapse
Affiliation(s)
- Lili Kokoti
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fatima Azzahra Elbahi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Danish Headache Knowledge Center, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
19
|
Christensen SL, Rasmussen RH, Cour SL, Ernstsen C, Hansen TF, Kogelman LJ, Lauritzen SP, Guzaite G, Styrishave B, Janfelt C, Christensen ST, Aziz Q, Tinker A, Jansen-Olesen I, Olesen J, Kristensen DM. Smooth muscle ATP-sensitive potassium channels mediate migraine-relevant hypersensitivity in mouse models. Cephalalgia 2022; 42:93-107. [PMID: 34816764 DOI: 10.1177/03331024211053570] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Opening of KATP channels by systemic levcromakalim treatment triggers attacks in migraine patients and hypersensitivity to von Frey stimulation in a mouse model. Blocking of these channels is effective in several preclinical migraine models. It is unknown in what tissue and cell type KATP-induced migraine attacks are initiated and which KATP channel subtype is targeted. METHODS In mouse models, we administered levcromakalim intracerebroventricularly, intraperitoneally and intraplantarily and compared the nociceptive responses by von Frey and hotplate tests. Mice with a conditional loss-of-function mutation in the smooth muscle KATP channel subunit Kir6.1 were given levcromakalim and GTN and examined with von Frey filaments. Arteries were tested for their ability to dilate ex vivo. mRNA expression, western blotting and immunohistochemical stainings were made to identify relevant target tissue for migraine induced by KATP channel opening. RESULTS Systemic administration of levcromakalim induced hypersensitivity but central and local administration provided antinociception respectively no effect. The Kir6.1 smooth muscle knockout mouse was protected from both GTN and levcromakalim induced hypersensitivity, and their arteries had impaired dilatory response to the latter. mRNA and protein expression studies showed that trigeminal ganglia did not have significant KATP channel expression of any subtype, whereas brain arteries and dura mater primarily expressed the Kir6.1 + SUR2B subtype. CONCLUSION Hypersensitivity provoked by GTN and levcromakalim in mice is dependent on functional smooth muscle KATP channels of extracerebral origin. These results suggest a vascular contribution to hypersensitivity induced by migraine triggers.
Collapse
Affiliation(s)
- Sarah L Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Rikke H Rasmussen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Sanne La Cour
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Charlotte Ernstsen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas F Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Lisette Ja Kogelman
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Sabrina P Lauritzen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Gintare Guzaite
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Bjarne Styrishave
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Qadeer Aziz
- The Heart Centre, 4617Queen Mary University of London, William Harvey Research Institute, Queen Mary University of London, UK
| | - Andrew Tinker
- The Heart Centre, 4617Queen Mary University of London, William Harvey Research Institute, Queen Mary University of London, UK
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - David M Kristensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Al-Karagholi MAM, Ghanizada H, Waldorff Nielsen CA, Skandarioon C, Snellman J, Lopez-Lopez C, Hansen JM, Ashina M. Opening of BKCa channels causes migraine attacks: a new downstream target for the treatment of migraine. Pain 2021; 162:2512-2520. [PMID: 34252916 DOI: 10.1097/j.pain.0000000000002238] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Migraine is a common and frequently disabling neurological disorder, but the initiating migraine mechanisms are still poorly understood. Potassium channel opening may cause migraine, and we therefore examined the migraine-inducing effect of MaxiPost, a large (big)-conductance calcium-activated potassium (BKCa) channel opener, on migraine induction and cephalic vasodilation in individuals with migraine. Twenty-six patients with migraine without aura were randomly allocated to receive an infusion of MaxiPost or placebo on 2 study days separated by at least 1 week. The primary endpoint was the difference in incidence of migraine attacks after MaxiPost compared with placebo. The secondary endpoints were the difference in incidence of headaches and the difference in area under the curve for headache intensity scores (0-12 hours), for middle cerebral artery blood flow velocity (VMCA) (0-2 hours), and for superficial temporal artery and radial artery diameter. Twenty-two patients completed the study. Twenty-one of 22 (95%) developed migraine attacks after MaxiPost compared with none after placebo (P < 0.0001); the difference of incidence is 95% (95% confidence interval 86%-100%). The incidence of headache over the 12-hour observation period was higher after MaxiPost day (n = 22) than after placebo (n = 7) (P < 0.0001). We found a significant increase of VMCA and superficial temporal and radial arteries' diameter. Because BKCa channel opening initiates migraine attacks, we suggest that BKCa channel blockers could be potential candidates for novel antimigraine drugs.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hashmat Ghanizada
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Skandarioon
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jakob Møller Hansen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Knowledge Center on Headache Disorders, Rigshospitalet-Glostrup, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
21
|
Mungoven TJ, Henderson LA, Meylakh N. Chronic Migraine Pathophysiology and Treatment: A Review of Current Perspectives. FRONTIERS IN PAIN RESEARCH 2021; 2:705276. [PMID: 35295486 PMCID: PMC8915760 DOI: 10.3389/fpain.2021.705276] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic migraine is a disabling neurological disorder that imposes a considerable burden on individual and socioeconomic outcomes. Chronic migraine is defined as headaches occurring on at least 15 days per month with at least eight of these fulfilling the criteria for migraine. Chronic migraine typically evolves from episodic migraine as a result of increasing attack frequency and/or several other risk factors that have been implicated with migraine chronification. Despite this evolution, chronic migraine likely develops into its own distinct clinical entity, with unique features and pathophysiology separating it from episodic migraine. Furthermore, chronic migraine is characterized with higher disability and incidence of comorbidities in comparison to episodic migraine. While existing migraine studies primarily focus on episodic migraine, less is known about chronic migraine pathophysiology. Mounting evidence on aberrant alterations suggest that pronounced functional and structural brain changes, central sensitization and neuroinflammation may underlie chronic migraine mechanisms. Current treatment options for chronic migraine include risk factor modification, acute and prophylactic therapies, evidence-based treatments such as onabotulinumtoxinA, topiramate and newly approved calcitonin gene-related peptide or receptor targeted monoclonal antibodies. Unfortunately, treatments are still predominantly ineffective in aborting migraine attacks and decreasing intensity and frequency, and poor adherence and compliance with preventative medications remains a significant challenge. Novel emerging chronic migraine treatments such as neuromodulation offer promising therapeutic approaches that warrant further investigation. The aim of this narrative review is to provide an update of current knowledge and perspectives regarding chronic migraine background, pathophysiology, current and emerging treatment options with the intention of facilitating future research into this debilitating and largely indeterminant disorder.
Collapse
Affiliation(s)
| | | | - Noemi Meylakh
- Department of Anatomy and Histology, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
22
|
Christensen SL, Rasmussen RH, Ernstsen C, La Cour S, David A, Chaker J, Haanes KA, Christensen ST, Olesen J, Kristensen DM. CGRP-dependent signalling pathways involved in mouse models of GTN- cilostazol- and levcromakalim-induced migraine. Cephalalgia 2021; 41:1413-1426. [PMID: 34407650 DOI: 10.1177/03331024211038884] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Knowledge of exact signalling events during migraine attacks is lacking. Various substances are known to trigger migraine attacks in patients and calcitonin gene-related peptide antagonising drugs are effective against migraine pain. Here, we investigated the signalling pathways involved in three different mouse models of provoked migraine and relate them to calcitonin gene-related peptide and other migraine-relevant targets. METHODS In vivo mouse models of glyceryl trinitrate-, cilostazol- and levcromakalim-induced migraine were applied utilising tactile sensitivity to von Frey filaments as measuring readout. Signalling pathways involved in the three models were dissected by use of specific knockout mice and chemical inhibitors. In vivo results were supported by ex vivo wire myograph experiments measuring arterial dilatory responses and ex vivo calcitonin gene-related peptide release from trigeminal ganglion and trigeminal nucleus caudalis from mice. RESULTS Glyceryl trinitrate-induced hypersensitivity was dependent on both prostaglandins and transient receptor potential cation channel, subfamily A, member 1, whereas cilostazol- and levcromakalim-induced hypersensitivity were independent of both. All three migraine triggers activated calcitonin gene-related peptide signalling, as both receptor antagonism and antibody neutralisation of calcitonin gene-related peptide were effective inhibitors of hypersensitivity in all three models. Stimulation of trigeminal ganglia and brain stem tissue samples with cilostazol and levcromakalim did not result in release of calcitonin gene-related peptide, and vasodilation following levcromakalim stimulation was independent of CGRP receptor antagonism. CONCLUSION The mouse models of glyceryl trinitrate-, cilostazol- and levcromakalim- induced migraine all involve calcitonin gene-related peptide signalling in a complex interplay between different cell/tissue types. These models are useful in the study of migraine mechanisms.
Collapse
Affiliation(s)
- Sarah L Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Rikke H Rasmussen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Charlotte Ernstsen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Sanne La Cour
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Arthur David
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Jade Chaker
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Kristian A Haanes
- Department of Clinical Experimental Research, 70590Rigshospitalet Glostrup, Rigshospitalet Glostrup, Denmark
| | - Søren T Christensen
- Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - David M Kristensen
- Danish Headache Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark.,Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France.,Department of Biology, Section of Cell Biology and Physiology, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Coskun H, Elbahi FA, Al-Karagholi MAM, Ghanizada H, Sheykhzade M, Ashina M. The Effect of K ATP Channel Blocker Glibenclamide on CGRP-Induced Headache and Hemodynamic in Healthy Volunteers. Front Physiol 2021; 12:652136. [PMID: 34177610 PMCID: PMC8226177 DOI: 10.3389/fphys.2021.652136] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) dilates cranial arteries and triggers headache. The CGRP signaling pathway is partly dependent on activation of ATP-sensitive potassium (K ATP ) channels. Here, we investigated the effect of the K ATP channel blocker glibenclamide on CGRP-induced headache and vascular changes in healthy volunteers. METHODS In a randomized, double-blind, placebo-controlled, cross-over study, 20 healthy volunteers aged 18-27 years were randomly allocated to receive an intravenous infusion of 1.5 μg/min CGRP after oral pretreatment with glibenclamide (glibenclamide-CGRP day) or placebo (placebo-CGRP day). The primary endpoints were the difference in incidence of headache and the difference in area under the curve (AUC) for headache intensity scores (0-14 h) between glibenclamide and placebo. The secondary endpoints were the difference in AUC for middle cerebral artery blood flow velocity (V MCA ), superficial temporal artery (STA) and radial artery (RA) diameter, facial flushing, heart rate (HR) and mean arterial blood pressure (MAP) (0-4 h) between glibenclamide and placebo. RESULTS We found no significant difference in the incidence of headache between glibenclamide-CGRP day (14/20, 70%) and placebo-CGRP day (19/20, 95%) (P = 0.06). The AUC for headache intensity, V MCA , STA, RA, facial skin blood flow, HR, and MAP did not differ between glibenclamide-CGRP day compared to placebo-CGRP day (P > 0.05). CONCLUSION Pretreatment with a non-selective K ATP channel inhibitor glibenclamide did not attenuate CGRP-induced headache and hemodynamic changes in healthy volunteers. We suggest that CGRP-induced responses could be mediated via activation of specific isoforms of sulfonylurea receptor subunits of K ATP channel.
Collapse
Affiliation(s)
- Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fatima Azzahra Elbahi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
24
|
Al-Karagholi MAM, Ghanizada H, Nielsen CAW, Ansari A, Gram C, Younis S, Vestergaard MB, Larsson HB, Skovgaard LT, Amin FM, Ashina M. Cerebrovascular effects of glibenclamide investigated using high-resolution magnetic resonance imaging in healthy volunteers. J Cereb Blood Flow Metab 2021; 41:1328-1337. [PMID: 33028147 PMCID: PMC8142144 DOI: 10.1177/0271678x20959294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Glibenclamide inhibits sulfonylurea receptor (SUR), which regulates several ion channels including SUR1-transient receptor potential melastatin 4 (SUR1-TRPM4) channel and ATP-sensitive potassium (KATP) channel. Stroke upregulates SURl-TRPM4 channel, which causes a rapid edema formation and brain swelling. Glibenclamide may antagonize the formation of cerebral edema during stroke. Preclinical studies showed that glibenclamide inhibits KATP channel-induced vasodilation without altering the basal vascular tone. The in vivo human cerebrovascular effects of glibenclamide have not previously been investigated.In a randomized, double-blind, placebo-controlled, three-way cross-over study, we used advanced 3 T MRI methods to investigate the effects of glibenclamide and KATP channel opener levcromakalim on mean global cerebral blood flow (CBF) and intra- and extracranial artery circumferences in 15 healthy volunteers. Glibenclamide administration did not alter the mean global CBF and the basal vascular tone. Following levcromakalim infusion, we observed a 14% increase of the mean global CBF and an 8% increase of middle cerebral artery (MCA) circumference, and glibenclamide did not attenuate levcromakalim-induced vascular changes. Collectively, the findings demonstrate the vital role of KATP channels in cerebrovascular hemodynamic and indicate that glibenclamide does not inhibit the protective effects of KATP channel activation during hypoxia and ischemia-induced brain injury.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Hashmat Ghanizada
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Assan Ansari
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Christian Gram
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Samaria Younis
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Mark B Vestergaard
- Functional Imaging Unit, Faculty of Health and Medical Sciences, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Rigshospitalet, Denmark
| | - Henrik Bw Larsson
- Functional Imaging Unit, Faculty of Health and Medical Sciences, Department of Clinical Physiology, Nuclear Medicine and PET, University of Copenhagen, Rigshospitalet, Denmark
| | - Lene Theil Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark
| | - Messoud Ashina
- Department of Neurology, Faculty of Health and Medical Sciences, Danish Headache Center, University of Copenhagen, Rigshospitalet Glostrup, Denmark.,Danish Headache Knowledge Center, Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
25
|
Ghanizada H, Al-Karagholi MAM, Walker CS, Arngrim N, Rees T, Petersen J, Siow A, Mørch-Rasmussen M, Tan S, O’Carroll SJ, Harris P, Skovgaard LT, Jørgensen NR, Brimble M, Waite JS, Rea BJ, Sowers LP, Russo AF, Hay DL, Ashina M. Amylin Analog Pramlintide Induces Migraine-like Attacks in Patients. Ann Neurol 2021; 89:1157-1171. [PMID: 33772845 PMCID: PMC8486152 DOI: 10.1002/ana.26072] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Migraine is a prevalent and disabling neurological disease. Its genesis is poorly understood, and there remains unmet clinical need. We aimed to identify mechanisms and thus novel therapeutic targets for migraine using human models of migraine and translational models in animals, with emphasis on amylin, a close relative of calcitonin gene-related peptide (CGRP). METHODS Thirty-six migraine without aura patients were enrolled in a randomized, double-blind, 2-way, crossover, positive-controlled clinical trial study to receive infusion of an amylin analogue pramlintide or human αCGRP on 2 different experimental days. Furthermore, translational studies in cells and mouse models, and rat, mouse and human tissue samples were conducted. RESULTS Thirty patients (88%) developed headache after pramlintide infusion, compared to 33 (97%) after CGRP (p = 0.375). Fourteen patients (41%) developed migraine-like attacks after pramlintide infusion, compared to 19 patients (56%) after CGRP (p = 0.180). The pramlintide-induced migraine-like attacks had similar clinical characteristics to those induced by CGRP. There were differences between treatments in vascular parameters. Human receptor pharmacology studies showed that an amylin receptor likely mediates these pramlintide-provoked effects, rather than the canonical CGRP receptor. Supporting this, preclinical experiments investigating symptoms associated with migraine showed that amylin treatment, like CGRP, caused cutaneous hypersensitivity and light aversion in mice. INTERPRETATION Our findings propose amylin receptor agonism as a novel contributor to migraine pathogenesis. Greater therapeutic gains could therefore be made for migraine patients through dual amylin and CGRP receptor antagonism, rather than selectively targeting the canonical CGRP receptor. ANN NEUROL 2021;89:1157-1171.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Christopher S. Walker
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Tayla Rees
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Jakeb Petersen
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Andrew Siow
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Mette Mørch-Rasmussen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Sheryl Tan
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Simon J. O’Carroll
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Paul Harris
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | | | - Niklas Rye Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margaret Brimble
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jayme S. Waite
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Brandon J. Rea
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Levi P. Sowers
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Andrew F. Russo
- Department of Molecular Physiology and Biophysics, Center for the Prevention and Treatment of Visual Loss, Veterans Administration Health Center, Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - Debbie L. Hay
- School of Biological Sciences and Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
26
|
Al-Karagholi MAM, Ghanizada H, Nielsen CAW, Hougaard A, Ashina M. Opening of ATP sensitive potassium channels causes migraine attacks with aura. Brain 2021; 144:2322-2332. [PMID: 33768245 DOI: 10.1093/brain/awab136] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 11/14/2022] Open
Abstract
Migraine afflicts more than one billion individuals worldwide and is a leading cause of years lived with disability. In about a third of individuals with migraine aura occur in relation to migraine headache. The common pathophysiological mechanisms underlying migraine headache and migraine aura are yet to be identified. Based on recent data, we hypothesized that levcromakalim, an ATP-sensitive potassium channel opener, would trigger migraine attacks with aura in migraine with aura patients.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anders Hougaard
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Dept. of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Danish Headache Knowledge Center, Rigshospitalet - Glostrup, Valdemar Hansens Vej 5, DK-2600 Glostrup, Denmark
| |
Collapse
|
27
|
Wienholtz NKF, Christensen CE, Zhang DG, Coskun H, Ghanizada H, Al-Karagholi MAM, Hannibal J, Egeberg A, Thyssen JP, Ashina M. Early treatment with sumatriptan prevents PACAP38-induced migraine: A randomised clinical trial. Cephalalgia 2021; 41:731-748. [PMID: 33567890 DOI: 10.1177/0333102420975395] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To determine whether early treatment with sumatriptan can prevent PACAP38-induced migraine attacks. METHODS A total of 37 patients with migraine without aura were enrolled between July 2018 to December 2019. All patients received an intravenous infusion of 10 picomole/kg/min of PACAP38 over 20 min followed by an intravenous infusion of 4 mg sumatriptan or placebo over 10 min on two study days in a randomised, double-blind, placebo-controlled, crossover study. RESULTS Of 37 patients enrolled, 26 (70.3%) completed the study and were included in analyses. Of the 26 patients, four (15%) developed a PACAP38-induced migraine attack on sumatriptan and 11 patients (42%) on placebo (p = 0.016). There were no differences in area under the curve for headache intensity between sumatriptan (mean AUC 532) and placebo (mean AUC 779) (p = 0.35). Sumatriptan significantly constricted the PACAP38-dilated superficial temporal artery immediately after infusion (T30) compared with infusion of placebo (p < 0.001).Conclusions and relevance: Early treatment with intravenously administered sumatriptan prevented PACAP38-induced migraine. Prevention of migraine attacks was associated with vasoconstriction by sumatriptan in the earliest phases of PACAP provocation. These results suggest that sumatriptan prevents PACAP38-induced migraine by modulation of nociceptive transmission within the trigeminovascular system.Trial Registration: ClinicalTrials.gov (NCT03881644).
Collapse
Affiliation(s)
- Nita Katarina Frifelt Wienholtz
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Casper Emil Christensen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Ditte Georgina Zhang
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Frederiksberg Hospital, University of Copenhagen, Bispebjerg, Denmark
| | - Alexander Egeberg
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Jacob P Thyssen
- Department of Dermatology and Allergy, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
- Copenhagen Research Group for Inflammatory Skin (CORGIS), Hellerup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
28
|
Latest Insights into the Pathophysiology of Migraine: the ATP-Sensitive Potassium Channels. Curr Pain Headache Rep 2020; 24:77. [DOI: 10.1007/s11916-020-00911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2020] [Indexed: 12/15/2022]
|
29
|
Affiliation(s)
- Messoud Ashina
- From the Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen
| |
Collapse
|
30
|
Al-Karagholi MAM, Ghanizada H, Nielsen CAW, Skandarioon C, Snellman J, Lopez Lopez C, Hansen JM, Ashina M. Opening of BKCa channels alters cerebral hemodynamic and causes headache in healthy volunteers. Cephalalgia 2020; 40:1145-1154. [DOI: 10.1177/0333102420940681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction Preclinical data implicate large conductance calcium-activated potassium (BKCa) channels in the pathogenesis of headache and migraine, but the exact role of these channels is still unknown. Here, we investigated whether opening of BKCa channels would cause headache and vascular effects in healthy volunteers. Methods In a randomized, double-blind, placebo-controlled, cross-over study, 21 healthy volunteers aged 18–39 years were randomly allocated to receive an intravenous infusion of 0.05 mg/min BKCa channel opener MaxiPost and placebo on two different days. The primary endpoints were the difference in incidence of headache and the difference in area under the curve (AUC) for headache intensity scores (0–12 hours) and for middle cerebral artery blood flow velocity (VMCA) (0–2 hours) between MaxiPost and placebo. The secondary endpoints were the differences in area under the curve for superficial temporal artery and radial artery diameter (0–2 hours) between MaxiPost and placebo. Results Twenty participants completed the study. Eighteen participants (90%) developed headache after MaxiPost compared with six (30%) after placebo ( p = 0.0005); the difference of incidence is 60% (95% confidence interval 36–84%). The area under the curve for headache intensity (AUC0–12 hours, p = 0.0003), for mean VMCA (AUC0–2 hours, p = 0.0001), for superficial temporal artery diameter (AUC0–2 hours, p = 0.003), and for radial artery diameter (AUC0–2 hours, p = 0.03) were significantly larger after MaxiPost compared to placebo. Conclusion MaxiPost caused headache and dilation in extra- and intracerebral arteries. Our findings suggest a possible role of BKCa channels in headache pathophysiology in humans. ClinicalTrials.gov, ID: NCT03887325.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Camilla Skandarioon
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | | | | | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
31
|
Al-Karagholi MAM, Ghanizada H, Kokoti L, Paulsen JS, Hansen JM, Ashina M. Effect of K ATP channel blocker glibenclamide on levcromakalim-induced headache. Cephalalgia 2020; 40:1045-1054. [PMID: 32806954 DOI: 10.1177/0333102420949863] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Administration of ATP-sensitive potassium channel opener levcromakalim triggers headache in healthy volunteers and migraine attacks in migraine patients. Here, we investigated the effect of ATP-sensitive potassium channel blocker glibenclamide on levcromakalim-induced headache in healthy volunteers. METHODS In a randomized, double-blind, placebo-controlled, three-way cross-over study, 15 healthy volunteers aged 18-40 years were randomly allocated to receive glibenclamide and levcromakalim (day 1), glibenclamide and placebo (day 2), and placebo and placebo (day 3) on three different days separated by at least 1 week. The primary endpoints were the difference in incidence of headache and the difference in area under the curve for headache intensity scores (0-12 hours) between the days. RESULTS Fifteen healthy volunteers completed the 3 days of the study. More participants (12/15, 80%) developed headache on the glibenclamide-levcromakalim day compared to the glibenclamide-placebo day (5/15, 33%) (p = 0.01; mean difference 47%; 95% confidence interval 18-75%) and compared to the placebo-placebo day (1/15, 7%) (p = 0.001; mean difference 73%; 95% confidence interval 48-99%). We found no difference in headache incidence between glibenclamide-placebo day and placebo-placebo day (p = 0.12; mean difference 27%; 95% confidence interval 1.3-52%). The area under the curve for headache intensity was significantly larger on the glibenclamide-levcromakalim day compared to the glibenclamide-placebo day (p = 0.003); and compared to the placebo-placebo day (p = 0.001). We found no difference in the area under the curve between the glibenclamide-placebo day compared to the placebo-placebo day (p = 0.07). The median time to onset for headache after levcromakalim infusion with glibenclamide pretreatment was delayed (180 min) compared to levcromakalim without pretreatment (30 min) from a previously published study. CONCLUSION Glibenclamide administration did not cause headache, and glibenclamide pretreatment did not prevent levcromakalim-induced headache. However, glibenclamide delayed the onset of levcromakalim-induced headache. More selective blockers are needed to further elucidate the role of the ATP-sensitive potassium channel in headache initiation.Trial Registration: ClinicalTrials.gov NCT03886922.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Lili Kokoti
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Joachim S Paulsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.,Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.,Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
32
|
Al-Karagholi MAM, Olesen J, Ashina M. Reply: Hyperpolarization through ATP-sensitive potassium channels; relevance to migraine pathology. Brain 2020; 143:e14. [PMID: 31995158 DOI: 10.1093/brain/awaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
33
|
Christensen SL, Munro G, Petersen S, Shabir A, Jansen-Olesen I, Kristensen DM, Olesen J. ATP sensitive potassium (K ATP) channel inhibition: A promising new drug target for migraine. Cephalalgia 2020; 40:650-664. [PMID: 32418458 DOI: 10.1177/0333102420925513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Recently, the adenosine triphosphate (ATP) sensitive potassium channel opener levcromakalim was shown to induce migraine attacks with a far higher incidence than any previous provoking agent such as calcitonin gene-related peptide. Here, we show efficacy of ATP sensitive potassium channel inhibitors in two validated rodent models of migraine. METHODS In female spontaneous trigeminal allodynic rats, the sensitivity of the frontal region of the head was tested by an electronic von Frey filament device. In mice, cutaneous hypersensitivity was induced by repeated glyceryl trinitrate or levcromakalim injections over nine days, as measured with von Frey filaments in the hindpaw. Release of calcitonin gene-related peptide from dura mater and trigeminal ganglion was studied ex vivo. RESULTS The ATP sensitive potassium channel inhibitor glibenclamide attenuated the spontaneous cephalic hypersensitivity in spontaneous trigeminal allodynic rats and glyceryl trinitrate-induced hypersensitivity of the hindpaw in mice. It also inhibited CGRP release from dura mater and the trigeminal ganglion isolated from spontaneous trigeminal allodynic rats. The hypersensitivity was also diminished by the structurally different ATP sensitive potassium channel inhibitor gliquidone. Mice injected with the ATP sensitive potassium channel opener levcromakalim developed a progressive hypersensitivity that was completely blocked by glibenclamide, confirming target engagement. CONCLUSION The results suggest that ATP sensitive potassium channel inhibitors could be novel and highly effective drugs in the treatment of migraine.
Collapse
Affiliation(s)
- Sarah L Christensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Gordon Munro
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Steffen Petersen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Anmool Shabir
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - Inger Jansen-Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| | - David M Kristensen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark.,Univ Rennes, Inserm, EHESP, Irset (Research Center for Environmental and Occupational Health), Rennes, France
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Glostrup Research Institute, Righospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
34
|
Al-Karagholi MAM, Gram C, Nielsen CAW, Ashina M. Targeting BK Ca Channels in Migraine: Rationale and Perspectives. CNS Drugs 2020; 34:325-335. [PMID: 32060729 DOI: 10.1007/s40263-020-00706-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large (big)-conductance calcium-activated potassium (BKCa) channels are expressed in migraine-related structures such as the cranial arteries, trigeminal ganglion and trigeminal spinal nucleus, and they play a substantial role in vascular tonus and neuronal excitability. Using synthetic BKCa channels openers was associated with headache as a frequent adverse effect in healthy volunteers. Additionally, BKCa channels are downstream molecules in migraine signalling pathways that are activated by several compounds known to provoke migraine, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP) and glyceryl trinitrate (GTN). Also, there is a high affinity and a close coupling between BKCa channels and ATP-sensitive potassium (KATP) channels, the role of which has recently been established in migraine pathophysiology. These observations raise the question as to whether direct BKCa channel activation can provoke migraine in migraine patients, and whether the BKCa channel could be a potential novel anti-migraine target. Hence, randomized and placebo-controlled clinical studies on BKCa channel openers or blockers in migraine patients are needed.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark. .,Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
35
|
Ghanizada H, Al-Karagholi MAM, Arngrim N, Mørch-Rasmussen M, Metcalf-Clausen M, Larsson HBW, Amin FM, Ashina M. Investigation of sumatriptan and ketorolac trometamol in the human experimental model of headache. J Headache Pain 2020; 21:19. [PMID: 32093617 PMCID: PMC7038568 DOI: 10.1186/s10194-020-01089-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide-38 (PACAP38) induces headache in healthy volunteers but the precise mechanisms by which PACAP38 leads to headache are unclear. We investigated the headache preventive effect of sumatriptan and ketorolac on PACAP38-induced headache in healthy volunteers. In addition, we explored contribution of vascular mechanisms to PACAP38-induced headache using high resolution magnetic resonance angiography. METHODS Thirty-four healthy volunteers were divided in two groups (A and B) and received infusion of PACAP38 (10 picomol/kg/min) over 20 min. Group A was pretreated with intravenous sumatriptan (4 mg) or ketorolac (30 mg) 20 min before infusion of PACAP38. Group B received infusion of sumatriptan or ketorolac as post-treatment 90 min after infusion of PACAP38. In both experiments, we used a randomized, double-blind, cross-over design. We recorded headache characteristics and circumference of extra-intracerebral arteries. RESULTS We found no difference in AUC (0-6 h) of PACAP38-induced headache in group A, pretreated with sumatriptan or ketorolac (p = 0.297). There was no difference between sumatriptan and ketorolac in PACAP38-induced circumference change (AUCBaseline-110 min) of MMA (p = 0.227), STA (p = 0.795) and MCA (p = 0.356). In group B, post-treatment with ketorolac reduced PACAP38-headache compared to sumatriptan (p < 0.001). Post-treatment with sumatriptan significantly reduced the circumference of STA (p = 0.039) and MMA (p = 0.015) but not of MCA (p = 0.981) compared to ketorolac. In an explorative analysis, we found that pre-treatment with sumatriptan reduced PACAP38-induced headache compared to no treatment (AUC0-90min). CONCLUSIONS Post-treatment with ketorolac was more effective in attenuating PACAP38-induced headache compared to sumatriptan. Ketorolac exerted its effect without affecting PACAP38-induced arterial dilation, whereas sumatriptan post-treatment attenuated PACAP38-induced dilation of MMA and STA. Pre-treatment with sumatriptan attenuated PACAP38-induced headache without affecting PACAP38-induced arterial dilation. Our findings suggest that ketorolac and sumatriptan attenuated PACAP38-induced headache in healthy volunteers without vascular effects. TRIAL REGISTRATION Clinicaltrials.gov (NCT03585894). Registered 13 July 2018.
Collapse
Affiliation(s)
- Hashmat Ghanizada
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Nanna Arngrim
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Mette Mørch-Rasmussen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Matias Metcalf-Clausen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Henrik Bo Wiberg Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Valdemar Hansens Vej 5, DK-2600, Glostrup, Denmark.
| |
Collapse
|
36
|
Al-Karagholi MAM, Ghanizada H, Hansen JM, Aghazadeh S, Skovgaard LT, Olesen J, Ashina M. Extracranial activation of ATP-sensitive potassium channels induces vasodilation without nociceptive effects. Cephalalgia 2019; 39:1789-1797. [DOI: 10.1177/0333102419888490] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction Levcromakalim opens ATP-sensitive potassium channels (KATP channel) and induces head pain in healthy volunteers and migraine headache in migraine patients, but no pain in other parts of the body. KATP channels are expressed in C- and Aδ-fibers, and these channels might directly activate nociceptors and thereby evoke pain in humans. Methods To assess the local effect of KATP channel opening in trigeminal and extra-trigeminal regions, we performed a crossover, double-blind, placebo-controlled study in healthy volunteers. Participants received intradermal and intramuscular injections of levcromakalim and placebo in the forehead and the forearms. Results Intradermal and intramuscular injections of levcromakalim did not evoke more pain compared to placebo in the forehead ( p > 0.05) and the forearms ( p > 0.05). Intradermal injection of levcromakalim caused more flare ( p < 0.001 ), skin temperature increase ( p < 0.001), and skin blood flow increase ( p < 0.001) compared to placebo in the forehead and the forearms. Conclusion These findings suggest that it is unlikely that levcromakalim induces head pain by direct activation of peripheral neurons.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Sameera Aghazadeh
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Lene Theil Skovgaard
- Department of Biostatistics, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Jes Olesen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|
37
|
Al-Karagholi MAM, Sode M, Gozalov A, Ashina M. The vascular effect of glibenclamide: A systematic review. CEPHALALGIA REPORTS 2019. [DOI: 10.1177/2515816319884937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Objective: To systematically review the vascular effects of glibenclamide. Background: Infusion of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel opener (KCO) levcromakalim dilates cranial arteries and induces headache and migraine attacks. Recent data show that levcromakalim-induced vasodilation is associated with headache. Glibenclamide is a KATP channel blocker that may alter the vascular tone and thus has an impact on headache or migraine prevention. Methods: A search through PubMed was undertaken for studies investigating the vascular effects of glibenclamide in vitro as well as in vivo published until July 2019. Results: We identified 58 articles; 31 in vitro studies, 24 in vivo studies and 3 studies with both. The main findings were that glibenclamide inhibited levcromakalim-induced and other KCOs-induced vasodilation, while the basal vascular tone remained unchanged. Conclusion: Glibenclamide could inhibit vasodilation by KCOs, and further studies are needed to clarify the vascular effect of glibenclamide on human cranial arteries.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Michael Sode
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Aydin Gozalov
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| |
Collapse
|