1
|
Christensen RH, Al-Khazali HM, Iljazi A, Szabo E, Ashina H. Structural Magnetic Resonance Imaging of Post-Traumatic Headache: A Systematic Review. Curr Pain Headache Rep 2025; 29:20. [PMID: 39775377 DOI: 10.1007/s11916-024-01341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2024] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW To evaluate the available studies on structural magnetic resonance imaging (MRI) of post-traumatic headache (PTH). RECENT FINDINGS A systematic search of PubMed and Embase databases (from inception to February 1, 2024) identified nine relevant structural MRI studies. These studies included adult participants diagnosed with acute or persistent PTH in adherence with any edition of the International Classification of Headache Disorders. Eight studies focused on PTH attributed to mild traumatic brain injury (TBI), while one examined PTH after whiplash injury. The comparison groups consisted of healthy individuals, people with mild TBI (without PTH), and/or individuals with migraine. The eligible studies assessed brain morphometry (n = 7), both cortical morphometry and diffusion tensor imaging (n = 1), or used structural brain images for machine learning (n = 1). The main findings indicated alterations in brain regions involved in affective pain processing and cognitive functions. However, the results were largely incongruent, likely due to small sample sizes and methodologic issues. Structural MRI has shown alterations in the brains of people with PTH, particularly in regions responsible for affective pain processing, cognitive control, and visual processing. These findings align well with the clinical features commonly observed in PTH. Nevertheless, most findings were inconsistent across studies, highlighting the need for methodologic standardization and investigations with larger sample sizes.
Collapse
Affiliation(s)
- Rune H Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Haidar M Al-Khazali
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Afrim Iljazi
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Orthopedic Surgery, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Edina Szabo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anaesthesiology, Harvard Medical School, Boston, MA, USA
| | - Håkan Ashina
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Valdemar Hansens Vej 5, Entrance 1A, 2600 Glostrup, Copenhagen, Denmark.
- Translational Research Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
2
|
Vanier C, Santhanam P, Rochester N, Carter L, Lim M, Kilani A, Venkatesh S, Azad S, Knoblauch T, Surti T, Brown C, Sanchez JR, Ma L, Parikh S, Germin L, Fazzini E, Snyder TH. Symptom Persistence Relates to Volume and Asymmetry of the Limbic System after Mild Traumatic Brain Injury. J Clin Med 2024; 13:5154. [PMID: 39274367 PMCID: PMC11396354 DOI: 10.3390/jcm13175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Persistent symptoms have been reported in up to 50% of the 27 million people with mild traumatic brain injuries (mTBI) every year. MRI findings are currently limited by low diagnostic and prognostic sensitivities, constraining the value of imaging in the stratification of patients following mTBI. Limbic system structures are promising brain regions in offering prognostic factors for symptom persistence following mTBI. The objective of this study was to associate volume and symmetry of limbic system structures with the presence and persistence of common symptoms in patients with mTBI. Methods: This study focused on 524 adults (aged 18-82), 58% female, with 82% injured in motor vehicle accidents and 28% reporting loss of consciousness (LOC). Magnetic resonance imaging (MRI) data included a sagittal 3D T1-weighted sequence with 1.2 mm slice thickness, with voxel sizes of 0.93 mm × 0.93 mm × 1.2 mm, obtained a median of 156 days after injury. Symptom diagnosis and persistence were collected retrospectively from patient medical records. Intracranial volume-adjusted regional volumes per side utilizing automated volumetric analysis (NeuroQuant®) were used to calculate total volume, laterality index, and side-independent asymmetry. Covariates included age, sex, LOC, and days from injury. Limbic volumetrics did not relate to symptom presentation, except the (-) association between headache presence and thalamus volume (adjusted odds ratio = 0.51, 95% confidence interval = 0.32, 0.85). Headache, balance problems, anxiety, and depression persistence was (-) associated with thalamus volume (hazard ratio (HR) 1.25 to 1.94). Longer persistence of balance problems was associated with (-) lateral orbitofrontal cortex volume (HR = 1.33) and (+) asymmetry of the hippocampus (HR = 0.27). Persistence of cognitive deficits was associated with (+) asymmetry in the caudal anterior cingulate (HR = 0.67). Depression persistence was associated with (+) asymmetry in the isthmus of the cingulate gyrus (HR = 5.39). Persistence of anxiety was associated with (-) volume of the parahippocampal gyrus (HR = 1.67), orbitofrontal cortex (HR > 1.97), and right-biased laterality of the entorhinal cortex (HR = 0.52). Conclusions: Relative volume and asymmetry of the limbic system structures in patients with mTBI are associated with the persistence of symptoms, particularly anxiety. The conclusions of this study are limited by the absence of a reference group with no mTBI.
Collapse
Affiliation(s)
- Cheryl Vanier
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | | | - Nicholas Rochester
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Medicine, Central Michigan University, Midland, MI 48859, USA
| | | | - Mike Lim
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Amir Kilani
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Shivani Venkatesh
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Sherwin Azad
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
| | - Thomas Knoblauch
- Imgen Research Group, Las Vegas, NV 89118, USA
- Department of Interdisciplinary Health Sciences, University of Nevada, Las Vegas, NV 89557, USA
| | - Tapasya Surti
- Department of Neurology, University of Texas Health Science Center, Houston, TX 78701-2982, USA
| | - Colin Brown
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Justin Roy Sanchez
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Leon Ma
- Department of Anesthesiology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Shaunaq Parikh
- Department of Family Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Leo Germin
- Clinical Neurology Specialists, Las Vegas, NV 89147, USA
| | - Enrico Fazzini
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
| | - Travis H Snyder
- Imgen Research Group, Las Vegas, NV 89118, USA
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV 89014, USA
- Department of Radiology, Sunrise Health Graduate Medical Education Consortium, Las Vegas, NV 89128, USA
- Department of Radiology, HCA Healthcare, Mountain View Hospital, Las Vegas, NV 89166, USA
- SimonMed Imaging, Las Vegas, NV 89121, USA
| |
Collapse
|
3
|
Li F, Zhang D, Ren J, Xing C, Hu L, Miao Z, Lu L, Wu X. Connectivity of the insular subdivisions differentiates posttraumatic headache-associated from nonheadache-associated mild traumatic brain injury: an arterial spin labelling study. J Headache Pain 2024; 25:103. [PMID: 38898386 PMCID: PMC11186101 DOI: 10.1186/s10194-024-01809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/08/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE The insula is an important part of the posttraumatic headache (PTH) attributed to mild traumatic brain injury (mTBI) neuropathological activity pattern. It is composed of functionally different subdivisions and each of which plays different role in PTH neuropathology. METHODS Ninety-four mTBI patients were included in this study. Based on perfusion imaging data obtained from arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI), this study evaluated the insular subregion perfusion-based functional connectivity (FC) and its correlation with clinical characteristic parameters in patients with PTH after mTBI and non-headache mTBI patients. RESULTS The insular subregions of mTBI + PTH (mTBI patients with PTH) and mTBI-PTH (mTBI patients without PTH) group had positive perfusion-based functional connections with other insular nuclei and adjacent discrete cortical regions. Compared with mTBI-PTH group, significantly increased resting-state perfusion-based FC between the anterior insula (AI) and middle cingulate cortex (MCC)/Rolandic operculum (ROL), between posterior insula (PI) and supplementary motor area (SMA), and decreased perfusion-based FC between PI and thalamus were found in mTBI + PTH group. Changes in the perfusion-based FC of the left posterior insula/dorsal anterior insula with the thalamus/MCC were significant correlated with headache characteristics. CONCLUSIONS Our findings provide new ASL-based evidence for changes in the perfusion-based FC of the insular subregion in PTH patients attributed to mTBI and the association with headache features, revealing the possibility of potential neuroplasticity after PTH. These findings may contribute to early diagnosis of the disease and follow-up of disease progression.
Collapse
Affiliation(s)
- Fengfang Li
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Jun Ren
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Chunhua Xing
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Lanyue Hu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China
| | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, China.
| |
Collapse
|
4
|
Schwedt TJ. Posttraumatic Headache. Continuum (Minneap Minn) 2024; 30:411-424. [PMID: 38568491 DOI: 10.1212/con.0000000000001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
OBJECTIVE This article provides an overview of the epidemiology, diagnosis, clinical presentation, pathophysiology, prognosis, and treatment of posttraumatic headache attributed to mild traumatic brain injury (mTBI). LATEST DEVELOPMENTS The International Classification of Headache Disorders, Third Edition requires that posttraumatic headache begin within 7 days of the inciting trauma. Although posttraumatic headache characteristics and associated symptoms vary, most commonly there is substantial overlap with symptoms of migraine or tension-type headache. New insights into posttraumatic headache pathophysiology suggest roles for neuroinflammation, altered pain processing and modulation, and changes in brain structure and function. Although the majority of posttraumatic headache resolves during the acute phase, about one-third of individuals have posttraumatic headache that persists for at least several months. Additional work is needed to identify predictors and early markers of posttraumatic headache persistence, but several potential predictors have been identified such as having migraine prior to the mTBI, the total number of TBIs ever experienced, and the severity of initial symptoms following the mTBI. Few data are available regarding posttraumatic headache treatment; studies investigating different treatments and the optimal timing for initiating posttraumatic headache treatment are needed. ESSENTIAL POINTS Posttraumatic headache begins within 7 days of the causative injury. The characteristics of posttraumatic headache most commonly resemble those of migraine or tension-type headache. Posttraumatic headache persists for 3 months or longer in about one-third of individuals. Additional studies investigating posttraumatic headache treatment are needed.
Collapse
|
5
|
Deng X, Wu Y, Hu Z, Wang S, Zhou S, Zhou C, Gao X, Huang Y. The mechanism of ferroptosis in early brain injury after subarachnoid hemorrhage. Front Immunol 2023; 14:1191826. [PMID: 37266433 PMCID: PMC10229825 DOI: 10.3389/fimmu.2023.1191826] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a cerebrovascular accident with an acute onset, severe disease characteristics, and poor prognosis. Within 72 hours after the occurrence of SAH, a sequence of pathological changes occur in the body including blood-brain barrier breakdown, cerebral edema, and reduced cerebrovascular flow that are defined as early brain injury (EBI), and it has been demonstrated that EBI exhibits an obvious correlation with poor prognosis. Ferroptosis is a novel programmed cell death mode. Ferroptosis is induced by the iron-dependent accumulation of lipid peroxides and reactive oxygen species (ROS). Ferroptosis involves abnormal iron metabolism, glutathione depletion, and lipid peroxidation. Recent study revealed that ferroptosis is involved in EBI and is significantly correlated with poor prognosis. With the gradual realization of the importance of ferroptosis, an increasing number of studies have been conducted to examine this process. This review summarizes the latest work in this field and tracks current research progress. We focused on iron metabolism, lipid metabolism, reduction systems centered on the GSH/GPX4 system, other newly discovered GSH/GPX4-independent antioxidant systems, and their related targets in the context of early brain injury. Additionally, we examined certain ferroptosis regulatory mechanisms that have been studied in other fields but not in SAH. A link between death and oxidative stress has been described. Additionally, we highlight the future research direction of ferroptosis in EBI of SAH, and this provides new ideas for follow-up research.
Collapse
Affiliation(s)
- Xinpeng Deng
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ziliang Hu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, Zhejiang, China
| | - Shiyi Wang
- Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiang Gao
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, Ningbo First Hospital, Ningbo Hospital, Zhejiang University, Ningbo, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang, China
| |
Collapse
|