1
|
Malpica L, Marques-Piubelli ML, Beltran BE, Chavez JC, Miranda RN, Castillo JJ. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2024 update on the diagnosis, risk-stratification, and management. Am J Hematol 2024; 99:2002-2015. [PMID: 38957951 DOI: 10.1002/ajh.27430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
DISEASE OVERVIEW Epstein Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) is an aggressive B-cell lymphoma associated with EBV infection included in the WHO classification of lymphoid neoplasms since 2016. Although historically associated to poor prognosis, outcomes seem to have improved in the era of chemoimmunotherapy. DIAGNOSIS The diagnosis is established through meticulous pathological evaluation. Detection of EBV-encoded RNA (EBER) is the standard diagnostic method. The ICC 2022 specifies EBV+ DLBCL, NOS as occurring when >80% of malignant cells express EBER, whereas the WHO-HAEM5 emphasizes that the majority of tumor cells should be EBER positive without setting a defined threshold. The differential diagnosis includes plasmablastic lymphoma, DLBCL associated with chronic inflammation, primary effusion lymphoma, among others. RISK-STRATIFICATION The International Prognostic Index (IPI) and the Oyama score can be used for risk-stratification. The Oyama score includes age >70 years and presence of B symptoms. The expression of CD30 and PD-1/PD-L1 are emerging as potential adverse but targetable biomarkers. MANAGEMENT Patients with EBV+ DLBCL, NOS, should be staged and managed following similar guidelines than patients with EBV-negative DLBCL. EBV+ DLBCL, NOS, however, might have a worse prognosis than EBV-negative DLBCL in the era of chemoimmunotherapy. Therefore, inclusion of patients in clinical trials when available is recommended. There is an opportunity to study and develop targeted therapy in the management of patients with EBV+ DLBCL, NOS.
Collapse
Affiliation(s)
- Luis Malpica
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brady E Beltran
- Department of Oncology and Radiotherapy, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru, Instituto de Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Peru
| | - Julio C Chavez
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Volaric AK, Saleem A, Younes SF, Zhao S, Natkunam Y. Epstein-Barr virus latency patterns in polymorphic lymphoproliferative disorders and lymphomas in immunodeficiency settings: Diagnostic implications. Ann Diagn Pathol 2024; 70:152286. [PMID: 38447253 DOI: 10.1016/j.anndiagpath.2024.152286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/08/2024]
Abstract
Epstein-Barr virus (EBV) is responsible for many B cell lymphoproliferative disorders (LPD) spanning subclinical infection to immunodeficiency-related neoplasms. EBV establishes a latent infection in the host B cell as defined histologically by the expression of EBV latent membrane proteins and nuclear antigens. Herein, we characterize the latency patterns of immunodeficiency-related neoplasms including post-transplant lymphoproliferative disorders (PTLD) and therapy-related LPD (formerly iatrogenic) with latent membrane protein-1 (LMP-1) and EBV nuclear antigen-2 (EBNA-2) immunohistochemistry. The latency pattern was correlated with immunodeficiency and dysregulation (IDD) status and time from transplant procedure. 38 cases of EBV+ PTLD in comparison to 27 cases of classic Hodgkin lymphoma (CHL) and diffuse large B cell lymphoma (DLBCL) arising in either the therapy-related immunodeficiency setting (n = 12) or without an identified immunodeficiency (n = 15) were evaluated for EBV-encoded small RNAs by in situ hybridization (EBER-ISH) and for LMP-1 and EBNA-2 by immunohistochemistry. A full spectrum of EBV latency patterns was observed across PTLD in contrast to CHL and DLBCL arising in the therapy-related immunodeficiency setting. Polymorphic-PTLD (12 of 16 cases, 75 %) and DLBCL-PTLD (9 of 11 cases, 82 %) showed the greatest proportion of cases with latency III pattern. Whereas, EBV+ CHL in an immunocompetent patient showed exclusively latency II pattern (13 of 13 cases, 100 %). The majority of EBV+ PTLD occurred by three years of transplant procedure date and were enriched for latency III pattern (21 of 22 cases, 95 %). Immunohistochemical identification of EBV latency by LMP-1 and EBNA-2 can help classify PTLD in comparison to other EBV+ B cell LPD and lymphomas arising in therapy-related immunodeficiency and non-immunodeficiency settings.
Collapse
Affiliation(s)
- Ashley K Volaric
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA; Department of Pathology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA.
| | - Atif Saleem
- Department of Pathology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Sheren F Younes
- Department of Pathology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, 291 Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Haverkos B, Alpdogan O, Baiocchi R, Brammer JE, Feldman TA, Capra M, Brem EA, Nair S, Scheinberg P, Pereira J, Shune L, Joffe E, Young P, Spruill S, Katkov A, McRae R, Royston I, Faller DV, Rojkjaer L, Porcu P. Targeted therapy with nanatinostat and valganciclovir in recurrent EBV-positive lymphoid malignancies: a phase 1b/2 study. Blood Adv 2023; 7:6339-6350. [PMID: 37530631 PMCID: PMC10587711 DOI: 10.1182/bloodadvances.2023010330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
Lymphomas are not infrequently associated with the Epstein-Barr virus (EBV), and EBV positivity is linked to worse outcomes in several subtypes. Nanatinostat is a class-I selective oral histone deacetylase inhibitor that induces the expression of lytic EBV BGLF4 protein kinase in EBV+ tumor cells, activating ganciclovir via phosphorylation, resulting in tumor cell apoptosis. This phase 1b/2 study investigated the combination of nanatinostat with valganciclovir in patients aged ≥18 years with EBV+ lymphomas relapsed/refractory to ≥1 prior systemic therapy with no viable curative treatment options. In the phase 1b part, 25 patients were enrolled into 5 dose escalation cohorts to determine the recommended phase 2 dose (RP2D) for phase 2 expansion. Phase 2 patients (n = 30) received RP2D (nanatinostat 20 mg daily, 4 days per week with valganciclovir 900 mg orally daily) for 28-day cycles. The primary end points were safety, RP2D determination (phase 1b), and overall response rate (ORR; phase 2). Overall, 55 patients were enrolled (B-non-Hodgkin lymphoma [B-NHL], [n = 10]; angioimmunoblastic T-cell lymphoma-NHL, [n = 21]; classical Hodgkin lymphoma, [n = 11]; and immunodeficiency-associated lymphoproliferative disorders, [n = 13]). The ORR was 40% in 43 evaluable patients (complete response rate [CRR], 19% [n = 8]) with a median duration of response of 10.4 months. For angioimmunoblastic T-cell lymphoma-NHL (n = 15; all refractory to the last prior therapy), the ORR/CRR ratio was 60%/27%. The most common adverse events were nausea (38% any grade) and cytopenia (grade 3/4 neutropenia [29%], thrombocytopenia [20%], and anemia [20%]). This novel oral regimen provided encouraging efficacy across several EBV+ lymphoma subtypes and warrants further evaluation; a confirmatory phase 2 study (NCT05011058) is underway. This phase 1b/2 study is registered at www.clinicaltrials.gov as #NCT03397706.
Collapse
Affiliation(s)
| | - Onder Alpdogan
- Division of Hematologic Malignancies and Hematopoetic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Robert Baiocchi
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH
| | | | - Tatyana A. Feldman
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
| | - Marcelo Capra
- Centro Integrado de Hematologia e Oncologia - Hospital Mãe de Deus, Porto Alegre, Brazil
| | - Elizabeth A. Brem
- Division of Hematology/Oncology, Deptartment of Medicine, University of California, Irvine, Orange, CA
| | - Santosh Nair
- Mid Florida Hematology and Oncology Center, Orange City, FL
| | - Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| | - Juliana Pereira
- Division of Hematology, Hospital das Clínicas da Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Leyla Shune
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS
| | - Erel Joffe
- Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | | | - Pierluigi Porcu
- Division of Hematologic Malignancies and Hematopoetic Stem Cell Transplantation, Department of Medical Oncology, Thomas Jefferson University Hospital, Philadelphia, PA
| |
Collapse
|
4
|
Donzel M, Pesce F, Trecourt A, Groussel R, Bachy E, Ghesquières H, Fontaine J, Benzerdjeb N, Mauduit C, Traverse-Glehen A. Molecular Characterization of Primary Mediastinal Large B-Cell Lymphomas. Cancers (Basel) 2023; 15:4866. [PMID: 37835560 PMCID: PMC10571533 DOI: 10.3390/cancers15194866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Since the description of primary mediastinal large B-cell lymphoma (PMBL) as a distinct entity from diffuse large B-cell lymphomas (DLBCL), numerous studies have made it possible to improve their definition. Despite this, this differential diagnosis can be challenging in daily practice. However, in some centers, PMBL may be treated according to a particular regimen, distinct from those used in DLBCL, emphasizing the importance of accurate identification at diagnosis. This study aimed to describe the histological and molecular characteristics of PMBL to improve the accuracy of their diagnosis. Forty-nine cases of PMBL were retrospectively retrieved. The mean age at diagnosis was 39 years (21-83), with a sex ratio of 0.88. All cases presented a fibrous background with diffuse growth of intermediate to large cells with an eosinophil (26/49, 53%) or retracted cytoplasm (23/49, 47%). "Hodgkin-like" cells were observed in 65% of cases (32/49, 65%). The phenotype was: BCL6+ (47/49, 96%), MUM1+ (40/49, 82%), CD30+ (43/49, 88%), and CD23+ (37/49, 75%). Genomic DNAs were tested by next generation sequencing of 33 cases using a custom design panel. Pathogenic variants were found in all cases. The most frequent mutations were: SOCS1 (30/33, 91%), TNFAIP3 (18/33, 54.5%), ITPKB (17/33, 51.5%), GNA13 (16/33, 48.5%), CD58 (12/33, 36.4%), B2M (12/33; 36.4%), STAT6 (11/33, 33.3%) as well as ARID1A (10/33, 30.3%), XPO1 (9/33, 27.3%), CIITA (8/33, 24%), and NFKBIE (8/33, 24%). The present study describes a PMBL cohort on morphological, immunohistochemical, and molecular levels to provide pathologists with daily routine tools. These data also reinforce interest in an integrated histomolecular diagnosis to allow a precision diagnosis as early as possible.
Collapse
Affiliation(s)
- Marie Donzel
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon Sud, 69310 Lyon, France (N.B.)
- UFR Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International de Recherche en Infectiologie (CIRI), UFR Lyon-1, Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, 69342 Lyon, France
| | | | - Alexis Trecourt
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon Sud, 69310 Lyon, France (N.B.)
- UFR Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | | | - Emmanuel Bachy
- UFR Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International de Recherche en Infectiologie (CIRI), UFR Lyon-1, Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Hospices Civils de Lyon, Service d’Hématologie, Hôpital Lyon Sud, 69310 Lyon, France
| | - Hervé Ghesquières
- UFR Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International de Recherche en Infectiologie (CIRI), UFR Lyon-1, Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Hospices Civils de Lyon, Service d’Hématologie, Hôpital Lyon Sud, 69310 Lyon, France
| | - Juliette Fontaine
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon Sud, 69310 Lyon, France (N.B.)
| | - Nazim Benzerdjeb
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon Sud, 69310 Lyon, France (N.B.)
- UFR Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Claire Mauduit
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon Sud, 69310 Lyon, France (N.B.)
- Centre International de Recherche en Infectiologie (CIRI), UFR Lyon-1, Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, 69342 Lyon, France
- Institut National de la Santé et de la Recherche Médicale, Centre Méditerranéen de Médecine Moléculaire (C3M), Unité 1065, Equipe 10, 06000 Nice, France
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon Sud, 69310 Lyon, France (N.B.)
- UFR Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Centre International de Recherche en Infectiologie (CIRI), UFR Lyon-1, Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normale Supérieure de Lyon, 69342 Lyon, France
| |
Collapse
|
5
|
Zuo Y, Xiao H, Lv D, Huang M, Wang L, Liu J, Zhang K, Shen J, Wang Z, Wu Q, Xu Y. Infection pattern and immunological characteristics of Epstein-Barr virus latent infection in cervical squamous cell carcinoma. J Med Virol 2023; 95:e28717. [PMID: 37184049 DOI: 10.1002/jmv.28717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 03/30/2023] [Indexed: 05/16/2023]
Abstract
Previous studies reported the association between Epstein-Barr virus (EBV) and cervical squamous cell carcinoma (CSCC), but its infection pattern and clinical significance unclear. This study aimed to comprehensively investigate the infection pattern, clinicopathology, outcomes, and immunology of this entity in central China. We evaluated a total of 104 untreated CSCC tumor tissue specimens using in situ hybridization for EBV-encoded small RNAs (EBERs), and by employing flowcytometry fluorescence hybridization for human papillomavirus (HPV) genotyping. The expression of EBV latency proteins and immune biomarkers was evaluated and quantified by immunohistochemistry. EBERs transcripts were detected in 21 (20.2%) cases overall (in malignant epithelial cells of 13 cases and in lymphocytes of 8 cases). EBV belonged to latency type I infection in CSCC. The high-risk (HR)-HPV was detected in all of EBV-positive CSCC, and the difference of detection rate of HR-HPV was significant when compared with EBV-negative CSCC (p = 0.001). The specific clinicopathology with increased frequency of advanced clinical stages, tumor-positive lymph nodes, neural invasion, and increased infiltration depth (all p value < 0.05) were observed in cases with EBV. However, EBV infection was found to have no impact on prognosis of patients with CSCC. Increased densities of forkhead box P3 (FoxP3)+-tumor infiltrating lymphocytes (TILs) (p = 0.005) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4)+-TILs (p = 0.017) and higher expression of programmed cell death-1 (PD-1) (p = 0.002) and programmed cell death-1 ligand 1 (PD-L1) (p = 0.040) were associated with EBV latent infection in CSCC, and these immunological changes were more likely to be associated with the infection in lymphocytes rather than tumor cells. Moreover, in patients with HPV-positive CSCC, similar significant differences were still found. In conclusions, EBV-positive CSCC may have specific infection pattern and clinicopathology and can exhibit an immunosuppressive microenvironment dominated by Treg cells aggregation and immune checkpoint activation.
Collapse
Affiliation(s)
- Yan Zuo
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Han Xiao
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dongmei Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Miaomiao Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, Anhui, China
| | - Lianzi Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Jiaqing Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ke Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Jilong Shen
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| | - Zhongxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qiang Wu
- Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pathogen Biology and Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
6
|
Donzel M, Bonjour M, Combes JD, Broussais F, Sesques P, Traverse-Glehen A, de Martel C. Lymphomas associated with Epstein-Barr virus infection in 2020: Results from a large, unselected case series in France. EClinicalMedicine 2022; 54:101674. [PMID: 36204003 PMCID: PMC9531037 DOI: 10.1016/j.eclinm.2022.101674] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Background Despite mounting evidence for a causal role in an increasing number of lymphoma subtypes, very few studies have systematically tested the entire spectrum of Hodgkin and non-Hodgkin lymphomas for the presence of Epstein-Barr virus (EBV). Here, we describe the prevalence of EBV in a large, unselected series of patients diagnosed with any type of lymphoma during 2020, in the pathology department of a single University Hospital in France. Methods A total of 756 lymphoma cases (89% new diagnoses and 11% relapses), were registered in the department between Jan 1 and Sept 30, 2020 and 616 were successfully tested for EBV presence in tumour cells by EBV-encoding RNA in-situ hybridisation, using double-blinded assessment and a scoring system designed in accordance with the current state of knowledge in the literature. Findings A strong association with EBV was described in 27/87 (31%) classic Hodgkin lymphomas, 12/223 (5%) diffuse large B-cell lymphomas, and 18/71 (25%) NK and T-cell lymphomas: 4 extranodal NK/T-cell lymphomas, nasal type, 14 angioimmunoblastic T-cell lymphomas (48%). In Hodgkin and NK and T-cell lymphomas, there was a statistically significant association between EBER positivity and relapse (p < 0·01). Among other subtypes, a potential association with EBV (≥10% stained cells) was found in 2/97 (2%) follicular lymphomas, both of grades 1-2, 1/19 (5%) chronic lymphocytic leukaemia (CLL), 1/9 lymphoplasmacytic lymphomas (11%), and 2/47 (4%) marginal zone lymphomas. Interpretation When applied to the distribution of lymphomas in France as described in the Lymphopath database, our data suggested that at least 8% of all combined Hodgkin and non-Hodgkin lymphomas are associated with EBV. Funding International Agency for Research on Cancer (IARC/WHO).
Collapse
Affiliation(s)
- Marie Donzel
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon-Sud, Pierre Bénite, France
| | - Maxime Bonjour
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon-Sud, Pierre Bénite, France
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jean-Damien Combes
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Florence Broussais
- Hospices Civils de Lyon, Service d'Hématologie, Hôpital Lyon-Sud, Pierre Bénite, France
| | - Pierre Sesques
- Hospices Civils de Lyon, Service d'Hématologie, Hôpital Lyon-Sud, Pierre Bénite, France
- Centre de Recherche en Cancérologie de Lyon; INSERM Unité Mixte de Recherche (UMR)-S1052; Centre National de la Recherche Scientifique UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, Institut de Pathologie Multisite, Hôpital Lyon-Sud, Pierre Bénite, France
- Centre de Recherche en Cancérologie de Lyon; INSERM Unité Mixte de Recherche (UMR)-S1052; Centre National de la Recherche Scientifique UMR 5286, Université Claude Bernard Lyon 1, Lyon, France
| | - Catherine de Martel
- Early Detection, Prevention and Infections Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| |
Collapse
|
7
|
Li X, Zhou F, Li S, Wang Y, Fan J, Liang X, Peng Y, Jin Y, Jiang W, Liu F, Zhou Y, Liu S, Wang T, Peng Y, Xiong J, Liu J, Zhang J, He C, Zhang H, Li Y. Clinicopathologic study of mantle cell lymphoma with epstein-barr virus infection: A case series and literature review. Front Oncol 2022; 12:933964. [PMID: 35992854 PMCID: PMC9386618 DOI: 10.3389/fonc.2022.933964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background Mantle cell lymphoma (MCL) with Epstein–Barr virus (EBV) infection is rarely reported. The objective of this study was to analyze the prevalence and clinicopathological features of MCL with EBV infection in the largest series thus far. Methods After screening 138 cases of MCL, we identified eight cases of MCL with EBV infection. Results Most of them (7/8) had non-neoplastic bystander cells with positivity for EBV and no expression of latent membrane protein 1 (LMP1) and EBV nuclear antigen 2 (EBNA2). The cases of MCL with EBER positivity did not have abnormal immune function or other lymphomas. Moreover, their histopathological morphology was indicative of classical MCL. Cases of MCL with EBER positivity exhibited statistically significant differences in lactate dehydrogenase, anemia status, and MCL international prognostic index grouping (P=0.008, P=0.02, P=0.001, and P=0.011, respectively). The differences between the two groups in age, sex ratio, clinical manifestations, and immunohistochemical phenotypes were not statistically significant. Conclusions The incidence of MCL with EBV infection was low (5.8%). Clinicopathologically, cases of MCL with EBER positivity were similar to their EBV-negative counterparts. Our findings revealed that most cells infected by EBV in MCL are background cells rather than tumor cells. This is inconsistent with data from previous studies, indicating that tumor cells in MCL may not be prone to EBV infection.
Collapse
Affiliation(s)
- Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Fanlin Zhou
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shijie Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yangyang Wang
- Bioengineering College, Chongqing University, Chongqing, China
| | - Jianing Fan
- School of Medicine, Chongqing University, Chongqing, China
| | - Xiao Liang
- School of Medicine, Chongqing University, Chongqing, China
| | - Yan Peng
- Institute of Neuroscience, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yudi Jin
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Weiyang Jiang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Fang Liu
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yixing Zhou
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuke Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Tao Wang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Peng
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jianbo Xiong
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jia Liu
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Zhang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Changqing He
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hui Zhang
- Department of Pathology, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yu Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
- Bioengineering College, Chongqing University, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
- *Correspondence: Yu Li,
| |
Collapse
|
8
|
Malpica L, Marques‐Piubelli ML, Beltran BE, Chavez JC, Miranda RN, Castillo JJ. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2022 update on diagnosis, risk-stratification, and management. Am J Hematol 2022; 97:951-965. [PMID: 35472248 DOI: 10.1002/ajh.26579] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
DISEASE OVERVIEW Epstein Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) is an entity included in the WHO classification of lymphoid neoplasms since 2016. EBV+ DLBCL, NOS, is an aggressive B-cell lymphoma associated with EBV infection, and a poor prognosis with standard chemotherapeutic approaches. DIAGNOSIS The diagnosis is made through a careful pathological evaluation. Detection of EBV-encoded RNA (EBER) is considered standard for diagnosis; however, a clear cutoff for percentage of positive cells has not been defined. The differential diagnosis includes plasmablastic lymphoma (PBL), DLBCL associated with chronic inflammation, primary effusion lymphoma (PEL), among others. RISK-STRATIFICATION The International Prognostic Index (IPI) and the Oyama score can be used for risk-stratification. The Oyama score includes age >70 years and presence of B symptoms. The expression of CD30 and PD-1/PD-L1 are emerging as potential adverse but targetable biomarkers. MANAGEMENT Patients with EBV+ DLBCL, NOS, should be staged and managed following similar guidelines than patients with EBV-negative DLBCL. EBV+ DLBCL, NOS, however, might have a worse prognosis than EBV-negative DLBCL in the era of chemoimmunotherapy. Therefore, the inclusion of patients in clinical trials when available is recommended. There is an opportunity to study and develop targeted therapy in the management of patients with EBV+ DLBCL, NOS.
Collapse
Affiliation(s)
- Luis Malpica
- Department of Lymphoma and Myeloma The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Mario L. Marques‐Piubelli
- Department of Translational Molecular Pathology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Brady E. Beltran
- Department of Oncology and Radiotherapy Hospital Nacional Edgardo Rebagliati Martins Lima Peru
- Instituto de Ciencias Biomédicas Universidad Ricardo Palma Lima Peru
| | - Julio C. Chavez
- Department of Malignant Hematology H. Lee Moffitt Cancer Center and Research Institute Tampa Florida USA
| | - Roberto N. Miranda
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Jorge J. Castillo
- Division of Hematologic Malignancies, Dana‐Farber Cancer Institute Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
9
|
Yogi N, Usui G, Matsusaka K, Fukuyo M, Fujiki R, Seki M, Takano S, Abe H, Morikawa T, Ushiku T, Ohtsuka M, Kaneda A. Association of tumors having Epstein-Barr virus in surrounding lymphocytes with poor prognosis. Cancer Med 2022; 12:1122-1136. [PMID: 35726701 PMCID: PMC9883551 DOI: 10.1002/cam4.4967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 06/10/2022] [Indexed: 02/02/2023] Open
Abstract
Infection with certain viruses is an important cause of cancer. The Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium recently analyzed the whole-genome sequencing (WGS) data from 2656 cases across 21 cancer types, and indicated that Epstein-Barr virus (EBV) is detected in many different cancer cases at a higher frequency than previously reported. However, whether EBV-positive cancer cases detected by WGS-based screening correspond to those detected by conventional histopathological techniques is still unclear. In this study, to elucidate the involvement of EBV in various cancers, we reanalyzed the WGS data of the PCAWG cohort combined with the analysis of clinical samples of gastric and pancreatic cancer in our cohort. Based on EBV copy number in each case, we classified tumors into three subgroups: EBV-High, EBV-Low, and EBV-Negative. The EBV-High subgroup was found to be EBV-positive in the cancer cells themselves, whereas the EBV-Low subgroup was EBV-positive in the surrounding lymphocytes. Further, the EBV-Low subgroup showed a significantly worse prognosis for both gastric cancer and across cancer types. In summary, we classified tumors based on EBV copy number and found a unique cancer subgroup, EBV-positive in the surrounding lymphocytes, which was associated with a poor prognosis.
Collapse
Affiliation(s)
- Norikazu Yogi
- Department of General Surgery, Graduate School of MedicineChiba UniversityJapan,Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan
| | - Genki Usui
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan,Department of Diagnostic PathologyNTT Medical Center TokyoTokyoJapan
| | - Keisuke Matsusaka
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Department of PathologyChiba University HospitalChibaJapan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan
| | - Ryoji Fujiki
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Cancer Genomics CenterChiba University HospitalChibaJapan
| | - Motoaki Seki
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan,Cancer Genomics CenterChiba University HospitalChibaJapan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of MedicineChiba UniversityJapan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Teppei Morikawa
- Department of Diagnostic PathologyNTT Medical Center TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of MedicineChiba UniversityJapan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of MedicineChiba UniversityJapan
| |
Collapse
|
10
|
Song J, Kim JY, Kim S, Park Y. Utility of Epstein-Barr Viral Load in Blood for Diagnosis and Predicting Prognosis of Lymphoma: A Comparison with Epstein-Barr Virus-Encoded RNA in Situ Hybridization. J Mol Diagn 2022; 24:977-991. [PMID: 35718093 DOI: 10.1016/j.jmoldx.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/09/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous pathogen that persists in a small portion of B cells after primary infection and is etiologically associated with multiple lymphoma subtypes. Herein, we evaluated the clinical utility of EBV real-time quantitative PCR in comparison with the widely used Epstein-Barr virus-encoded RNA (EBER) in situ hybridization (ISH) method in 912 patients with four lymphoma subtypes: diffuse large B-cell lymphoma (DLBCL), extranodal natural killer/T-cell lymphoma (ENKTCL), peripheral T-cell lymphoma (PTCL), and Hodgkin lymphoma. We also assessed the impact of EBV positivity determined from each method or a combination of both methods on mortality using Kaplan-Meier survival analysis and Cox proportional hazard regression. EBV real-time quantitative PCR identified more positive cases than EBER-ISH for all subtypes, except ENKTCL. EBV DNA-positive patients with ENKTCL and PTCL displayed poorer overall survival (OS) than EBV DNA-negative patients (P = 0.0016 and P = 0.0013, respectively). In addition, among those with EBER-positive DLBCL and ENKTL and those with EBER-negative PTCL, OS was significantly worse for EBV DNA-positive patients (P = 0.027, P = 0.0016, and P = 0.0018, respectively). EBER positivity was associated with worse OS for DLBCL (P = 0.037), in reanalyses including only the 862 patients with unambiguous EBER-ISH results. Overall, EBV DNA positivity is a more effective prognostic marker than EBER-ISH status for patients with certain lymphoma subtypes.
Collapse
Affiliation(s)
- Junhyup Song
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jun Yong Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sinyoung Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Younhee Park
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol 2022; 148:31-46. [PMID: 34705104 PMCID: PMC8752571 DOI: 10.1007/s00432-021-03824-y] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND More than 90% of the adult population globally is chronically infected by the Epstein-Barr virus (EBV). It is well established that EBV is associated with a number of malignancies, and advances in knowledge of EBV-related malignancies are being made every year. Several studies have analysed the global epidemiology and geographic distribution of EBV-related cancers. However, most have only described a single cancer type or subtype in isolation or limited their study to the three or four most common EBV-related cancers. This review will present an overview on the spectrum of cancers linked to EBV based on observations of associations and proportions in the published literature while also using these observations to estimate the incidence and mortality burden of some of these cancers. METHOD We have reviewed the literature on defining features, distribution and outcomes across six cancers with a relatively large EBV-related case burden: Nasopharyngeal carcinoma (NPC), Gastric carcinoma (GC), Hodgkin lymphoma (HL), Burkitt lymphoma (BL), Diffuse large B-cell lymphoma (DLBCL) and Extranodal NK/T-cell lymphoma, Nasal type (ENKTL-NT). We retrieved published region-specific EBV-related case proportions for NPC, GC, HL and BL and performed meta-analyses on pooled region-specific studies of EBV-related case proportions for DLBCL and ENKTL-NT. We match these pooled proportions with their respective regional incidence and mortality numbers retrieved from a publicly available cancer database. Additionally, we also reviewed the literature on several other less common EBV-related cancers to summarize their key characteristics herein. CONCLUSION We estimated that EBV-related cases from these six cancers accounted for 239,700-357,900 new cases and 137,900-208,700 deaths in 2020. This review highlights the significant global impact of EBV-related cancers and extends the spectrum of disease that could benefit from an EBV-specific therapeutic.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia.
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| | - John J Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
12
|
Bourbon E, Maucort-Boulch D, Fontaine J, Mauduit C, Sesques P, Safar V, Ferrant E, Golfier C, Ghergus D, Karlin L, Lazareth A, Bouafia F, Pica GM, Orsini-Piocelle F, Rocher C, Gros FX, Parrens M, Dony A, Rossi C, Ghesquières H, Bachy E, Traverse-Glehen A, Sarkozy C. Clinicopathological features and survival in EBV-positive diffuse large B-cell lymphoma not otherwise specified. Blood Adv 2021; 5:3227-3239. [PMID: 34427583 PMCID: PMC8405194 DOI: 10.1182/bloodadvances.2021004515] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022] Open
Abstract
In this retrospective study, we report 70 cases of Epstein-Barr virus (EBV)+ diffuse large B-cell lymphoma not otherwise specified (DLBCL-NOS) among 1696 DLBCL-NOS cases diagnosed between 2006 and 2019 (prevalence of 4.1%). At diagnosis, median age was 68.5 years; 79% of the cases presented with an advanced-stage disease (III-IV), 48% with extranodal lesions, and 14% with an hemophagocytic lymphohistiocytosis (HLH) (8 at diagnosis and 1 on therapy). A total of 46 cases presented a polymorphic pattern, and 21 were monomorphic. All had a non-germinal center B phenotype, with the majority of tumor cells expressing CD30 and programmed death ligand 1 (98% and 95%, respectively). Type II and III EBV latency was seen in 88% and 12% of the cases, respectively. Patients were treated with immunochemotherapy (59%) or chemotherapy (22%), and 19% received palliative care due to advanced age and altered performance status. After a median follow-up of 48 months, progression-free survival (PFS) and overall survival (OS) at 5 years were 52.7% and 54.8%, respectively. Older age (>50 years) and HLH were associated with shorter PFS and OS in multivariate analysis (PFS: hazard ratio [HR], 14.01; 95% confidence interval [CI], 2.34-83.97; and HR, 5.78; 95% CI, 2.35-14.23; OS: HR, 12.41; 95% CI, 1.65-93.53; and HR, 6.09; 95% CI, 2.42-15.30, respectively). Finally, using a control cohort of 425 EBV- DLBCL-NOS, EBV positivity was associated with a shorter OS outcome within patients >50 years (5-year OS, 53% [95% CI, 38.2-74] vs 60.8% [95% CI, 55.4-69.3], P = .038), but not in younger patients.
Collapse
Affiliation(s)
- Estelle Bourbon
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
- Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Delphine Maucort-Boulch
- Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- Service de Biostatistique et Bioinformatique, Pôle Santé Publique, Hospices Civils de Lyon, Lyon, France
- Centre national de la recherche scientifique (CNRS), Unité Mixte de Recherche (UMR) 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, Villeurbanne, France
| | - Juliette Fontaine
- Service d'Anatomie Pathologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Claire Mauduit
- Service d'Anatomie Pathologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Pierre Sesques
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Violaine Safar
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Emmanuelle Ferrant
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Camille Golfier
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Dana Ghergus
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Lionel Karlin
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Anne Lazareth
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Fadhela Bouafia
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
| | - Gian Matteo Pica
- Service d'Hématologie, Centre hospitalier Métropole Savoie, Chambéry, France
| | | | - Clément Rocher
- Service d'Hématologie, Groupement Hospitalier Nord Dauphiné, Bourgoin Jallieu, France
| | | | - Marie Parrens
- Service d'Anatomie et de Pathologie, Centre Hospitalo-Universitaire de Bordeaux, Bordeaux, France
- INSERM U1053, BaRITOn, Université de Bordeaux, Bordeaux, France
| | - Arthur Dony
- Service d'Hématologie, Hôpital Nord-Ouest, Villefranche-sur-Saône, France
| | - Cédric Rossi
- Service d'Hématologie, Centre Hospitalier Universitaire de Dijon, Dijon, France
- INSERM UMR 1231, Dijon, France
| | - Hervé Ghesquières
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
- Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- EA LIB (Lymphoma ImmunoBiology), Université Claude Bernard Lyon 1, Lyon, France; and
| | - Emmanuel Bachy
- Service d'Hématologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
- Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- EA LIB (Lymphoma ImmunoBiology), Université Claude Bernard Lyon 1, Lyon, France; and
| | - Alexandra Traverse-Glehen
- Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- Service d'Anatomie Pathologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre Bénite Cedex, France
- EA LIB (Lymphoma ImmunoBiology), Université Claude Bernard Lyon 1, Lyon, France; and
| | - Clémentine Sarkozy
- Département d'Innovation thérapeutique, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
13
|
Chabay P. Advances in the Pathogenesis of EBV-Associated Diffuse Large B Cell Lymphoma. Cancers (Basel) 2021; 13:2717. [PMID: 34072731 PMCID: PMC8199155 DOI: 10.3390/cancers13112717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin's lymphoma (NHL) in adults. Epstein-Barr virus (EBV) positive DLBCL of the elderly was defined by the World Health Organization (WHO) in 2008, it was restricted only to patients older than 50 years old, and it was attributed to immunesenescence associated with physiological aging. After the description of EBV-associated DLBCL in children and young adults, the WHO redefined the definition, leading to the substitution of the modifier "elderly" with "not otherwise specified" (EBV + DLBCL, NOS) in the updated classification, and it is no more considered provisional. The incidence of EBV + DLBCL, NOS varies around the world, in particular influenced by the percentage of EBV+ cells used as cut-off to define a case as EBV-associated. EBV has effect on the genetic composition of tumor cells, on survival, and at the recruitment of immune cells at the microenvironment. In this review, the role of EBV in the pathogenesis of DLBCL is discussed.
Collapse
Affiliation(s)
- Paola Chabay
- Laboratory of Molecular Biology, Pathology Division, Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP-CONICET-GCBA), Ricardo Gutiérrez Children's Hospital, Gallo 1330, Buenos Aires C1425EFD, Argentina
| |
Collapse
|
14
|
The Incidence of Epstein-Barr Virus-Positive Diffuse Large B-Cell Lymphoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:cancers13081785. [PMID: 33917961 PMCID: PMC8068359 DOI: 10.3390/cancers13081785] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The worldwide prevalence of Epstein-Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL) is undetermined. There is no clearly defined cut-off for EBV-encoded RNA (EBER) positivity in tumor cells by in situ hybridization. A lack of common criteria for positive expression of EBER has been raised as a limitation for interpreting and understanding the geographic and ethnic disparity of prevalence of EBV+ DLBCL. We conducted a systematic literature review and meta-analysis to establish the proportions of EBV+ DLBCL patients. Results showed that the pooled proportion of EBER positivity was 7.9% in patients with de novo DLBCL. The prevalence of EBV+ DLBCL was significantly higher in Asia and South America compared with Western countries. A tendency for lower pooled proportions was observed in studies using a higher cut-off for EBER positivity. The patients’ age did not significantly affect the prevalence. These findings may improve our current knowledge of the EBV+ DLBCL. Abstract The worldwide prevalence of Epstein-Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL) is undetermined. There is no clearly defined cut-off for EBV-encoded RNA (EBER) positivity in tumor cells by in-situ hybridization. The purpose of this study was to establish the proportions of EBV+ DLBCL patients and influence of the different cut-offs for EBER positivity, geographical location, and age on the prevalence of EBV+ DLBCL. PubMed and EMBASE were searched for studies published up to May 28, 2020 that reported proportions of EBER positivity in immunocompetent and de novo DLBCL patients. The pooled proportions were computed by an inverse variance method for calculating the weights and the DerSimonian–Laird method. Multiple subgroup analyses were conducted to explore any heterogeneity. Thirty-one studies (8249 patients) were included. The pooled proportion of EBV+ DLBCL was 7.9% (95% CI, 6.2–10.0%) with significant heterogeneity among studies (p < 0.001). The prevalence of EBV+ DLBCL was significantly higher in Asia and South America compared with Western countries (p < 0.01). The cut-offs for EBER positivity (10%, 20%, 50%) and patients’ age (≥50 years vs. <50 years) did not significantly affect the prevalence (p ≥ 0.10). EBV+ DLBCL is rare with a pooled proportion of 7.9% in patients with DLBCL and the geographic heterogeneity was confirmed.
Collapse
|
15
|
Epstein-Barr virus infection is associated with clinical characteristics and poor prognosis of multiple myeloma. Biosci Rep 2020; 39:BSR20190284. [PMID: 30967494 PMCID: PMC6822490 DOI: 10.1042/bsr20190284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to evaluate the relationship of Epstein-Barr virus (EBV) infection and multiple myeloma (MM) and its impact on clinical characteristics and prognosis. Fresh peripheral blood mononuclear cells (PBMCs) from 139 MM patients who had been diagnosed and treated from January 2010 to May 2018 and 50 PBMC samples from healthy donors were obtained. PCR was carried out for detection of EBV-DNA. The results indicated a significantly higher EBV-DNA concentration among 139 MM patients compared with healthy controls (P<0.05). Correlation analysis showed that the expression of EBV-DNA was positively correlated with the serum free light chain ratio (sFLCR) and progressive disease (PD)/relapse (P<0.05). Especially, in EBV-DNA high-expression MM patients, EBV-DNA concentration for patients with sFLCR ≥100 was higher than that of patients with sFLCR <100. EBV-DNA concentration was higher in patients with disease PD/relapse than those without disease PD/relapse. In univariate analysis, the progress free survival (PFS) was inferior in MM patients with high expression of EBV-DNA, high lactate dehydrogenase (LDH), and high-risk according to mSMART and International Myeloma Working Group (IMWG), stage III according to R-ISS staging, extramedullary lesions, and genetic changes (P<0.05). However, in multivariate analysis, LDH, poor karyotype, R-ISS staging, and mSMART were independent prognostic factors for PFS. Taken together, our studies suggest that an association exists between EBV infection and clinical characteristics of MM patients, and EBV infection appears to have a slight impact on the prognosis of MM. However, the results require further validation in other independent prospective MM cohorts.
Collapse
|
16
|
Sakakibara A, Kohno K, Ishikawa E, Suzuki Y, Shimada S, Eladl AE, Elsayed AA, Daroontum T, Satou A, Takahara T, Ohashi A, Takahashi E, Kato S, Nakamura S, Asano N. Age-related EBV-associated B-cell lymphoproliferative disorders and other EBV + lymphoproliferative diseases: New insights into immune escape and immunodeficiency through staining with anti-PD-L1 antibody clone SP142. Pathol Int 2020; 70:481-492. [PMID: 32367595 DOI: 10.1111/pin.12946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) is prevalent among healthy individuals, and is implicated in numerous reactive and neoplastic processes in the immune system. The authors originally identified a series of senile or age-related EBV-associated B-cell lymphoproliferative disorders (LPD) bearing a resemblance to immunodeficiency-associated ones. These LPDs may be associated with immune senescence and are now incorporated into the revised 4th edition of 2017 WHO lymphoma classification as EBV-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS). These EBV+ B-cells often have a Hodgkin/Reed-Sternberg (HRS)-like appearance and are shared beyond the diagnostic categories of mature B-cell neoplasms, mature T-cell neoplasms, classic Hodgkin lymphoma, and immunodeficiency-associated LPD. In addition, peculiar new diseases, such as EBV+ mucocutaneous ulcer and EBV+ DLBCL affecting the young, were recognized. On the other hand, lymphoma classification is now evolving in accord with deeper understanding of the biology of programmed death ligand 1 (PD-L1). Assessing PD-L1 positivity by staining with the anti-PD-L1 monoclonal antibody SP142 provides new insight by discriminating between immune evasion and senescence or immunodeficiency. The aim of the present review is to briefly summarize the diagnostic use of immunostaining with SP142 in malignant lymphomas and/or LPDs that feature tumor and nonmalignant large B-cells harboring EBV.
Collapse
Affiliation(s)
- Ayako Sakakibara
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Aichi, Japan
| | - Kei Kohno
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Aichi, Japan
| | - Eri Ishikawa
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Aichi, Japan
| | - Yuka Suzuki
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Aichi, Japan
| | - Satoko Shimada
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Aichi, Japan
| | - Ahmed E Eladl
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed A Elsayed
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Teerada Daroontum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| | - Akiko Ohashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| | - Emiko Takahashi
- Department of Surgical Pathology, Aichi Medical University Hospital, Aichi, Japan
| | - Seiichi Kato
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Aichi, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Aichi, Japan
| | - Naoko Asano
- Department of Clinical Laboratory, Nagano Prefectural Suzaka Hospital, Nagano, Japan
| |
Collapse
|
17
|
Beltran BE, Castro D, Paredes S, Miranda RN, Castillo JJ. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2020 update on diagnosis, risk-stratification and management. Am J Hematol 2020; 95:435-445. [PMID: 32072672 DOI: 10.1002/ajh.25760] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
DISEASE OVERVIEW Epstein Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) is an entity included in the 2016 WHO classification of lymphoid neoplasms. EBV+ DLBCL, NOS, is an aggressive B-cell lymphoma associated with chronic EBV infection, and a poor prognosis with standard chemotherapeutic approaches. DIAGNOSIS The diagnosis is made through a careful pathological evaluation. Detection of EBV-encoded RNA (EBER) is considered standard for diagnosis; however, a clear cutoff for positivity has not been defined. The differential diagnosis includes plasmablastic lymphoma (PBL), DLBCL associated with chronic inflammation and primary effusion lymphoma (PEL), among others. RISK-STRATIFICATION The International Prognostic Index (IPI) and the Oyama score can be used for risk-stratification. The Oyama score includes age >70 years and presence of B symptoms. The expression of CD30 and PD-1/PD-L1 are emerging as potential adverse but targetable biomarkers. MANAGEMENT Patients with EBV+ DLBCL, NOS, should be staged and managed following similar guidelines than patients with EBV-negative DLBCL. EBV+ DLBCL, NOS, however, might have a worse prognosis than EBV-negative DLBCL in the era of chemoimmunotherapy. There is an opportunity to study and develop targeted therapy in the management of patients with EBV+ DLBCL, NOS.
Collapse
Affiliation(s)
- Brady E. Beltran
- Department of Oncology and Radiotherapy Hospital Nacional Edgardo Rebagliati Martins Lima Peru
- Centro de Investigación de Medicina de Precision, Universidad San Martin de Porres Lima Peru
| | - Denisse Castro
- Department of Oncology and Radiotherapy Hospital Nacional Edgardo Rebagliati Martins Lima Peru
- Centro de Investigación de Medicina de Precision, Universidad San Martin de Porres Lima Peru
| | - Sally Paredes
- Department of Oncology and Radiotherapy Hospital Nacional Edgardo Rebagliati Martins Lima Peru
- Centro de Investigación de Medicina de Precision, Universidad San Martin de Porres Lima Peru
| | - Roberto N. Miranda
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Jorge J. Castillo
- Division of Hematologic Malignancies Dana‐Farber Cancer Institute, Harvard Medical School Boston Massachusetts USA
| |
Collapse
|
18
|
Witte HM, Merz H, Biersack H, Bernard V, Riecke A, Gebauer J, Lehnert H, von Bubnoff N, Feller AC, Gebauer N. Impact of treatment variability and clinicopathological characteristics on survival in patients with Epstein-Barr-Virus positive diffuse large B cell lymphoma. Br J Haematol 2020; 189:257-268. [PMID: 31958882 DOI: 10.1111/bjh.16342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
Patients with EBV-positive diffuse large B cell lymphoma not otherwise specified (EBV+ DLBCL (NOS)) recurrently present with advanced age and reduced performance status. They are therefore insufficiently represented in clinical trials and treatment is likely to differ. Here we assess clinicopathological characteristics, therapeutic variability and clinical outcome in the largest consecutively diagnosed EBV+ DLBCL (NOS) cohort published to date (n = 80; median age 70 years; range 19-90). Centralized and systematic haematopathological panel review was performed. By immunohistochemistry 60/80 patients were CD30-positive. Further, we identified nine EBV+ DLBCL (NOS) patients with associated or composite peripheral T cell lymphoma at diagnosis or relapse (preceded by clonal T cell populations within the initial DLBCL biopsy in 4/5 cases). Most patients (80%) were treated with R-CHOP-type therapy and 16 patients received none or less intensiveprotocols. Upon univariate analysis both R-CHOP-type therapy (OS: P < 0.0001; PFS: P = 0.0617) and negativity for CD30 (OS: P = 0.0002; PFS: P = 0.0002) showed a protective 66 effect, maintained upon multivariate analysis. In a propensity-score matched analysis with a cohort of non-EBV+ DLBCL (NOS) patients, balanced for all revised-international prognostic index factors, we found an EBV-association to hold no significant impact on progression-free and overall survival whilst exhibiting a trend favouring EBV-negativity (OS: P = 0.116; PFS: P = 0.269). Our findings provide insight into the clinical course of EBV+ DLBCL (NOS), highlight the ramifications of CD30-expression and underline the superior therapeutic efficacy of R-CHOP immunochemotherapy. Alternative therapies, incorporating tumour biology (e.g. CD30 directed therapies) need to be explored in EBV+ DLBCL (NOS) patients. Moreover our data advert to the close relationship between EBV+ DLBCL (NOS) and peripheral T cell lymphomas.
Collapse
Affiliation(s)
- Hanno M Witte
- Department of Haematology and Oncology, Federal Armed Hospital Ulm, Ulm, Germany.,Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Harald Biersack
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Veronica Bernard
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Armin Riecke
- Department of Haematology and Oncology, Federal Armed Hospital Ulm, Ulm, Germany
| | - Judith Gebauer
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine I, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Alfred C Feller
- Hämatopathologie Lübeck, Reference Centre for Lymph Node Pathology and Haematopathology, Lübeck, Germany
| | - Niklas Gebauer
- Department of Haematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
19
|
Montgomery ND, Randall C, Painschab M, Seguin R, Kaimila B, Kasonkanji E, Zuze T, Krysiak R, Sanders MK, Elliott A, Miller MB, Kampani C, Chimzimu F, Mulenga M, Damania B, Tomoka T, Fedoriw Y, Dittmer DP, Gopal S. High pretreatment plasma Epstein-Barr virus (EBV) DNA level is a poor prognostic marker in HIV-associated, EBV-negative diffuse large B-cell lymphoma in Malawi. Cancer Med 2020; 9:552-561. [PMID: 31782984 PMCID: PMC6970037 DOI: 10.1002/cam4.2710] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Plasma Epstein-Barr virus (EBV) DNA measurement has established prognostic utility in EBV-driven lymphomas, where it serves as a circulating tumor DNA marker. The value of plasma EBV measurement may be amplified in sub-Saharan Africa (SSA), where advanced imaging and molecular technologies for risk stratification are not typically available. However, its utility in diffuse large B-cell lymphoma (DLBCL) is less certain, given that only a subset of DLBCLs are EBV-positive. To explore this possibility, we measured plasma EBV DNA at diagnosis in a cohort of patients with DLBCL in Malawi. High plasma EBV DNA at diagnosis (≥3.0 log10 copies/mL) was associated with decreased overall survival (OS) (P = .048). When stratified by HIV status, the prognostic utility of baseline plasma EBV DNA level was restricted to HIV-positive patients. Unexpectedly, most HIV-positive patients with high plasma EBV DNA at diagnosis had EBV-negative lymphomas, as confirmed by multiple methods. Even in these HIV-positive patients with EBV-negative DLBCL, high plasma EBV DNA remained associated with shorter OS (P = .014). These results suggest that EBV reactivation in nontumor cells is a poor prognostic finding even in HIV-positive patients with convincingly EBV-negative DLBCL, extending the potential utility of EBV measurement as a valuable and implementable prognostic marker in SSA.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/blood
- DNA, Viral/blood
- DNA, Viral/genetics
- Epstein-Barr Virus Infections/blood
- Epstein-Barr Virus Infections/complications
- Epstein-Barr Virus Infections/diagnosis
- Epstein-Barr Virus Infections/virology
- Female
- Follow-Up Studies
- HIV/isolation & purification
- HIV Infections/blood
- HIV Infections/complications
- HIV Infections/diagnosis
- HIV Infections/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Humans
- Lymphoma, AIDS-Related/blood
- Lymphoma, AIDS-Related/epidemiology
- Lymphoma, AIDS-Related/mortality
- Lymphoma, AIDS-Related/virology
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/epidemiology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/virology
- Malawi/epidemiology
- Male
- Middle Aged
- Prognosis
- Prospective Studies
- Survival Rate
- Young Adult
Collapse
Affiliation(s)
- Nathan D. Montgomery
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
| | - Cara Randall
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
| | - Matthew Painschab
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
- Department of MedicineDivision of Hematology & OncologyUniversity of North CarolinaChapel HillNCUSA
| | | | | | | | | | | | - Marcia K. Sanders
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
| | | | - Melissa B. Miller
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
| | | | | | | | - Blossom Damania
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- Department of Microbiology & ImmunologyUniversity of North CarolinaChapel HillNCUSA
| | | | - Yuri Fedoriw
- Department of Pathology & Laboratory MedicineUniversity of North CarolinaChapel HillNCUSA
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
| | - Dirk P. Dittmer
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- Department of Microbiology & ImmunologyUniversity of North CarolinaChapel HillNCUSA
| | - Satish Gopal
- Lineberger Comprehensive Cancer CenterUniversity of North CarolinaChapel HillNCUSA
- UNC Project‐MalawiLilongweMalawi
- Department of MedicineDivision of Hematology & OncologyUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
20
|
Jiang Y, Lin J, Zhang J, Lu S, Wang C, Tong Y. Expression of co-inhibitory molecules B7-H4 and B7-H1 in Epstein-Barr virus positive diffuse large B-cell lymphoma and their roles in tumor invasion. Pathol Res Pract 2019; 215:152684. [PMID: 31679792 DOI: 10.1016/j.prp.2019.152684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/26/2019] [Accepted: 10/06/2019] [Indexed: 11/25/2022]
Abstract
To investigate the relationship between immunoregulatory molecules B7-H4 and B7-H1 in Epstein-Barr positive diffuse large B-cell lymphoma (EBV+DLBCL). Immunohistochemistry was used to detect the expression of B7-H4 and B7-H1 in tumor tissues of 13 patients with EBV+DLBCL. The expression levels of B7-H4 and B7-H1 in four diffuse large B-cell lymphoma cell lines (SU-DHL-4, SU-DHL-10, SU-DHL-6, Pfeiffer) were analyzed by flow cytometry. Transwell invasion assays were conducted to observe the invasive ability of cell lines. B7-H4 and B7-H1 were expressed in 84.62% and 100% tumor specimens of EBV+DLBCL. The overexpression of B7-H4 and B7-H1 was found in 46.15% and 23.08% tumor samples of EBV+DLBCL. There was a medium negative correlation between the expression levels of B7-H4 and B7-H1 (r = -0.667, P = 0.013, spearman rank correlation). The expression levels of B7-H1 in four diffuse large B-cell lymphoma cell lines were positively correlated with their invasive ability, whereas the expression levels of B7-H4 were not. Here, we provide evidence for the negative relationship between B7-H4 and B7-H1 in EBV+DLBCL. The expression of B7-H1 in EBV+DLBCL appears to be the dominant factor which affects tumor aggressiveness. When B7-H1 expression weakens, the molecule B7-H4 may become the dominant factor of prognosis in patients with EBV+DLBCL.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jun Lin
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China
| | - Jing Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, 270 Dongan Road, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 138 Yi xue yuan Road, Shanghai, 200032, China
| | - Shasha Lu
- Department of Hematology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai 200127, China
| | - Chun Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| |
Collapse
|
21
|
Castillo JJ, Beltran BE, Miranda RN, Young KH, Chavez JC, Sotomayor EM. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2018 update on diagnosis, risk-stratification and management. Am J Hematol 2018; 93:953-962. [PMID: 29984868 DOI: 10.1002/ajh.25112] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/29/2022]
Abstract
DISEASE OVERVIEW Epstein Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) is an entity included in the 2016 WHO classification of lymphoid neoplasms. EBV+ DLBCL, NOS, is an aggressive B-cell lymphoma associated with chronic EBV infection, and a poor prognosis with standard chemotherapeutic approaches. DIAGNOSIS The diagnosis is made through a careful pathological evaluation. Detection of EBV-encoded RNA is considered standard for diagnosis; however, a clear cutoff for positivity has not been defined. The differential diagnosis includes plasmablastic lymphoma, DLBCL associated with chronic inflammation, primary effusion lymphoma, HHV8+ DLBCL, NOS, and EBV+ mucocutaneuos ulcer. RISK-STRATIFICATION The International prognostic index (IPI) and the Oyama score can be used for risk-stratification. The Oyama score includes age >70 years and presence of B symptoms. The expression of CD30 is emerging as a potential adverse, and targetable, prognostic factor. MANAGEMENT Patients with EBV+ DLBCL, NOS, should be staged and managed following similar guidelines than patients with EBV-negative DLBCL. EBV+ DLBCL, NOS, however, has a worse prognosis than EBV-negative DLBCL in the era of chemoimmunotherapy. There is an opportunity to study and develop targeted therapy in the management of patients with EBV+ DLBCL, NOS.
Collapse
Affiliation(s)
- Jorge J. Castillo
- Division of Hematologic Malignancies; Dana-Farber Cancer Institute, Harvard Medical School; Boston Massachusetts
| | - Brady E. Beltran
- Department of Oncology and Radiotherapy; Hospital Nacional Edgardo Rebagliati Martins, and Research Center for Precision Medicine, Universidad San Martin de Porres Medical School; Lima Peru
| | - Roberto N. Miranda
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Ken H. Young
- Department of Hematopathology; The University of Texas MD Anderson Cancer Center; Houston Texas
| | - Julio C. Chavez
- Section of Malignant Hematology; Moffitt Cancer Center, University of South Florida; Tampa Florida
| | - Eduardo M. Sotomayor
- Department of Hematology and Oncology; George Washington Cancer Center, George Washington University; Washington DC
| |
Collapse
|
22
|
Sun Z, Yan L, Tang J, Qian Q, Lenberg J, Zhu D, Liu W, Wu K, Wang Y, Lu S. Brief introduction of current technologies in isolation of broadly neutralizing HIV-1 antibodies. Virus Res 2017; 243:75-82. [PMID: 29051051 PMCID: PMC7114535 DOI: 10.1016/j.virusres.2017.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 12/11/2022]
Abstract
HIV/AIDS has become a worldwide pandemic. Before an effective HIV-1 vaccine eliciting broadly neutralizing monoclonal antibodies (bnmAbs) is fully developed, passive immunization for prevention and treatment of HIV-1 infection may alleviate the burden caused by the pandemic. Among HIV-1 infected individuals, about 20% of them generated cross-reactive neutralizing antibodies two to four years after infection, the details of which could provide knowledge for effective vaccine design. Recent progress in techniques for isolation of human broadly neutralizing antibodies has facilitated the study of passive immunization. The isolation and characterization of large panels of potent human broadly neutralizing antibodies has revealed new insights into the principles of antibody-mediated neutralization of HIV. In this paper, we review the current effective techniques in broadly neutralizing antibody isolation.
Collapse
Affiliation(s)
- Zehua Sun
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States.
| | - Lixin Yan
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China.
| | - Jiansong Tang
- Department of Technical Specialist, China Bioengineering Technology Group Limited, Unit 209,Building 16W, Hong Kong Science Park, Shatin, NT, HK, 999077, Hong Kong
| | - Qian Qian
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States
| | - Jerica Lenberg
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, United States; Augustana University, 2001 S Summit Avenue, Sioux Falls, SD, 571977, United States
| | - Dandan Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, 77030, United States
| | - Wan Liu
- Harbin Medical University Affiliated 2nd Hospital, 246 Xuefu Road, Harbin, 150086, China
| | - Kao Wu
- Glyn O. Philips Hydrocolloid Research Center at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yilin Wang
- University of California, Irvine. 100 Pacific, Irvine, CA, 92618, United States
| | - Shiqiang Lu
- AIDS Institute, Faculty of Medicine, The University of Hong Kong, No21 Sassoon Road, 999077, Hong Kong, Hong Kong.
| |
Collapse
|