1
|
Liu D, Mao M, Liu W, Xie L, Zhong X, Cao W, Chen L. The Role of the TRPV4 Channel in Intestinal Physiology and Pathology. J Inflamm Res 2024; 17:9307-9317. [PMID: 39588136 PMCID: PMC11587805 DOI: 10.2147/jir.s483350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 11/27/2024] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) is an important member of the TRP superfamily of cation channels. The channel can be activated by different physical and chemical stimuli, such as heat, osmotic, and mechanical stress. It regulates the release of nociceptive peptides (substance P and calcitonin gene-related peptide), and mediates neurogenic inflammation, which indicates the involvement of TRPV4 as a nociceptor. Previous studies show that TRPV4 regulates the contraction of intestinal smooth muscle, mucosal barrier permeability, intestinal ion transport, activation of submucosal enteric neurons, and generation of immune cells. TRPV4 is involved in various pathophysiological activities, and altered TRPV4 expression has been detected in some intestinal diseases (IBD, IBS, intestinal tumors, etc). Evidence indicates that TRPV4 plays a noxious role in intestinal barrier function when the intestine is damaged. This review focuses on the role of the TRPV4 channel in the physiological and pathological functions of the intestine, and evaluates the potential clinical significance to target TRPV4 channel in the treatment of intestinal diseases.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Mingli Mao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Wenjia Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Lihua Xie
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People’s Republic of China
| |
Collapse
|
2
|
Shibasaki K. Regulation of Neural Functions by Brain Temperature and Thermo-TRP Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:199-211. [PMID: 39289283 DOI: 10.1007/978-981-97-4584-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Body temperature is an important determinant in regulating the activities of animals. In humans, a mild 0.5 °C hyperthermia can cause headaches, demonstrating that the maintenance of normal body temperature is a key for our health. In a more extreme example, accidental acute hypothermia can lead to severe shivering, loss of consciousness, or death, although the details of these mechanisms are poorly understood. We previously found that the TRPV4 ion channel is constitutively activated by normal body temperature. The activation threshold of TRPV4 is >34 °C in the brain, which enables TRPV4 to convert thermal information into cellular signaling. Here we review the data that describe how the deletion of TRPV4 evokes abnormal behavior in mice. These studies demonstrate that the maintenance of body temperature and the sensory system for detecting body temperature, such as via TRPV4, are critical components for normal cellular function. Moreover, abnormal TRPV4 activation exacerbates cell death, epilepsy, stroke, or brain edema. Notably, TRPV4 can detect mechanical stimuli and contributes to various neural functions similar to the mechanosensitive characteristics of TRPV2. In this review, I summarize the findings related to TRPV2/TRPV4 and neural functions.
Collapse
Affiliation(s)
- Koji Shibasaki
- Laboratory of Neurochemistry, Department of Nutrition Science, University of Nagasaki, Nagasaki, Japan.
| |
Collapse
|
3
|
Xiong M, Yu C, Ren B, Zhong M, Peng Q, Zeng M, Song H. Global knowledge mapping and emerging trends in Helicobacter pylori-related precancerous lesions of gastric cancer research: A bibliometric analysis from 2013 to 2023. Medicine (Baltimore) 2023; 102:e36445. [PMID: 38050286 PMCID: PMC10695611 DOI: 10.1097/md.0000000000036445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023] Open
Abstract
Helicobacter pylori (H pylori) infection is a crucial element in chronic gastritis progression towards precancerous lesions of gastric cancer (PLGC) formation and, potentially, gastric cancer; however, screening for and eliminating H pylori has several challenges. This study aimed to assess the present research status, prominent themes, and frontiers of H pylori-related PLGC and to provide impartial evaluations of the developmental trends in this domain. This study extracted articles and review papers concerning H pylori-related PLGC published from 2013 to 2023 from the Web of Science Core Collection. The data was analyzed and visualized using VOSviewer and CiteSpace. The study encompassed 1426 papers, with a discernible upward trend in publications between 2013 and 2023. China emerged as the most productive country, whereas the United States exerted the greatest influence. Baylor College of Medicine was the most prolific institution. World Journal of Gastroenterology featured the highest number of published papers, whereas Gastroenterology was the most frequently cited journal. Kim N. from South Korea was the most prolific author. Co-cited literature pertained to various aspects such as gastritis classification, H pylori infection management, gastric cancer prevention, and managing patients with PLGC. Future research will focus on the Kyoto classification, cancer incidence, and gastric intestinal metaplasia. The results of this study indicate a persistent increase in attention directed toward H pylori-associated PLGC. The research emphasis has transitioned from molecular mechanisms, epidemiology, monitoring, and diagnosis to clinical prevention and treatment methodologies. The forthcoming research direction in this area will concentrate on controlling and preventing malignant PLGC transformation.
Collapse
Affiliation(s)
- Meng Xiong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chang Yu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qinghua Peng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Meiyan Zeng
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
4
|
Xu P, Lin H, Jiao H, Zhao J, Wang X. Chicken embryo thermal manipulation alleviates postnatal heat stress-induced jejunal inflammation by inhibiting Transient Receptor Potential V4. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114851. [PMID: 37004430 DOI: 10.1016/j.ecoenv.2023.114851] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Intestinal inflammation induced by heat stress is an important factor restricting the healthy growth of broilers. The aim of this study was to evaluate the effect of chicken embryo thermal manipulation (39.5 ℃ and 65 % RH for 3 h daily during 16-18 th embryonic age) on intestinal inflammation in broilers under postnatal heat stress and to investigate whether transient receptor potential V4 (TRPV4) plays a role in this process. Our results suggest that broilers with embryo thermal manipulation experience could delay the rising of rectal temperature during postnatal heat stress (P < 0.05), and had better production performance (P < 0.05), intestinal morphological parameters (P < 0.05) and higher expression of tight junction related genes (P < 0.05). The increased serum lipopolysaccharide (LPS) content, activation of nuclear factor-kappa B (NF-κB) signaling pathway and the increased expression of pro-inflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor alpha (TNF-α) in jejunum during postnatal heat stress were alleviated by embryo thermal manipulation (P < 0.05). Postnatal heat stress induced an increase in mRNA and protein expression of TRPV4 in jejunum (P < 0.05), but had no effect on broilers which experienced embryo thermal manipulation (P > 0.05). Inhibition of TRPV4 reduced LPS-induced Ca2+ influx and restrained the activation of NF-κB signaling pathway and the expression of downstream pro-inflammatory cytokines (P < 0.05). The expression of DNA methyltransferase (DNMT) in the jejunum of broilers exposed to postnatal heat stress was increased by embryo thermal manipulation (P < 0.05). The DNA methylation level of TRPV4 promoter region was detected, and the results showed that embryo thermal manipulation increased the DNA methylation level of TRPV4 promoter region (P < 0.05). In conclusion, Chicken embryo thermal manipulation can alleviate jejunal inflammation in broilers under postnatal heat stress. This may be due to the decreased circulating LPS or the increased DNA methylation level in the promoter region of TRPV4, which inhibits TRPV4 expression, thereby reducing Ca2+ influx, and finally alleviating inflammation by affecting NF-κB signaling pathway. The work is an attempt to understand the mechanism involved in alleviation of adverse effects of heat stress during postnatal life through prenatal thermal manipulation and to reveal the important role of epigenetics.
Collapse
Affiliation(s)
- Peng Xu
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Hongchao Jiao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Jingpeng Zhao
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China
| | - Xiaojuan Wang
- College of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
5
|
Mihara H, Uchida K, Watanabe Y, Nanjo S, Sakumura M, Motoo I, Ando T, Minemura M, Muhammad JS, Yamamoto H, Itoh F, Yasuda I. Colonic TRPV4 overexpression is related to constipation severity. BMC Gastroenterol 2023; 23:13. [PMID: 36639736 PMCID: PMC9838009 DOI: 10.1186/s12876-023-02647-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chronic constipation is prevalent and involves both colon sensitivity and various changes in intestinal bacteria, particularly mucosa-associated microflora. Here we examined regulatory mechanisms of TRPV4 expression by co-culturing colon epithelial cell lines with intestinal bacteria and their derivatives. We also investigated TRPV4 expression in colon epithelium from patients with constipation. METHODS Colon epithelial cell lines were co-cultured with various enterobacteria (bacterial components and supernatant), folate, LPS, or short chain fatty acids. TRPV4 expression levels and promoter DNA methylation were assessed using pyrosequencing, and microarray network analysis. For human samples, correlation coefficients were calculated and multiple regression analyses were used to examine the association between clinical background, rectal TRPV4 expression level and mucosa-associated microbiota. RESULTS Co-culture of CCD841 cells with P. acnes, C. perfringens, or S. aureus transiently decreased TRPV4 expression but did not induce methylation. Co-culture with clinical isolates and standard strains of K. oxytoca, E. faecalis, or E. coli increased TRPV4 expression in CCD841 cells, and TRPV4 and TNF-alpha expression were increased by E. coli culture supernatants but not bacterial components. Although folate, LPS, IL-6, TNF-alpha, or SCFAs alone did not alter TRPV4 expression, TRPV4 expression following exposure to E. coli culture supernatants was inhibited by butyrate or TNF-alphaR1 inhibitor and increased by p38 inhibitor. Microarray network analysis showed activation of TNF-alpha, cytokines, and NOD signaling. TRPV4 expression was higher in constipated patients from the terminal ileum to the colorectum, and multiple regression analyses showed that low stool frequency, frequency of defecation aids, and duration were associated with TRPV4 expression. Meanwhile, incomplete defecation, time required to defecate, and number of defecation failures per 24 h were associated with increased E. faecalis frequency. CONCLUSIONS Colon epithelium cells had increased TRPV4 expression upon co-culture with K. oxytoca, E. faecalis, or E. coli supernatants, as well as TNFα-stimulated TNFαR1 expression via a pathway other than p38. Butyrate treatment suppressed this increase. Epithelial TRPV4 expression was increased in constipated patients, suggesting that TRPV4 together with increased frequency of E. faecalis may be involved in the pathogenesis of various constipation symptoms.
Collapse
Affiliation(s)
- Hiroshi Mihara
- grid.267346.20000 0001 2171 836XCenter for Medical Education and Career Development, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan ,grid.267346.20000 0001 2171 836XDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kunitoshi Uchida
- grid.418046.f0000 0000 9611 5902Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Yoshiyuki Watanabe
- Department of Internal Medicine, Kawasaki Rinko General Hospital, Kawasaki, Japan ,grid.412764.20000 0004 0372 3116Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Sohachi Nanjo
- grid.267346.20000 0001 2171 836XDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Miho Sakumura
- grid.267346.20000 0001 2171 836XDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Iori Motoo
- grid.267346.20000 0001 2171 836XDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Takayuki Ando
- grid.267346.20000 0001 2171 836XDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masami Minemura
- grid.267346.20000 0001 2171 836XDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Jibran Sualeh Muhammad
- grid.412789.10000 0004 4686 5317Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Hiroyuki Yamamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Bioinformatics, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Fumio Itoh
- grid.412764.20000 0004 0372 3116Division of Gastroenterology and Hepatology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Ichiro Yasuda
- grid.267346.20000 0001 2171 836XDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
6
|
Hayakawa S, Tanaka T, Ogawa R, Ito S, Ueno S, Koyama H, Tomotaka O, Sagawa H, Tanaka T, Iwakura H, Takahashi H, Matsuo Y, Mitsui A, Kimura M, Takahashi S, Takiguchi S. Potential Role of TRPV4 in Stretch-Induced Ghrelin Secretion and Obesity. Int J Endocrinol 2022; 2022:7241275. [PMID: 36397882 PMCID: PMC9666045 DOI: 10.1155/2022/7241275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022] Open
Abstract
Obesity is an important health problem, which can be prevented through appetite control. Ghrelin is an appetite-stimulating hormone considered to promote obesity. Thus, we examined whether gastric stretching affects ghrelin secretion. We investigated the role of transient receptor potential vanilloid 4 (TRPV4) in gastric glands in the regulation of ghrelin secretion. TRPV4 immunostaining was performed in tissue samples from 57 patients who underwent gastrectomy. TRPV4 expression was compared between patients with (body mass index (BMI) ≥ 30) and without (BMI <30) obesity. For in vitro experiments, we used MGN3-1 cells, a ghrelin-producing cell line derived from mice. To investigate the bioactivity of TRPV4, MGN3-1 cells were treated with TRPV4 agonists and antagonists, and changes in intracellular Ca2+ concentration were confirmed. The concentration of ghrelin in the cell supernatant was measured using the ELISA with and without 120% stretch stimulation. TRPV4 expression was significantly higher in patients with obesity than in those without at all sites, except the fornix. Immunostaining confirmed the expression of TRPV4 in MGN3-1 cells. TRPV4 agonist administration increased intracellular Ca2+ concentration and ghrelin secretion in MGN3-1 cells, whereas the administration of the agonist combined with the antagonist decreased intracellular Ca2+ concentration and ghrelin secretion. Ghrelin secretion significantly increased in response to a 120% stretch in MGN3-1 cells. However, secretion was not increased by stretch when cells were treated with a TRPV4 antagonist. TRPV4 regulates ghrelin secretion in response to stretch in the stomach, which may affect body weight.
Collapse
Affiliation(s)
- Shunsuke Hayakawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tatsuya Tanaka
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Sunao Ito
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shuhei Ueno
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroyuki Koyama
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Okubo Tomotaka
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hiroyuki Sagawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Tomohiro Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroshi Iwakura
- Department of Pharmacotherapeutics, Wakayama Medical University, Kimiidera, Wakayama, Wakayama, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masahiro Kimura
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Xiao Y, Zhou H, Jiang L, Liu R, Chen Q. Epigenetic regulation of ion channels in the sense of taste. Pharmacol Res 2021; 172:105760. [PMID: 34450315 DOI: 10.1016/j.phrs.2021.105760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/05/2023]
Abstract
There are five fundamental tastes discovered so far: sweet, bitter, umami, sour and salty. Taste is mediated by the specialized neuroepithelial cells mainly located at the tongue papillae, namely taste receptor cells, which can be classified into type I, type II, type III and type IV. Ion channels are necessary for diverse cell physiological activities including taste sensing, smell experience and temperature perception. Existing evidences have demonstrated distinct structures and working models of ion channels. Epigenetic modifications regulate gene expression mainly through histone modifications, DNA methylation and non-coding RNA-mediated regulation, without altering DNA sequence. This review summarizes how ion channels work during the transduction of multiple tastes, as well as the recent progressions in the epigenetic regulation of ion channels.
Collapse
Affiliation(s)
- Yanxuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hangfan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Yang J, Rao S, Cao R, Xiao S, Cui X, Ye L. miR-30a-5p suppresses lung squamous cell carcinoma via ATG5 - mediated autophagy. Aging (Albany NY) 2021; 13:17462-17472. [PMID: 34253689 PMCID: PMC8312466 DOI: 10.18632/aging.203235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/08/2021] [Indexed: 04/08/2023]
Abstract
UNLABELLED Propose: Autophagy plays a complicated role in cancer progression. This study aims at assessing the function of ATG5-induced autophagy in progression of lung squamous cell carcinoma and its upstream mechanism. METHOD TCGA database of lung squamous cell carcinoma was analyzed to explore the differentially expressed miRNAs and mRNAs and relative prognosis. RT-PCR and Western blot were performed to evaluate autophagy relative gene expression level in human lung squamous cell carcinoma cell Lines. Autophagy flux was observed using transmission electron microscopy and immunofluorescence. Meanwhile, binding relationship of potential target miRNA and mRNAs were also confirmed using Dual-luciferase reporter gene assay. Lung metastatic model was established to evaluated the effect of targeting protein and miRNA. RESULT High level expression of ATG5 was detected in LUSC patients. Relative experiments confirmed that ATG5 silencing could decrease the autophagy flux in LUSC. In addition, our research revealed that there is a binding sites between hsa-mir-30a-5p and 3'-UTR of ATG5. Mimic miR-30a-5p suppresses ATG5-mediated autophagy in lung squamous cell carcinoma cells. The in vivo experiments confirmed that miR-30a-5p could attenuate lung squamous cell carcinoma progression through the autophagy pathway. CONCLUSION Accordingly, the in vivo and in vitro study in our research have demonstrated that miR-30a-5p inhibits lung squamous cell carcinoma progression via ATG5-mediated autophagy.
Collapse
Affiliation(s)
- Jichen Yang
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Sunyin Rao
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Run Cao
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Shouyong Xiao
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Xin Cui
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| | - Lianhua Ye
- Department of Thoracic Surgery, Lung Cancer Research Center, Yunnan Institute of Oncology, the Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming Yunnan 650118, PR China
| |
Collapse
|
9
|
Pacheco G, Oliveira AP, Noleto IRSG, Araújo AK, Lopes ALF, Sousa FBM, Chaves LS, Alves EHP, Vasconcelos DFP, Araujo AR, Nicolau LD, Magierowski M, Medeiros JVR. Activation of transient receptor potential vanilloid channel 4 contributes to the development of ethanol-induced gastric injury in mice. Eur J Pharmacol 2021; 902:174113. [PMID: 33901460 DOI: 10.1016/j.ejphar.2021.174113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The transient receptor potential vanilloid channel 4 (TRPV4) is associated with the development of several pathologies, particularly gastric disorders. However, there are no studies associating this receptor with the pathophysiology of gastric erosions. The aim of this study was to investigate the role of TRPV4 in the development of ethanol-induced gastric damage in vivo. Gastric lesions were induced by ethanol in Swiss mice pretreated with TRPV4 antagonists, GSK2193874 (0.1; 0.3 and 0.9 mg/kg) or Ruthenium red (0.03; 0.1 or 0.3 mg/kg) or its agonist, GSK1016790A (0.9 mg/kg). Gastric mucosal samples were taken for histopathology, immunohistochemistry, atomic force microscopy and evaluation of antioxidant parameters. The gastric mucus content and TRPV4 mRNA expression were analyzed. Ethanol exposure induced upregulation of gastric mRNA and protein expression of TRPV4. TRPV4 blockade promoted gastroprotection against ethanol-induced injury on macro- and microscopic levels, leading to reduced hemorrhage, cell loss and edema and enhanced gastric mucosal integrity. Moreover, an increase in superoxide dismutase (SOD) and glutathione (GSH) activity was observed, followed by a decrease in malondialdehyde (MDA) levels. TRPV4 blockade during alcohol challenge reestablished gastric mucus content. The combination of TRPV4 agonist and ethanol revealed macroscopic exacerbation of gastric damage area. Our results confirmed the association of TRPV4 with the development of gastric injury, showing the importance of this receptor for further investigations in the field of gastrointestinal pathophysiology and pharmacology.
Collapse
Affiliation(s)
- Gabriella Pacheco
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Ana P Oliveira
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Isabela R S G Noleto
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Andreza K Araújo
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - André L F Lopes
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Francisca B M Sousa
- The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Letícia S Chaves
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Even H P Alves
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Daniel F P Vasconcelos
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil; The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Alyne R Araujo
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - LucasA D Nicolau
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Marcin Magierowski
- Gaseous Mediators and Experimental Gastroenterology Laboratory, Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Jand Venes R Medeiros
- Biotechnology and Biodiversity Center Research (BIOTEC), Post-graduation Program in Biotechnology, Federal University of the Parnaíba Delta (UFDPar), Parnaíba, PI, Brazil; The Northeastern Biotechnology Network (RENORBIO), Federal University of Piauí (UFPI), Teresina, PI, Brazil.
| |
Collapse
|
10
|
Effect of Yuzu ( Citrus junos) Seed Limonoids and Spermine on Intestinal Microbiota and Hypothalamic Tissue in the Sandhoff Disease Mouse Model. Med Sci (Basel) 2021; 9:medsci9010017. [PMID: 33799734 PMCID: PMC8005996 DOI: 10.3390/medsci9010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
The effect of limonoids and spermine (Spm) extracted from yuzu (Citrus junos) seeds on the gut and the brain in a mouse model with Sandhoff disease (SD) was investigated. Wild-type and SD mice were fed a normal diet, or a diet supplemented with limonoid, Spm, or limonoid + Spm for 14-18 weeks, and then 16S rRNA gene amplicon sequencing with extracted DNA from their feces was executed. For SD control mice, intestinal microbiota was mostly composed of Lactobacillus and linked to dysbiosis. For SD and wild-type mice fed with limonoids + Spm or limonoids alone, intestinal microbiota was rich in mucin-degrading bacteria, including Bacteroidetes, Verrucomicrobia, and Firmicutes, and displayed a higher production of short-chain fatty acids and immunoglobulin A. Additionally, SD mice fed with limonoids + Spm or limonoids alone had less inflammation in hypothalamic tissues and displayed a greater number of neurons. Administration of limonoids and/or Spm improved the proportions of beneficial intestinal microbiota to host health and reduced neuronal degeneration in SD mice. Yuzu seed limonoids and Spermine may help to maintain the homeostasis of intestinal microbiota and hypothalamic tissue in the SD mouse model.
Collapse
|
11
|
TRPV4 activation by thermal and mechanical stimuli in disease progression. J Transl Med 2020; 100:218-223. [PMID: 31896814 DOI: 10.1038/s41374-019-0362-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/04/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Body temperature is an important determinant in regulating the activities of animals. In humans, a mild 0.5 °C hyperthermia can cause headaches, demonstrating that the maintenance of normal body temperature is a key for our health. In a more extreme example, accidental acute hypothermia can lead to severe shivering, loss of consciousness, or death, although the details of these mechanisms are poorly understood. We previously found that the TRPV4 ion channel is constitutively activated by normal body temperature. The activation threshold of TRPV4 is >34 °C in the brain, which enables TRPV4 to convert thermal information into cellular signaling. Here we review the data which describe how the deletion of TRPV4 evokes abnormal behavior in mice. These studies demonstrate that the maintenance of body temperature and the sensory system for detecting body temperature, such as via TRPV4, are critical components for normal cellular function. Moreover, abnormal TRPV4 activation exacerbates cell death, epilepsy, stroke, brain edema, or cardiac fibroblast activity. In this review, we also summarize the findings related to TRPV4 and disease.
Collapse
|
12
|
Mihara H, Boudaka A, Tominaga M, Sugiyama T. Transient Receptor Potential Vanilloid 4 Regulation of Adenosine Triphosphate Release by the Adenosine Triphosphate Transporter Vesicular Nucleotide Transporter, a Novel Therapeutic Target for Gastrointestinal Baroreception and Chronic Inflammation. Digestion 2020; 101:6-11. [PMID: 31770754 PMCID: PMC6979422 DOI: 10.1159/000504021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Transient receptor potential vanilloid 4 (TRPV4) is activated by stretch (mechanical), warm temperature, some epoxyeicosatrienoic acids, and lipopolysaccharide. TRPV4 is expressed throughout the gastrointestinal epithelia and its activation induces adenosine triphosphate (ATP) exocytosis that is involved in visceral hypersensitivity. As an ATP transporter, vesicular nucleotide transporter (VNUT) mediates ATP storage in secretory vesicles and ATP release via exocytosis upon stimulation. SUMMARY TRPV4 is sensitized under inflammatory conditions by a variety of factors, including proteases and serotonin, whereas methylation-dependent silencing of TRPV4 expression is associated with various pathophysiological conditions. Gastrointestinal epithelia also release ATP in response to hypo-osmolality or acid through molecular mechanisms that remain unclear. These synergistically released ATP could be involved in visceral hypersensitivity. Low concentrations of the first generation bisphosphate, clodronate, were recently reported to inhibit VNUT activity and thus clodronate may be a safe and potent therapeutic option to treat visceral pain. Key Messages: This review focuses on: (1) ATP and TRPV4 activities in gastrointestinal epithelia; (2) factors that could modulate TRPV4 activity in gastrointestinal epithelia; and (3) the inhibition of VNUT as a potential novel therapeutic strategy for functional gastrointestinal disorders.
Collapse
Affiliation(s)
- Hiroshi Mihara
- aCenter for Medical Education and Career Development, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan,bDepartment of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan,*Hiroshi Mihara, Center for Medical Education and Career Development, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194 (Japan), E-Mail
| | - Ammar Boudaka
- cDepartment of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Makoto Tominaga
- dDivision of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Toshiro Sugiyama
- eResearch Division of Molecular Targeting Therapy and Prevention of GI Cancer, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Sterea AM, Egom EE, El Hiani Y. TRP channels in gastric cancer: New hopes and clinical perspectives. Cell Calcium 2019; 82:102053. [PMID: 31279156 DOI: 10.1016/j.ceca.2019.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Gastric cancer is a multifactorial disease associated with a combination of and environmental factors. Each year, one million new gastric cancer cases are diagnosed worldwide and two-thirds end up losing the battle with this devastating disease. Currently, surgery represents the only effective treatment option for patients with early stage tumors. However, the asymptomatic phenotype of this disease during the early stages poses as a significant limiting factor to diagnosis and often renders treatments ineffective. To address these issues, scientists are focusing on personalized medicine and discovering new ways to treat cancer patients. Emerging therapeutic options include the transient receptor potential (TRP) channels. Since their discovery, TRP channels have been shown to contribute significantly to the pathophysiology of various cancers, including gastric cancer. This review will summarize the current knowledge about gastric cancer and provide a synopsis of recent advancements on the role and involvement of TRP channels in gastric cancer as well as a discussion of the benefits of targeting TPR channel in the clinical management of gastric cancer.
Collapse
Affiliation(s)
- Andra M Sterea
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd, Halifax, Nova Scotia, Canada
| | - Yassine El Hiani
- Departments of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
14
|
Mihara H, Uchida K, Koizumi S, Moriyama Y. Involvement of VNUT-exocytosis in transient receptor potential vanilloid 4-dependent ATP release from gastrointestinal epithelium. PLoS One 2018; 13:e0206276. [PMID: 30365528 PMCID: PMC6203352 DOI: 10.1371/journal.pone.0206276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/10/2018] [Indexed: 01/25/2023] Open
Abstract
Adenosine triphosphate (ATP) modulates mechanosensitive vagal afferent nerves in the gastrointestinal tract. ATP is stored in secretory vesicles via the ATP transporter VNUT. Recently, the bisphosphate clodronate was reported to inhibit VNUT and was suggested to be a safe potent therapeutic option for chronic pain. Transient receptor potential vanilloid 4 (TRPV4) is activated by mechanical stimuli and some epoxyeicosatrienoic acids and becomes sensitized under inflammatory conditions. We have previously reported that TRPV4 and VNUT are expressed in mouse esophageal keratinocytes and that TRPV4 activation induces ATP release in gastric epithelial cells. Here we show the expression of TRPV4 and VNUT in normal human gastrointestinal cell derived cell lines (GES-1 and CCD 841) and in tissues from normal and VNUT-KO mice. TRPV4 agonists (GSK101 or 8,9-EET) induced an increase in cytosolic Ca2+ and/or current responses in mouse primary colonic epithelial cells and CCD 841 cells, but not in cells isolated from TRPV4-KO mice. TRPV4 agonists (GSK101 or 5.6-EET) also induced ATP release in GES-1 and CCD 841 cells, which could be blocked by the VNUT inhibitor, clodronate. Thus, VNUT inhibition with clodronate could represent a novel therapeutic option for visceral pain.
Collapse
Affiliation(s)
- Hiroshi Mihara
- Center for Medical Education and Career Development, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
- * E-mail:
| | - Kunitoshi Uchida
- Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, University of Yamanashi, Yamanashi, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
15
|
Anti-proliferative Effects of Nucleotides on Gastric Cancer via a Novel P2Y6/SOCE/Ca 2+/β-catenin Pathway. Sci Rep 2017; 7:2459. [PMID: 28550303 PMCID: PMC5446419 DOI: 10.1038/s41598-017-02562-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/13/2017] [Indexed: 12/19/2022] Open
Abstract
Although purinegic signaling is important in regulating gastric physiological functions, it is currently unknown for its role in gastric cancer (GC). We demonstrate for the first time that the expression of P2Y6 receptors was markedly down-regulated in human GC cells and primary GC tissues compared to normal tissues, while the expression of P2Y2 and P2Y4 receptors was up-regulated in GC cells. Moreover, the expression levels of P2Y6 receptors in GC tissues were correlated to tumor size, differentiation, metastasis to lymph nodes, and the survival rate of the patients with GC. Ncleotides activated P2Y6 receptors to raise cytosolic Ca2+ concentrations in GC cells through store-operated calcium entry (SOCE), and then mediated Ca2+-dependent inhibition of β-catenin and proliferation, eventually leading to GC suppression. Furthermore, UTP particularly blocked the G1/S transition of GC cells but did not induce apoptosis. Collectively, we conclude that nucleotides activate P2Y6 receptors to suppress GC growth through a novel SOCE/Ca2+/β-catenin-mediated anti-proliferation of GC cells, which is different from the canonical SOCE/Ca2+-induced apoptosis in other tumors.
Collapse
|
16
|
Letter to the Editor: "Ion Channels in Brain Metastasis"-Ion Channels in Cancer Set up and Metastatic Progression. Int J Mol Sci 2017; 18:ijms18040718. [PMID: 28350319 PMCID: PMC5412304 DOI: 10.3390/ijms18040718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/14/2022] Open
|