1
|
Barbieri F, Grazia Martina M, Giorgio C, Linda Chiara M, Allodi M, Durante J, Bertoni S, Radi M. Benzofuran-2-Carboxamide Derivatives as Immunomodulatory Agents Blocking the CCL20-Induced Chemotaxis and Colon Cancer Growth. ChemMedChem 2024; 19:e202400389. [PMID: 38923732 DOI: 10.1002/cmdc.202400389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
The correlation between the CCL20/CCR6 axis and autoimmune and non-autoimmune disorders is widely recognized. Inhibition of the CCL20-dependent cell migration represents therefore a promising approach for the treatment of many diseases, such as inflammatory bowel diseases and colorectal cancer. We report herein our efforts to explore the biologically relevant chemical space around the benzofuran scaffold of MR120, a modulator of the CCL20/CCR6 axis previously discovered by our group. A functional screening allowed us to identify C4 and C5-substituted derivatives as the most effective inhibitors of the CCL20-induced chemotaxis of human peripheral blood mononuclear cells (PBMC). Moreover, selected compounds (16 e and 24 b) also proved to potently inhibit the growth of different colon cancer cell lines, with cytotoxic/cytostatic and antiproliferative activity.
Collapse
Affiliation(s)
- Francesca Barbieri
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Grazia Martina
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Carmine Giorgio
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Maria Linda Chiara
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marika Allodi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Joseph Durante
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Simona Bertoni
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze, 27/A, 43124, Parma, Italy
| |
Collapse
|
2
|
Suppressing MDSC Recruitment to the Tumor Microenvironment by Antagonizing CXCR2 to Enhance the Efficacy of Immunotherapy. Cancers (Basel) 2021; 13:cancers13246293. [PMID: 34944914 PMCID: PMC8699249 DOI: 10.3390/cancers13246293] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary While the development of immunotherapy has greatly advanced cancer treatment, many patients do not benefit from immunotherapy. Numerous strategies have been developed to improve response to immunotherapy across cancer types, including blocking the activity of immunosuppressive immune cells, cytokines, and signaling pathways that are linked to poor responses. Myeloid-derived suppressor cells (MDSCs) are associated with poor responses to immunotherapy, and the chemokine receptor, CXCR2, is involved in recruiting MDSCs to the tumor. In this review, we present studies that explore the potential of inhibiting MDSCs through blocking CXCR2 as a strategy to enhance response to existing and novel immunotherapies. Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogenous population of cells derived from immature myeloid cells. These cells are often associated with poor responses to cancer therapy, including immunotherapy, in a variety of tumor types. The C-X-C chemokine receptor 2 (CXCR2) signaling axis plays a key role in the migration of immunosuppressive MDSCs into the tumor microenvironment (TME) and the pre-metastatic niche. MDSCs impede the efficacy of immunotherapy through a variety of mechanisms. Efforts to target MDSCs by blocking CXCR2 is an active area of research as a method for improving existing and novel immunotherapy strategies. As immunotherapies gain approval for a wider array of clinical indications, it will become even more important to understand the efficacy of CXCR2 inhibition in combating immunotherapy resistance at different stages of tumor progression.
Collapse
|
3
|
Zhang Y, Chen K, Li L, Mao W, Shen D, Yao N, Zhang L. CCR4 is a prognostic biomarker and correlated with immune infiltrates in head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1443. [PMID: 34733995 PMCID: PMC8506764 DOI: 10.21037/atm-21-3936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 11/06/2022]
Abstract
Background Increased evidence has indicated that the tumour microenvironment plays an essential in the development, treatment and prognosis of head and neck squamous cell carcinoma (HNSC). Recent studies have indicated CC chemokine receptor 4 (CCR4) plays an essential role in tumor invasion and other adverse biological behavior. This study used data from the Cancer Genome Atlas (TCGA) database to explore the role of CCR4 in HNSC and its clinical significance. Methods The gene expression and clinical data of HNSC patients in the TCGA database were extracted. Gene Expression Profiling Interactive Analysis (GEPIA) was used to analyze the expression of CCR4 in tumor and non-tumor tissue. Kaplan-Meier survival analysis was used to analyze the relationship between CCR4 expression and overall survival rate (OS), disease-specific survival (DSS), and progression-free interval (PFI) in HNSC. A logistic regression model was used to analyze the relationships between various clinical factors and CCR4 expression. Gene Set Enrichment Analysis (GSEA) was used to explore the potential role of CCR4 in HNSC. Additionally, we explored the relationship between CCR4 and immune infiltration. Results The expression of CCR4 in HNSC was not significantly different from that in normal tissue. The expression level of CCR4 in wild-type TP53 was higher than that in mutant TP53. Cox regression analysis showed the expression level of CCR4 was related to the patient's tumor grade and Tumor-Node-Metastasis (TNM) stage. CCR4 expression level is an independent prognostic factor. CCR4 is positively correlated with immune infiltration and immune checkpoints expression levels. The results of GSEA revealed that the high CCR4 expression group genes were enriched in allograft rejection, inflammatory response, IL-6/JAK/STAT3 signaling, interferon gamma response, and KRAS signaling up. Low CCR4 expression group genes were enriched in oxidative phosphorylation, MYC targets v1, DNA repair, reactive oxygen species pathway, and P53 pathway. Further, our study indicated CCR4 can also predict the prognosis of radiotherapy patients. Conclusions Our study found that CCR4 was a prognostic marker related to HNSC immune infiltration, and patients with high expression of CCR4 had a better prognosis.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Chen
- Department of Radiotherapy, First People's Hospital of Yancheng, Yancheng, China
| | - Li Li
- Department of Oncology, Huaian Hospital, Huai'an, China
| | - Weidong Mao
- Department of Oncology, Jiangyin People's Hospital, Wuxi, China
| | - Dong Shen
- Department of Oncology, Jiangyin People's Hospital, Wuxi, China
| | - Ninghua Yao
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Circulating Biomarkers of Colorectal Cancer (CRC)-Their Utility in Diagnosis and Prognosis. J Clin Med 2021; 10:jcm10112391. [PMID: 34071492 PMCID: PMC8199026 DOI: 10.3390/jcm10112391] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The global burden of colorectal cancer (CRC) is expected to increase, with 2.2 million new cases and 1.1 million annual deaths by 2030. Therefore, the establishment of novel biomarkers useful in the early diagnosis of CRC is of utmost importance. A number of publications have documented the significance of the overexpression of several specific proteins, such as inflammatory mediators, in CRC progression. However, little is known about the potential utility of these proteins as circulating blood tumor biomarkers of CRC. Therefore, in the present review we report the results of our previous original studies as well as the findings of other authors who investigated whether inflammatory mediators might be used as novel biomarkers in the diagnosis and prognosis of CRC. Our study revealed that among all of the tested proteins, serum M-CSF, CXCL-8, IL-6 and TIMP-1 have the greatest value in the diagnosis and progression of CRC. Serum TIMP-1 is useful in differentiating between CRC and colorectal adenomas, whereas M-CSF and CRP are independent prognostic factors for the survival of patients with CRC. This review confirms the promising significance of these proteins as circulating biomarkers for CRC. However, due to their non-specific nature, further validation of their sensitivity and specificity is required.
Collapse
|
5
|
Pączek S, Łukaszewicz-Zając M, Mroczko B. Chemokines-What Is Their Role in Colorectal Cancer? Cancer Control 2020; 27:1073274820903384. [PMID: 32103675 PMCID: PMC7066593 DOI: 10.1177/1073274820903384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death. It
is the second most frequently diagnosed malignancy in Europe and third
worldwide. Colorectal malignancies diagnosed at an early stage offer a promising
survival rate. However, advanced tumors often present distant metastases even
after the complete resection of a primary tumor. Therefore, novel biomarkers of
CRC are sorely needed in the diagnosis and prognosis of this common malignancy.
A family of chemokines are composed of small, secreted proteins. They are best
known for their ability to stimulate the migration of several cell types. Some
investigations have indicated that chemokines are involved in cancer
development, including CRC. This article presents current knowledge regarding
chemokines and their specific receptors in CRC progression. Moreover, the prime
aim of this review is to summarize the potential role of these proteins as
biomarkers in the diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, Medical University of Bialystok, Poland
| | | | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Poland.,Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Poland
| |
Collapse
|
6
|
Duan L, Lu Y, Xie W, Nong L, Jia Y, Tan A, Liu Y. Leptin promotes bone metastasis of breast cancer by activating the SDF-1/CXCR4 axis. Aging (Albany NY) 2020; 12:16172-16182. [PMID: 32836215 PMCID: PMC7485740 DOI: 10.18632/aging.103599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022]
Abstract
Obesity is associated with an increased risk of tumorigenesis, and increased leptin levels can promote tumor metastasis. However, the effects of leptin on bone metastasis in breast cancer are not fully understood. Here, we examined leptin receptor expression and bone metastasis in tissue samples from 96 breast cancer patients. In addition, we investigated the effects of leptin on the metastatic capacity of breast cancer cells in vitro using a transwell assays. The results indicated that higher leptin receptor levels in breast cancer cells are associated with increased incidence of bone metastasis in breast cancer patients. Additionally, leptin promoted migration and invasion of breast cancer cells. The SDF-1/CXCR4 axis activated by leptin also promoted bone metastasis of breast cancer. Finally, increased CXCR4 expression was accompanied by high leptin receptor expression in bone metastatic tissues from breast cancer patients. These results indicate that leptin induces bone metastasis of breast cancer by activating the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Lixia Duan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yongkui Lu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Weimin Xie
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Li Nong
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yuxian Jia
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Aihua Tan
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yan Liu
- The Fifth Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China.,Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
7
|
Frick VO, Rubie C, Keilholz U, Ghadjar P. Chemokine/chemokine receptor pair CCL20/CCR6 in human colorectal malignancy: An overview. World J Gastroenterol 2016; 22:833-841. [PMID: 26811629 PMCID: PMC4716081 DOI: 10.3748/wjg.v22.i2.833] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/17/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023] Open
Abstract
Chemokines belong to a superfamily of small, cytokine-like proteins, which induce multiple physiological functions, particularly cytoskeletal rearrangement and compartment-specific migration through their interaction with G-protein-coupled receptors. Chemokines and their receptors have been widely acknowledged as essential and selective mediators in leukocyte migration in inflammatory response. It is now established that the chemokine/chemokine receptor system is also used by cancer cells to direct lymphatic and haematogenous spreading and additionally has an impact on the site of metastatic growth of different tumours. In recent years an increasing number of studies have drawn attention to CC-chemokine cysteine motif chemokine ligand 20 (CCL20) and its physiological sole receptor CCR6 to play a role in the onset, development and metastatic spread of various gastrointestinal cancer entities. Among various cancer types CCR6 was also demonstrated to be significantly overexpressed in colorectal cancer (CRC) and stimulation by its physiological ligand CCL20 has been reported to promote CRC cell proliferation and migration in vitro. Further, the CCL20/CCR6 system apparently plays a role in the organ-selective liver metastasis of CRC. Here we review the literature on expression patterns of CCL20 and CCR6 and their physiological interactions as well as the currently presumed role of CCL20 and CCR6 in the formation of CRC and the development of liver metastasis, providing a potential basis for novel treatment strategies.
Collapse
|
8
|
Liu WT, Jing YY, Yan F, Han ZP, Lai FB, Zeng JX, Yu GF, Fan QM, Li R, Zhao QD, Wu MC, Wei LX. LPS-induced CXCR4-dependent migratory properties and a mesenchymal-like phenotype of colorectal cancer cells. Cell Adh Migr 2016; 11:13-23. [PMID: 26745593 DOI: 10.1080/19336918.2015.1134404] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is the most commonly diagnosed cancer worldwide, and over 50% of patients will develop hepatic metastasis during the course of their disease. CXCR4 and its ligand, stromal cell-derived factor 1α (SDF-1α)/chemokine (C-X-C motif) ligand 12 (CXCL12) have been revealed as regulatory molecules involved in the spreading and progression of a variety of tumors. Here we have shown that lipopolysaccharides (LPS) promoted the migratory capacity of colon cancer cells in vivo and in vitro, which correlated with the activation of SDF-1α/CXCR4 axis and epithelial-mesenchymal transition (EMT) occurrence. Additionally, we found that LPS-induced CXCR4 expression and EMT through NF-κB signaling pathway activation. And inhibition of NF-κB pathway, which recovered the epithelial phenotype and attenuated CXCR4 expression, inhibited cell migratory capacity. Clinically, high levels of CXCR4 always correlated with metastasis and poor prognosis of CRC patients. In conclusion, LPS participate in the whole process of hepatic metastasis of CRC, not only causing liver damage resulting in the production of SDF-1α, but also enhancing the invasive potential of CRC cells by promoting CXCR4 expression and EMT occurrence, which would contribute to the enhancement of cell migration and invasion.
Collapse
Affiliation(s)
- Wen-Ting Liu
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Ying-Ying Jing
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Fei Yan
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Zhi-Peng Han
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Fo-Bao Lai
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Jian-Xing Zeng
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Guo-Feng Yu
- b Oncology Department , Ji'an Hospital, Shanghai East Hospital, Tongji University School of Medicine , Shanghai , China
| | - Qing-Min Fan
- c Ultrasonography Department , The First Affiliated Hospital of Soochow University , Jiangsu , China
| | - Rong Li
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Qiu-Dong Zhao
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Meng-Chao Wu
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| | - Li-Xin Wei
- a Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University , Shanghai , China
| |
Collapse
|
9
|
Erin N, Nizam E, Tanrıöver G, Köksoy S. Autocrine control of MIP-2 secretion from metastatic breast cancer cells is mediated by CXCR2: a mechanism for possible resistance to CXCR2 antagonists. Breast Cancer Res Treat 2015; 150:57-69. [DOI: 10.1007/s10549-015-3297-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 02/06/2023]
|
10
|
Sun B, Karin M. The therapeutic value of targeting inflammation in gastrointestinal cancers. Trends Pharmacol Sci 2014; 35:349-57. [PMID: 24881011 DOI: 10.1016/j.tips.2014.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 12/22/2022]
Abstract
Inflammation has been implicated in the initiation and progression of gastrointestinal (GI) cancers. Inflammation also plays important roles in subverting immune tolerance, escape from immune surveillance, and conferring resistance to chemotherapeutic agents. Targeting key regulators and mediators of inflammation represents an attractive strategy for GI cancer prevention and treatment. However, the targeting of inflammation in GI cancer is not straightforward and sometimes inflammation may contribute to tumor regression. We discuss the origins and effects of inflammation in GI cancer and how to target it successfully.
Collapse
Affiliation(s)
- Beicheng Sun
- Liver Transplantation Center of the First Affiliated Hospital and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China.
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology and Pathology, Cancer Center, UCSD School of Medicine, La Jolla, CA 92093-0723, USA.
| |
Collapse
|
11
|
Du D, Liu Y, Qian H, Zhang B, Tang X, Zhang T, Liu W. The effects of the CCR6/CCL20 biological axis on the invasion and metastasis of hepatocellular carcinoma. Int J Mol Sci 2014; 15:6441-52. [PMID: 24743888 PMCID: PMC4013639 DOI: 10.3390/ijms15046441] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/27/2014] [Accepted: 02/28/2014] [Indexed: 12/21/2022] Open
Abstract
Chemokines and their receptors have recently been shown to play major roles in cancer metastasis. Chemokine receptor 6 (CCR6) and its ligand, CCL20, were highly expressed in a variety of human cancers. In our present study, we aimed to clarify whether CCR6/CCL20 was correlated with the migration of hepatocellular carcinoma (HCC). RT-PCR and Western blot results showed that CCR6 was overexpressed in different invasive potential HCC cell lines (p<0.05), while the expression of CCL20 had no obvious difference (p>0.05). CCR6 was suppressed by siRNA in HCCLM6, and then the biological behaviors of HCCLM6 cells were observed. The results showed that the CCR6/CCL20 biological axis increased the capacity of proliferation and adhesion, as well as the chemotactic migration and the level of cytokines related to degraded extracellular matrix. In conclusion, these findings indicate that CCR6 indeed participates in regulating the migration and invasion of HCC, and it might become a prognostic factor of HCC.
Collapse
Affiliation(s)
- Dongshu Du
- College of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yeliu Liu
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an 223300, Jiangsu, China.
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou 215006, Jiangsu, China.
| | - Bo Zhang
- Department of General Surgery, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang 215600, Jiangsu, China.
| | - Xiaojun Tang
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an 223300, Jiangsu, China.
| | - Ti Zhang
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an 223300, Jiangsu, China.
| | - Weidong Liu
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, 6 Beijing Road West, Huai'an 223300, Jiangsu, China.
| |
Collapse
|
12
|
Rubie C, Kruse B, Frick VO, Kölsch K, Ghadjar P, Wagner M, Grässer F, Wagenpfeil S, Glanemann M. Chemokine receptor CCR6 expression is regulated by miR-518a-5p in colorectal cancer cells. J Transl Med 2014; 12:48. [PMID: 24559209 PMCID: PMC3996063 DOI: 10.1186/1479-5876-12-48] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
Background Recently, involvement of the chemokine/receptor system CCL20/CCR6 in colorectal cancer (CRC) progression was shown. Here, we analyzed the functional interaction of miRNA-518-5p (miR-518a-5p) with CCR6 and its impact on CCR6 expression in CRC cells. Methods MiR-518a-5p was identified by computer software to potentially interact with CCR6. Hence, functional implications of miR-518a-5p with the 3′UTR of CCR6 were analyzed using the Dual Luciferase Reporter assay system. Confirmation of the predicted target site for miR-518a-5p was achieved by site-directed mutagenesis of the seed sequence in the 3′UTR of CCR6 and subsequent application of the mutated seed sequence in a luciferase assay with miR-518a-5p mimics. Accordingly, two CRC cell lines (Caco-2 and HT-29) were transfected with miR-518a-5p miRNA mimics and gene and protein expression of CCR6 was monitored using qRT PCR and immunocytochemistry, respectively. Results Addition of miR-518a-5p led to significant down-regulation of luciferase activity (P < 0.05), which was significantly reversed in a reporter test system containing the mutated seed sequences in the 3′UTR of CCR6. Following transfection of CRC cell lines with miR-518a-5p mimics and subsequent monitoring of CCR6 expression showed significant down-regulation of CCR6 mRNA and CCR6 protein expression in both CRC cell lines under investigation (P < 0.05). Conclusions We have shown that miR-518a-5p functionally interacts with CCR6 and that transfection of CRC cells with miR-518a-5p leads to significant CCR6 down-regulation. Consequently, CCR6 expression is regulated by miR-518a-5p in CRC cells indicating that regulation of CCR6 expression by miR-518a-5p might be a regulatory mechanism involved in CRC pathogenesis.
Collapse
Affiliation(s)
- Claudia Rubie
- Department of General -, Visceral-, Vascular - and Paediatric Surgery, University of the Saarland, 66421 Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lv S, Yang Y, Kwon S, Han M, Zhao F, Kang H, Dai C, Wang R. The association of CXCR4 expression with prognosis and clinicopathological indicators in colorectal carcinoma patients: a meta-analysis. Histopathology 2014; 64:701-12. [PMID: 24422942 DOI: 10.1111/his.12321] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/03/2013] [Indexed: 12/20/2022]
Abstract
AIMS The clinical relevance of expression of chemokine receptor 4 (CXCR4) in colorectal carcinoma (CRC) remains controversial; our aim was to identify the precise relationship of CXCR4 to prognosis and clinicopathological features. METHODS AND RESULTS A meta-analysis was performed. Original data included the hazard ratios (HRs) of recurrence-free survival (RFS), overall survival (OS) and odds ratio (OR) in CRC patients. We pooled HR/OR with 95% confidence intervals (CIs) to estimate the hazard. A total of 20 published studies (including 2253 patients) were eligible. RFS and OS were related significantly to CXCR4 expression, with HRs 1.62 (95% CI 1.24-2.11; P < 0.0001) and 1.68 (95% CI 1.31-2.14; P < 0.0001), respectively. In addition, a significant association was revealed between positive CXCR4 expression and age (less than median age: OR 0.78, 95% CI 0.62-0.98; P = 0.03), stage (I and II: OR 0.46, 95% CI 0.32-0.66; P < 0.0001), grade (well/moderately differentiated: OR 0.74, 95% CI 0.56-0.98; P = 0.04), location (colon: OR: 0.73, 95% CI 0.57-0.95; P = 0.02), lymph node invasion (present: OR2.14, 95% CI 1.36-3.37; P = 0.001),and distant metastasis (present: OR 2.40; 95% CI 1.36-4.23; P = 0.003). Heterogeneity was observed among the included studies with regard to stage (I(2) = 58 %), lymph node invasiveness (I(2) = 74%) and distant metastasis (I(2) = 56%). No publication bias was observed. CONCLUSIONS Chemokine receptor 4 expression indicates poorer prognosis in older patients and advanced stage or poor differentiation in CRC, and also serves as an indicator of lymph node and distal organ metastasis. Surprisingly, high CXCR4 expression may indicate that the location of the tumour is the rectum. Thus, CXCR4 could help to predict outcome and guide clinical therapy.
Collapse
Affiliation(s)
- Shunzeng Lv
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
High expression of CXCR-2 correlates with lymph node metastasis and predicts unfavorable prognosis in resected esophageal carcinoma. Med Oncol 2013; 31:809. [DOI: 10.1007/s12032-013-0809-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|