1
|
Aoki H, Takasawa A, Yamamoto E, Niinuma T, Yamano HO, Harada T, Kubo T, Yorozu A, Kitajima H, Ishiguro K, Kai M, Katanuma A, Shinohara T, Nakase H, Sugai T, Osanai M, Suzuki H. Downregulation of SMOC1 is associated with progression of colorectal traditional serrated adenomas. BMC Gastroenterol 2024; 24:91. [PMID: 38429655 PMCID: PMC10905814 DOI: 10.1186/s12876-024-03175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Aberrant DNA methylation is prevalent in colorectal serrated lesions. We previously reported that the CpG island of SMOC1 is frequently methylated in traditional serrated adenomas (TSAs) and colorectal cancers (CRCs) but is rarely methylated in sessile serrated lesions (SSLs). In the present study, we aimed to further characterize the expression of SMOC1 in early colorectal lesions. METHODS SMOC1 expression was analyzed immunohistochemically in a series of colorectal tumors (n = 199) and adjacent normal colonic tissues (n = 112). RESULTS SMOC1 was abundantly expressed in normal colon and SSLs while it was significantly downregulated in TSAs, advanced adenomas and cancers. Mean immunohistochemistry scores were as follows: normal colon, 24.2; hyperplastic polyp (HP), 18.9; SSL, 23.8; SSL with dysplasia (SSLD)/SSL with early invasive cancer (EIC), 15.8; TSA, 5.4; TSA with high grade dysplasia (HGD)/EIC, 4.7; non-advanced adenoma, 21.4; advanced adenoma, 11.9; EIC, 10.9. Higher levels SMOC1 expression correlated positively with proximal colon locations and flat tumoral morphology, reflecting its abundant expression in SSLs. Among TSAs that contained both flat and protruding components, levels of SMOC1 expression were significantly lower in the protruding components. CONCLUSION Our results suggest that reduced expression of SMOC1 is associated with progression of TSAs and conventional adenomas and that SMOC1 expression may be a biomarker for diagnosis of serrated lesions and risk prediction in colorectal tumors.
Collapse
Affiliation(s)
- Hironori Aoki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
- Department of Gastroenterology and Endoscopy, Koyukai Shin-Sapporo Hospital, Sapporo, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Hiro-O Yamano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Taku Harada
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | - Toshiyuki Kubo
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Akio Katanuma
- Center for Gastroenterology, Teine-Keijinkai Hospital, Sapporo, Japan
| | | | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-Ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
2
|
Srivastava A, Rikhari D, Srivastava S. RSPO2 as Wnt signaling enabler: Important roles in cancer development and therapeutic opportunities. Genes Dis 2024; 11:788-806. [PMID: 37692504 PMCID: PMC10491879 DOI: 10.1016/j.gendis.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 01/16/2023] [Indexed: 09/12/2023] Open
Abstract
R-spondins are secretory proteins localized in the endoplasmic reticulum and Golgi bodies and are processed through the secretory pathway. Among the R-spondin family, RSPO2 has emanated as a novel regulator of Wnt signaling, which has now been acknowledged in numerous in vitro and in vivo studies. Cancer is an abnormal growth of cells that proliferates and spreads uncontrollably due to the accumulation of genetic and epigenetic factors that constitutively activate Wnt signaling in various types of cancer. Colorectal cancer (CRC) begins when cells in the colon and rectum follow an indefinite pattern of division due to aberrant Wnt activation as one of the key hallmarks. Decades-long progress in research on R-spondins has demonstrated their oncogenic function in distinct cancer types, particularly CRC. As a critical regulator of the Wnt pathway, it modulates several phenotypes of cells, such as cell proliferation, invasion, migration, and cancer stem cell properties. Recently, RSPO mutations, gene rearrangements, fusions, copy number alterations, and altered gene expression have also been identified in a variety of cancers, including CRC. In this review, we addressed the recent updates regarding the recurrently altered R-spondins with special emphasis on the RSPO2 gene and its involvement in potentiating Wnt signaling in CRC. In addition to the compelling physiological and biological roles in cellular fate and regulation, we propose that RSPO2 would be valuable as a potential biomarker for prognostic, diagnostic, and therapeutic use in CRC.
Collapse
Affiliation(s)
- Ankit Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Deeksha Rikhari
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, Uttar Pradesh 211004, India
| |
Collapse
|
3
|
Fujii M, Sekine S, Sato T. Decoding the basis of histological variation in human cancer. Nat Rev Cancer 2024; 24:141-158. [PMID: 38135758 DOI: 10.1038/s41568-023-00648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Molecular abnormalities that shape human neoplasms dissociate their phenotypic landscape from that of the healthy counterpart. Through the lens of a microscope, tumour pathology optically captures such aberrations projected onto a tissue slide and has categorized human epithelial neoplasms into distinct histological subtypes based on the diverse morphogenetic and molecular programmes that they manifest. Tumour histology often reflects tumour aggressiveness, patient prognosis and therapeutic vulnerability, and thus has been used as a de facto diagnostic tool and for making clinical decisions. However, it remains elusive how the diverse histological subtypes arise and translate into pleiotropic biological phenotypes. Molecular analysis of clinical tumour tissues and their culture, including patient-derived organoids, and add-back genetic reconstruction of tumorigenic pathways using gene engineering in culture models and rodents further elucidated molecular mechanisms that underlie morphological variations. Such mechanisms include genetic mutations and epigenetic alterations in cellular identity codes that erode hard-wired morphological programmes and histologically digress tumours from the native tissues. Interestingly, tumours acquire the ability to grow independently of the niche-driven stem cell ecosystem along with these morphological alterations, providing a biological rationale for histological diversification during tumorigenesis. This Review comprehensively summarizes our current understanding of such plasticity in the histological and lineage commitment fostered cooperatively by molecular alterations and the tumour environment, and describes basic and clinical implications for future cancer therapy.
Collapse
Affiliation(s)
- Masayuki Fujii
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Ter Steege EJ, Doornbos LW, Haughton PD, van Diest PJ, Hilkens J, Derksen PWB, Bakker ERM. R-spondin-3 promotes proliferation and invasion of breast cancer cells independently of Wnt signaling. Cancer Lett 2023; 568:216301. [PMID: 37406727 DOI: 10.1016/j.canlet.2023.216301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Loes W Doornbos
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter D Haughton
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John Hilkens
- Department of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Nanishi K, Hino H, Hatakeyama K, Shiomi A, Kagawa H, Manabe S, Yamaoka Y, Nagashima T, Ohshima K, Urakami K, Akiyama Y, Yamaguchi K. Incidence and clinical significance of 491 known fusion genes in a large cohort of Japanese patients with colorectal cancer. Int J Clin Oncol 2023; 28:785-793. [PMID: 37022622 DOI: 10.1007/s10147-023-02335-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
BACKGROUND The clinical significance of fusion genes in colorectal cancer remains unclear. The purpose of this study was to determine the incidence of fusion genes in colorectal cancer and explore their clinical significance by screening for common fusion genes in a large Japanese cohort. METHODS This study involved 1588 patients. The incidence of 491 fusion genes was examined using a designed fusion panel. In addition, the patients were classified into two groups (RSPO fusion-positive or -negative) according to the presence of RSPO fusions, and the clinicopathological and genetic characteristics of both groups were compared. Long-term outcomes were analyzed in patients without distant metastases. RESULTS Fusion genes were detected in 2% (31/1588) of colorectal cancers. The incidence of RSPO fusions (such as PTPRK-RSPO3 and EIF3E-RSPO2) was 1.5% (24/1588), making them the most common fusions, whereas the incidence of other fusion genes was extremely low. The distribution of consensus molecular subtypes and frequency of APC mutations were significantly different between the RSPO fusion-positive and -negative groups. The 3-year cumulative incidence rate of recurrence was higher in the RSPO fusion-positive group than in the RSPO fusion-negative group (positive, 31.2% vs. negative, 13.5%, hazard ratio = 2.357; p = 0.040). CONCLUSION Broad screening for fusion genes showed that RSPO fusions were the most common in colorectal cancer, with an incidence of 1.5%. RSPO fusions may be clinically significant in identifying patients at a high risk of recurrence who would be responsive to specific treatments.
Collapse
Affiliation(s)
- Kenji Nanishi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture, 411-8777, Japan
| | - Hitoshi Hino
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture, 411-8777, Japan.
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture, 411-8777, Japan
| | - Hiroyasu Kagawa
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture, 411-8777, Japan
| | - Shoichi Manabe
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture, 411-8777, Japan
| | - Yusuke Yamaoka
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka Prefecture, 411-8777, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | | |
Collapse
|
6
|
ter Steege EJ, Boer M, Timmer NC, Ammerlaan CME, Song J, Derksen PWB, Hilkens J, Bakker ERM. R-spondin-3 is an oncogenic driver of poorly differentiated invasive breast cancer. J Pathol 2022; 258:289-299. [PMID: 36106661 PMCID: PMC9825844 DOI: 10.1002/path.5999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/β-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/β-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eline J ter Steege
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mandy Boer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nikki C Timmer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Carola ME Ammerlaan
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ji‐Ying Song
- Department of Experimental Animal PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - John Hilkens
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elvira RM Bakker
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands,Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
7
|
Hashimoto T, Takayanagi D, Yonemaru J, Naka T, Nagashima K, Yatabe Y, Shida D, Hamamoto R, Kleeman SO, Leedham SJ, Maughan T, Takashima A, Shiraishi K, Sekine S. Clinicopathological and molecular characteristics of RSPO fusion-positive colorectal cancer. Br J Cancer 2022; 127:1043-1050. [PMID: 35715628 PMCID: PMC9470590 DOI: 10.1038/s41416-022-01880-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND RSPO fusions that lead to WNT pathway activation are potential therapeutic targets in colorectal cancer (CRC), but their clinicopathological significance remains unclear. METHODS We screened 1019 CRCs for RSPO fusions using multiplex reverse transcription-PCR. The RSPO fusion-positive tumours were subjected to whole-exome sequencing (WES). RESULTS Our analysis identified 29 CRCs with RSPO fusions (2.8%), consisting of five with an EIF3E-RSPO2 fusion and 24 with PTPRK-RSPO3 fusions. The patients were 17 women and 12 men. Thirteen tumours (45%) were right-sided. Histologically, approximately half of the tumours (13/29, 45%) had a focal or extensive mucinous component that was significantly more frequent than the RSPO fusion-negative tumours (13%; P = 8.1 × 10-7). Four tumours (14%) were mismatch repair-deficient. WES identified KRAS, BRAF, and NRAS mutations in a total of 27 tumours (93%). In contrast, pathogenic mutations in major WNT pathway genes, such as APC, CTNNB1 and RNF43, were absent. RSPO fusion status did not have a statistically significant influence on the overall or recurrence-free survival. These clinicopathological and genetic features were also confirmed in a pooled analysis of previous studies. CONCLUSION RSPO fusion-positive CRCs constitute a rare subgroup of CRCs with several characteristic clinicopathological and genetic features.
Collapse
Affiliation(s)
- Taiki Hashimoto
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Daisuke Takayanagi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Junpei Yonemaru
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoaki Naka
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
| | - Yasushi Yatabe
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Dai Shida
- Division of Colorectal Surgery, National Cancer Center Hospital, Tokyo, Japan.,Division of Frontier Surgery, The Institute of Medical Science, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Welcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | | | - Atsuo Takashima
- Division of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan. .,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
8
|
Serrated Colorectal Lesions: An Up-to-Date Review from Histological Pattern to Molecular Pathogenesis. Int J Mol Sci 2022; 23:ijms23084461. [PMID: 35457279 PMCID: PMC9032676 DOI: 10.3390/ijms23084461] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Until 2010, colorectal serrated lesions were generally considered as harmless lesions and reported as hyperplastic polyps (HPs) by pathologists and gastroenterologists. However, recent evidence showed that they may bear the potential to develop into colorectal carcinoma (CRC). Therefore, the World Health Organization (WHO) classification has identified four categories of serrated lesions: hyperplastic polyps (HPs), sessile serrated lesions (SSLs), traditional serrated adenoma (TSAs) and unclassified serrated adenomas. SSLs with dysplasia and TSAs are the most common precursors of CRC. CRCs arising from serrated lesions originate via two different molecular pathways, namely sporadic microsatellite instability (MSI) and the CpG island methylator phenotype (CIMP), the latter being considered as the major mechanism that drives the serrated pathway towards CRC. Unlike CRCs arising through the adenoma-carcinoma pathway, APC-inactivating mutations are rarely shown in the serrated neoplasia pathway.
Collapse
|
9
|
Roles of fusion genes in digestive system cancers: dawn for cancer precision therapy. Crit Rev Oncol Hematol 2022; 171:103622. [PMID: 35124200 DOI: 10.1016/j.critrevonc.2022.103622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
For advanced and advanced tumors of the digestive system, personalized, precise treatment could be a lifesaving medicine. With the development of next-generation sequencing technology, detection of fusion genes in solid tumors has become more extensive. Some fusion gene targeting therapies have been written into the guidelines for digestive tract tumors, such as for neurotrophic receptor tyrosine kinase, fibroblast growth factor receptor 2. There are also many fusion genes being investigated as potential future therapeutic targets. This review focuses on the current detection methods for fusion genes, fusion genes written into the digestive system tumor guidelines, and potential fusion gene therapy targets in different organs to discuss the possibility of clinical treatments for these targets in digestive system tumors.
Collapse
|
10
|
Mizuguchi Y, Tanaka Y, Cho H, Sekiguchi M, Takamaru H, Yamada M, Sakamoto T, Matsuda T, Hashimoto T, Sekine S, Saito Y. Endoscopic features of isolated and traditional serrated adenoma-associated superficially serrated adenomas of the colorectum. Dig Endosc 2022; 34:153-162. [PMID: 33871900 DOI: 10.1111/den.13992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/11/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM Superficially serrated adenoma (SuSA) is a recently proposed subtype of colorectal serrated lesions. It is characterized by distinct clinicopathological and molecular features, including mixed serrated and adenomatous histology and frequent genetic alterations involving KRAS and RSPO. This study aimed to characterize the endoscopic features of isolated and traditional serrated adenoma (TSA)-associated SuSAs. METHODS We retrospectively evaluated the endoscopic findings of 25 isolated SuSAs and 21 TSA-associated SuSAs that were histologically and molecularly characterized. RESULTS SuSAs appeared as a sessile polyp or slightly elevated lesion located mostly in the sigmoid colon and rectum (88%). The size was between 3 and 20 mm (median, 6 mm). Most of them exhibited KRAS mutations (96%) and RSPO fusions/overexpression (92%). Endoscopically, many lesions had a whitish color (84%), a distinct border (96%), an irregular border (76%), and a lobulated surface (72%). However, diminutive lesions exhibited overlapping features with hyperplastic polyps. On narrow-band imaging, vessel patterns were invisible or appeared as lacy microvessels in most lesions (80%). Chromoendoscopy invariably showed stellar or elongated/branched stellar pits, indicating a serrated microarchitecture. Most TSA-associated SuSAs typically presented as polyps with a two-tier raised appearance, consisting of whitish lower and reddish higher components corresponding to a SuSA and a TSA, respectively. CONCLUSIONS SuSAs exhibit several characteristic endoscopic features on white-light and image-enhanced endoscopy. Diminutive lesions exhibit endoscopic features overlapping with hyperplastic polyps. Nonetheless, the endoscopic diagnosis of larger and TSA-associated SuSAs may be feasible.
Collapse
Affiliation(s)
- Yasuhiko Mizuguchi
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan.,Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yusaku Tanaka
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan.,Division of Gastroenterology, Keiyu Hospital, Kanagawa, Japan
| | - Hourin Cho
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Masau Sekiguchi
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan.,Cancer Screening Center, National Cancer Center Hospital, Tokyo, Japan
| | | | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Taku Sakamoto
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Takahisa Matsuda
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan.,Cancer Screening Center, National Cancer Center Hospital, Tokyo, Japan
| | - Taiki Hashimoto
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Division of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
11
|
Alruwaii ZI, Chianchiano P, Larman T, Wilentz A, Wood LD, Montgomery EA. Familial Adenomatous Polyposis-associated Traditional Serrated Adenoma of the Small Intestine: A Clinicopathologic and Molecular Analysis. Am J Surg Pathol 2021; 45:1626-1632. [PMID: 34232600 DOI: 10.1097/pas.0000000000001770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Familial adenomatous polyposis (FAP) is an inherited cancer predisposition syndrome associated with numerous gastrointestinal tract adenomatous polyps, as well as gastric fundic gland polyps and pyloric gland adenomas in the upper gastrointestinal tract. While colonic FAP-associated traditional serrated adenomas (TSAs) have been reported in a few studies, small bowel FAP-associated adenomas with TSA morphology have not been characterized. This study describes the clinicopathologic and molecular findings of this type of adenoma in the small bowel of patients with FAP. We reviewed small bowel adenomas in 45 consecutive FAP patients to identify adenomas with zones showing slit-like serrations, cells with eosinophilic cytoplasm, ectopic crypt formation, and vesicular nuclei. Sporadic small bowel adenomas from 51 consecutive patients were also reviewed for adenomas with the same features. Of the 177 polyps from 45 FAP patients and 60 polyps from 51 nonsyndromic patients, 18 TSAs from 9 FAP patients (20%) and 10 TSAs from the sporadic group (19.6%) were identified. FAP patients presented at a younger age than nonsyndromic patients (median: 43 vs. 66; P=0.0048). FAP-associated TSAs were asymptomatic and smaller than sporadic TSAs (median size: 0.6 vs. 2.5 cm; P=0.00006). Immunostaining for β-catenin and testing for BRAF and KRAS mutations were performed in a subset of the cohort. Nuclear β-catenin was seen in 1 FAP-associated TSA and 3 nonsyndromic TSAs. All TSAs (FAP-associated and nonsyndromic) showed wild-type BRAF, while KRAS mutations were identified only in the nonsyndromic setting. In summary, small bowel FAP-associated and sporadic TSAs share a similar morphology, and the BRAF-serrated pathway does not contribute to their pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Laura D Wood
- Department of Pathology, Johns Hopkins School of Medicine
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University of Medicine, Baltimore, MD
| | | |
Collapse
|
12
|
Ter Steege EJ, Bakker ERM. The role of R-spondin proteins in cancer biology. Oncogene 2021; 40:6469-6478. [PMID: 34663878 PMCID: PMC8616751 DOI: 10.1038/s41388-021-02059-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
R-spondin (RSPO) proteins constitute a family of four secreted glycoproteins (RSPO1-4) that have appeared as multipotent signaling ligands. The best-known molecular function of RSPOs lie within their capacity to agonize the Wnt/β-catenin signaling pathway. As RSPOs act upon cognate receptors LGR4/5/6 that are typically expressed by stem cells and progenitor cells, RSPO proteins importantly potentiate Wnt/β-catenin signaling especially within these proliferative stem cell compartments. Since multiple organs express LGR4/5/6 receptors and RSPO ligands within their stem cell niches, RSPOs can exert an influential role in stem cell regulation throughout the body. Inherently, over the last decade a multitude of reports implicated the deregulation of RSPOs in cancer development. First, RSPO2 and RSPO3 gene fusions with concomitant enhanced expression have been identified in colon cancer patients, and proposed as an alternative driver of Wnt/β-catenin hyperactivation that earmarks cancer in the colorectal tract. Moreover, the causal oncogenic capacity of RSPO3 overactivation has been demonstrated in the mouse intestine. As a paradigm organ in this field, most of current knowledge about RSPOs in cancer is derived from studies in the intestinal tract. However, RSPO gene fusions as well as enhanced RSPO expression have been reported in multiple additional cancer types, affecting different organs that involve divergent stem cell hierarchies. Importantly, the emerging oncogenic role of RSPO and its potential clinical utility as a therapeutic target have been recognized and investigated in preclinical and clinical settings. This review provides a survey of current knowledge on the role of RSPOs in cancer biology, addressing the different organs implicated, and of efforts made to explore intervention opportunities in cancer cases with RSPO overrepresentation, including the potential utilization of RSPO as novel therapeutic target itself.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Galuppini F, Fassan M, Mastracci L, Gafà R, Lo Mele M, Lazzi S, Remo A, Parente P, D'Amuri A, Mescoli C, Tatangelo F, Lanza G. The histomorphological and molecular landscape of colorectal adenomas and serrated lesions. Pathologica 2021; 113:218-229. [PMID: 34294939 PMCID: PMC8299322 DOI: 10.32074/1591-951x-270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
The 2019 WHO classification of digestive system tumors significantly reformed the classificatory definition of serrated lesions of the colorectal mucosa and added new essential diagnostic criteria for both conventional adenomas and hereditary gastrointestinal polyposis syndromes. Histopathological examination of colorectal adenocarcinoma precursors lesions represents an important segment of daily clinical practice in a pathology department and is essential for the implementation of current colorectal adenocarcinoma secondary prevention strategies. This overview will focus on a schematic histopathological and molecular classification of precursor lesions arising within colorectal mucosa.
Collapse
Affiliation(s)
- Francesca Galuppini
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy.,Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Luca Mastracci
- Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, Genova, Italy.,Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Roberta Gafà
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Marcello Lo Mele
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Andrea Remo
- Pathology Unit, Service Department, ULSS9 "Scaligera", Verona, Italy
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | | | - Claudia Mescoli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Italy
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori, IRCCS-Fondazione "G. Pascale", Naples, Italy
| | - Giovanni Lanza
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
14
|
Discovering the Mutational Profile of Early Colorectal Lesions: A Translational Impact. Cancers (Basel) 2021; 13:cancers13092081. [PMID: 33923068 PMCID: PMC8123354 DOI: 10.3390/cancers13092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) is one of the most common malignancies worldwide. Next-generation sequencing technologies have identified new candidate genes and deepened the knowledge of the molecular mechanisms underlying the progression of colonic adenomas towards CRC. The main genetic, epigenetic, and molecular alterations driving the onset and progression of CRC in both hereditary and sporadic settings have also been investigated. The evaluation of the CRC risk based on the molecular characterization of early pre-cancerous lesions may contribute to the development of targeted preventive strategies development, help define specific risk profiles, and identify patients who will benefit from targeted endoscopic surveillance. Abstract Colorectal cancer (CRC) develops through a multi-step process characterized by the acquisition of multiple somatic mutations in oncogenes and tumor-suppressor genes, epigenetic alterations and genomic instability. These events lead to the progression from precancerous lesions to advanced carcinomas. This process requires several years in a sporadic setting, while occurring at an early age and or faster in patients affected by hereditary CRC-predisposing syndromes. Since advanced CRC is largely untreatable or unresponsive to standard or targeted therapies, the endoscopic treatment of colonic lesions remains the most efficient CRC-preventive strategy. In this review, we discuss recent studies that have assessed the genetic alterations in early colorectal lesions in both hereditary and sporadic settings. Establishing the genetic profile of early colorectal lesions is a critical goal in the development of risk-based preventive strategies.
Collapse
|
15
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
16
|
Clinicopathologic and Molecular Characteristics of Familial Adenomatous Polyposis-associated Traditional Serrated Adenoma. Am J Surg Pathol 2020; 44:1282-1289. [PMID: 32384323 DOI: 10.1097/pas.0000000000001502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Colorectal carcinogenesis in familial adenomatous polyposis (FAP) follows a conventional adenoma-carcinoma sequence. However, previous studies have also reported the occurrence of traditional serrated adenomas (TSAs) in patients with FAP. In the present study, we analyzed the clinicopathologic and molecular features of 37 TSAs from 21 FAP patients. Histologically, the majority of FAP-associated TSAs showed typical cytology and slit-like serration; however, ectopic crypt formation was infrequent. Next-generation sequencing and Sanger sequencing identified KRAS and BRAF V600E mutations in 18 (49%) and 14 (38%) TSAs, respectively. Somatic APC mutations were detected in 26 lesions (84% of analyzed cases). Three lesions had BRAF non-V600E mutations, and 2 of them had a concurrent KRAS mutation. Seven TSAs (19%) were associated with a precursor polyp, 6 with a hyperplastic polyp, and 1 with a sessile serrated lesion, and all of them showed the BRAF V600E mutation. Additional sequencing analysis of 4 TSAs with a precursor polyp showed that the BRAF V600E mutation was shared between the TSA and precursor components, but APC mutations were exclusive to the TSA component in all the analyzed lesions. None of the lesions showed the high CpG island methylation phenotype. These results indicate that FAP-associated TSAs frequently have KRAS or BRAF mutations, similar to sporadic cases, and second-hit somatic APC mutations are commonly involved in their tumorigenesis as in other FAP-associated tumors. Although progression to adenocarcinoma is likely rare, tumorigenesis via the serrated pathway occurs in patients with FAP.
Collapse
|
17
|
Kim JH, Kang GH. Evolving pathologic concepts of serrated lesions of the colorectum. J Pathol Transl Med 2020; 54:276-289. [PMID: 32580537 PMCID: PMC7385269 DOI: 10.4132/jptm.2020.04.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Here, we provide an up-to-date review of the histopathology and molecular pathology of serrated colorectal lesions. First, we introduce the updated contents of the 2019 World Health Organization classification for serrated lesions. The sessile serrated lesion (SSL) is a new diagnostic terminology that replaces sessile serrated adenoma and sessile serrated polyp. The diagnostic criteria for SSL were revised to require only one unequivocal distorted serrated crypt, which is sufficient for diagnosis. Unclassified serrated adenomas have been included as a new category of serrated lesions. Second, we review ongoing issues concerning the morphology of serrated lesions. Minor morphologic variants with distinct molecular features were recently defined, including serrated tubulovillous adenoma, mucin-rich variant of traditional serrated adenoma (TSA), and superficially serrated adenoma. In addition to intestinal dysplasia and serrated dysplasia, minimal deviation dysplasia and not otherwise specified dysplasia were newly suggested as dysplasia subtypes of SSLs. Third, we summarize the molecular features of serrated lesions. The critical determinant of CpG island methylation development in SSLs is patient age. Interestingly, there may be ethnic differences in BRAF/KRAS mutation frequencies in SSLs. The molecular pathogenesis of TSAs is divided into KRAS and BRAF mutation pathways. SSLs with MLH1 methylation can progress into favorable prognostic microsatellite instability-positive (MSI+)/CpG island methylator phenotype-positive (CIMP+) carcinomas, whereas MLH1-unmethylated SSLs and BRAF-mutated TSAs can be precursors of poor-prognostic MSI-/CIMP+ carcinomas. Finally, based on our recent data, we propose an algorithm for stratifying risk subgroups of non-dysplastic SSLs.
Collapse
Affiliation(s)
- Jung Ho Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Gyeong Hoon Kang
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Laboratory of Epigenetics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
18
|
Gui H, Husson MA, Mannan R. Correlations of morphology and molecular alterations in traditional serrated adenoma. World J Gastrointest Pathophysiol 2020; 11:78-83. [PMID: 32587787 PMCID: PMC7303981 DOI: 10.4291/wjgp.v11.i4.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Traditional serrated adenoma was first reported by Longacre and Fenoglio-Presier in 1990. Their initial study described main features of this lesion, but the consensus diagnostic criteria were not widely adopted until recently. Traditional serrated adenoma presents with grossly protuberant configuration and pinecone-like appearance upon endoscopy. Histologically, it is characterized by ectopic crypt formation, slit-like serration, eosinophilic cytoplasm and pencillate nuclei. Although much is now known about the morphology and molecular changes, the mechanisms underlying the morphological alterations are still not fully understood. Furthermore, the origin of traditional serrated adenoma is not completely known. We review recent studies of the traditional serrated adenoma and provide an overview on current understanding of this rare entity.
Collapse
Affiliation(s)
- Hongxing Gui
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA 19107, United States
| | - Michael A Husson
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA 19107, United States
| | - Rifat Mannan
- Department of Pathology and Laboratory Medicine, Pennsylvania Hospital of the University of Pennsylvania Health System, Philadelphia, PA 19107, United States
| |
Collapse
|
19
|
Kleeman SO, Koelzer VH, Jones HJ, Vazquez EG, Davis H, East JE, Arnold R, Koppens MA, Blake A, Domingo E, Cunningham C, Beggs AD, Pestinger V, Loughrey MB, Wang LM, Lannagan TR, Woods SL, Worthley D, Consortium SC, Tomlinson I, Dunne PD, Maughan T, Leedham SJ. Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification. Gut 2020; 69:1092-1103. [PMID: 31563876 PMCID: PMC7212029 DOI: 10.1136/gutjnl-2019-319126] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/20/2019] [Accepted: 09/07/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Pathological Wnt pathway activation is a conserved hallmark of colorectal cancer. Wnt-activating mutations can be divided into: i) ligand-independent (LI) alterations in intracellular signal transduction proteins (Adenomatous polyposis coli, β-catenin), causing constitutive pathway activation and ii) ligand-dependent (LD) mutations affecting the synergistic R-Spondin axis (RNF43, RSPO-fusions) acting through amplification of endogenous Wnt signal transmembrane transduction. Our aim was to exploit differential Wnt target gene expression to generate a mutation-agnostic biomarker for LD tumours. DESIGN We undertook harmonised multi-omic analysis of discovery (n=684) and validation cohorts (n=578) of colorectal tumours collated from publicly available data and the Stratification in Colorectal Cancer Consortium. We used mutation data to establish molecular ground truth and subdivide lesions into LI/LD tumour subsets. We contrasted transcriptional, methylation, morphological and clinical characteristics between groups. RESULTS Wnt disrupting mutations were mutually exclusive. Desmoplastic stromal upregulation of RSPO may compensate for absence of epithelial mutation in a subset of stromal-rich tumours. Key Wnt negative regulator genes were differentially expressed between LD/LI tumours, with targeted hypermethylation of some genes (AXIN2, NKD1) occurring even in CIMP-negative LD cancers. AXIN2 mRNA expression was used as a discriminatory molecular biomarker to distinguish LD/LI tumours (area under the curve >0.93). CONCLUSIONS Epigenetic suppression of appropriate Wnt negative feedback loops is selectively advantageous in LD tumours and differential AXIN2 expression in LD/LI lesions can be exploited as a molecular biomarker. Distinguishing between LD/LI tumour types is important; patients with LD tumours retain sensitivity to Wnt ligand inhibition and may be stratified at diagnosis to clinical trials of Porcupine inhibitors.
Collapse
Affiliation(s)
- Sam O Kleeman
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Viktor H Koelzer
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zurich, Switzerland
| | - Helen Js Jones
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
- Oxford Colorectal Surgery Department, Nuffield Department of Surgery, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Ester Gil Vazquez
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Hayley Davis
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - James E East
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, UK
| | - Roland Arnold
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Martijn Aj Koppens
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Chris Cunningham
- Oxford Colorectal Surgery Department, Nuffield Department of Surgery, Churchill Hospital, Oxford, Oxfordshire, UK
| | - Andrew D Beggs
- Surgical Research Laboratory, Institute of Cancer & Genomic Science, University of Birmingham, Birminghaam, United Kingdom
| | - Valerie Pestinger
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Maurice B Loughrey
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | | | - Tamsin Rm Lannagan
- South Australian Health & Medical Research Institute & School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Susan L Woods
- South Australian Health & Medical Research Institute & School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel Worthley
- South Australian Health & Medical Research Institute & School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Ian Tomlinson
- Cancer Genetics and Evolution Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Philip D Dunne
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Timothy Maughan
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Simon J Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Fennell LJ, Kane A, Liu C, McKeone D, Fernando W, Su C, Bond C, Jamieson S, Dumenil T, Patch AM, Kazakoff SH, Pearson JV, Waddell N, Leggett B, Whitehall VLJ. APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers. Cancers (Basel) 2020; 12:E1171. [PMID: 32384699 PMCID: PMC7281581 DOI: 10.3390/cancers12051171] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND WNT activation is a hallmark of colorectal cancer. BRAF mutation is present in 15% of colorectal cancers, and the role of mutations in WNT signaling regulators in this context is unclear. Here, we evaluate the mutational landscape of WNT signaling regulators in BRAF mutant cancers. METHODS we performed exome-sequencing on 24 BRAF mutant colorectal cancers and analyzed these data in combination with 175 publicly available BRAF mutant colorectal cancer exomes. We assessed the somatic mutational landscape of WNT signaling regulators, and performed hotspot and driver mutation analyses to identify potential drivers of WNT signaling. The effects of Apc and Braf mutation were modelled, in vivo, using the Apcmin/+ and BrafV637/Villin-CreERT2/+ mouse, respectively. RESULTS RNF43 was the most frequently mutated WNT signaling regulator (41%). Mutations in the beta-catenin destruction complex occurred in 48% of cancers. Hotspot analyses identified potential cancer driver genes in the WNT signaling cascade, including MEN1, GNG12 and WNT16. Truncating APC mutation was identified in 20.8% of cancers. Truncating APC mutation was associated with early age at diagnosis (p < 2 × 10-5), advanced stage (p < 0.01), and poor survival (p = 0.026). Apcmin/+/BrafV637 animals had more numerous and larger SI and colonic lesions (p < 0.0001 and p < 0.05, respectively), and a markedly reduced survival (median survival: 3.2 months, p = 8.8 × 10-21), compared to animals with Apc or Braf mutation alone. CONCLUSIONS the WNT signaling axis is frequently mutated in BRAF mutant colorectal cancers. WNT16 and MEN1 may be novel drivers of aberrant WNT signaling in colorectal cancer. Co-mutation of BRAF and APC generates an extremely aggressive neoplastic phenotype that is associated with poor patient outcome.
Collapse
Affiliation(s)
- Lochlan J. Fennell
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Alexandra Kane
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston 4006, Australia
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Envoi Specialist Pathologists, Queensland 4059, Australia
| | - Diane McKeone
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Winnie Fernando
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Chang Su
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Catherine Bond
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Saara Jamieson
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Stephen H. Kazakoff
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Barbara Leggett
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Department of Gastroenterology and Hepatology, The Royal Brisbane and Women’s Hospital, Queensland 4006, Australia
| | - Vicki L. J. Whitehall
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston 4006, Australia
| |
Collapse
|
21
|
Sekine S, Yamashita S, Yamada M, Hashimoto T, Ogawa R, Yoshida H, Taniguchi H, Kojima M, Ushijima T, Saito Y. Clinicopathological and molecular correlations in traditional serrated adenoma. J Gastroenterol 2020; 55:418-427. [PMID: 32052185 DOI: 10.1007/s00535-020-01673-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Traditional serrated adenoma (TSA) is the least common type of colorectal serrated polyp, which exhibits considerable morphological and molecular diversity. METHODS We examined the spectra of alterations in MAPK and WNT pathway genes and their relationship with clinicopathological features in 128 TSAs. RESULTS Sequencing analyses identified BRAF V600E, BRAF non-V600E, KRAS, and NRAS mutations in 77, 3, 45, and 1 lesion, respectively. Collectively, 124 lesions (97%) had mutations in MAPK pathway genes. Alterations in WNT pathway genes were identified in 107 lesions (84%), including RSPO fusions/overexpression, RNF43 mutations, ZNRF3 mutations, APC mutations, and CTNNB1 mutations in 47, 45, 2, 13, and 2 lesions, respectively. Ten lesions (8%) harbored GNAS mutations. There was significant interdependence between the altered MAPK and WNT pathway genes. RSPO fusions/overexpression was significantly associated with KRAS mutations (31/47, 66%), whereas most RNF43 mutations coexisted with the BRAF V600E mutation (40/45, 89%). Histologically, extensive slit-like serration was more common in lesions with the BRAF V600E mutation (71%) and those with RNF43 mutations (87%). Prominent ectopic crypt formation was more prevalent in lesions with RSPO fusions/overexpression (58%) and those with GNAS mutations (100%). CONCLUSIONS Our observations indicate that TSAs mostly harbor various combinations of concurrent WNT and MAPK gene alterations. The associations between genetic and morphological features suggest that the histological diversity of TSA reflects the underlying molecular heterogeneity.
Collapse
Affiliation(s)
- Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Masayoshi Yamada
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Taiki Hashimoto
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Reiko Ogawa
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Taniguchi
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Motohiro Kojima
- Division of Pathology, Research Center for Innovative Oncology, National Cancer Center, Kashiwa, Chiba, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
22
|
Chen Z, Zhou L, Chen L, Xiong M, Kazobinka G, Pang Z, Hou T. RSPO3 promotes the aggressiveness of bladder cancer via Wnt/β-catenin and Hedgehog signaling pathways. Carcinogenesis 2019; 40:360-369. [PMID: 30329043 DOI: 10.1093/carcin/bgy140] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/15/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022] Open
Abstract
R-spondin 3 (RSPO3) is a secreted protein that associates directly with Wnt/β-catenin signaling. However, its functional contribution and prognostic value in human bladder cancer remain unclear. Here, we showed that RSPO3 is upregulated in bladder cancer tissues and cells, and high expression of RSPO3 correlates with advanced clinicopathological features, poor prognosis and disease progression in bladder cancer patients. Furthermore, we observed that ectopic expression or knockdown of RSPO3 profoundly promoted or inhibited, respectively, the invasive ability of bladder cancer cells. Mechanistically, RSPO3 promoted bladder cancer progression via mediating the Wnt/β-catenin and Hedgehog signaling pathways. These findings demonstrate, for the first time, that RSPO3 exhibited a tumor-promoting effect in bladder cancer cells through activation of Wnt/β-catenin and Hedgehog signaling pathways. Thus, RSPO3 may be served as a potential therapeutic target for bladder cancer treatment.
Collapse
Affiliation(s)
- Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan HB, China.,Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijie Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan HB, China
| | - Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan HB, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan HB, China
| | - Gallina Kazobinka
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan HB, China
| | - Zili Pang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan HB, China
| | - Teng Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan HB, China
| |
Collapse
|
23
|
Acquisition of WNT Pathway Gene Alterations Coincides With the Transition From Precursor Polyps to Traditional Serrated Adenomas. Am J Surg Pathol 2019; 43:132-139. [PMID: 30179900 DOI: 10.1097/pas.0000000000001149] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal traditional serrated adenomas (TSAs) are often associated with precursor polyps, including hyperplastic polyps and sessile serrated adenoma/polyps. To elucidate the molecular mechanisms involved in the progression from precursor polyps to TSAs, the present study analyzed 15 precursor polyp-associated TSAs harboring WNT pathway gene mutations. Laser microdissection-based sequencing analysis showed that BRAF or KRAS mutations were shared between TSA and precursor polyps in all lesions. In contrast, the statuses of WNT pathway gene mutations were different between the 2 components. In 8 lesions, RNF43, APC, or CTNNB1 mutations, were exclusively present in TSA. RNF43 mutations were shared between the TSA and precursor components in 3 lesions; however, they were heterozygous in the precursor polyps whereas homozygous in the TSA. In 4 lesions with PTPRK-RSPO3 fusions, RNA in situ hybridization demonstrated that overexpression of RSPO3, reflecting PTPRK-RSPO3 fusion transcripts, was restricted to TSA components. Consistent with the results of the genetic and in situ hybridization analyses, nuclear β-catenin accumulation and MYC overexpression were restricted to the TSA component in 13 and 12 lesions, respectively. These findings indicate that the WNT pathway gene alterations are acquired during the progression from the precursor polyps to TSAs and that the activation of the WNT pathway plays a critical role in the development of TSA rather than their progression to high-grade lesions.
Collapse
|
24
|
Pai RK, Bettington M, Srivastava A, Rosty C. An update on the morphology and molecular pathology of serrated colorectal polyps and associated carcinomas. Mod Pathol 2019; 32:1390-1415. [PMID: 31028362 DOI: 10.1038/s41379-019-0280-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 02/08/2023]
Abstract
Our understanding of serrated colorectal polyps has increased dramatically over the past two decades and has led to a modern classification scheme for these lesions. Sessile serrated polyps with dysplasia represent the most clinically significant serrated polyp; however, the morphologic heterogeneity of dysplasia in sessile serrated polyps has only recently been recognized and correlated with MLH1 immunohistochemistry. Detailed morphologic analysis of traditional serrated adenomas has led to the recognition of flat and early forms of this polyp. Robust data on the risk of metachronous lesions in patients with serrated polyps are also beginning to emerge. This review will summarize our current understanding of serrated polyps and associated carcinomas with a focus on diagnostic criteria, morphologic heterogeneity, molecular findings, and natural history. Controversial issues in the diagnosis and classification of these polyps are also discussed.
Collapse
Affiliation(s)
- Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, 85259, USA.
| | - Mark Bettington
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia.,Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia.,The Conjoint Gastroenterology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Amitabh Srivastava
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Christophe Rosty
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Envoi Specialist Pathologists, Brisbane, QLD, 4059, Australia. .,Department of Pathology, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
25
|
Crockett SD, Nagtegaal ID. Terminology, Molecular Features, Epidemiology, and Management of Serrated Colorectal Neoplasia. Gastroenterology 2019; 157:949-966.e4. [PMID: 31323292 DOI: 10.1053/j.gastro.2019.06.041] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/07/2019] [Accepted: 06/15/2019] [Indexed: 12/11/2022]
Abstract
In addition to the adenoma to carcinoma sequence, colorectal carcinogenesis can occur via the serrated pathway. Studies have focused on clarification of categories and molecular features of serrated polyps, as well as endoscopic detection and risk assessment. Guidelines from the World Health Organization propose assigning serrated polyps to categories of hyperplastic polyps, traditional serrated adenomas, and sessile serrated lesions (SSLs). Traditional serrated adenomas and SSLs are precursors to colorectal cancer. The serrated pathway is characterized by mutations in RAS and RAF, disruptions to the Wnt signaling pathway, and widespread methylation of CpG islands. Epidemiology studies of serrated polyps have been hampered by inconsistencies in terminology and reporting, but the prevalence of serrated class polyps is 20%-40% in average-risk individuals; most serrated polyps detected are hyperplastic. SSLs, the most common premalignant serrated subtype, and are found in up to 15% of average-risk patients by high-detecting endoscopists. Variations in rate of endoscopic detection of serrated polyps indicate the need for careful examination, with adequate bowel preparation and sufficient withdrawal times. Risk factors for SSLs include white race, family history of colorectal cancer, smoking, and alcohol intake. Patients with serrated polyps, particularly SSLs and traditional serrated adenomas, have an increased risk of synchronous and metachronous advanced neoplasia. Surveillance guidelines vary among countries, but SSLs and proximal hyperplastic polyps require special attention in assignment of surveillance interval-especially in light of concerns regarding incomplete detection and resection.
Collapse
Affiliation(s)
- Seth D Crockett
- Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Chetty R. Dysplasia in traditional serrated adenoma. Ann Diagn Pathol 2019; 42:75-77. [PMID: 31349124 DOI: 10.1016/j.anndiagpath.2019.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Runjan Chetty
- Laboratory Medicine Program, Department of Anatomical Pathology, University Health Network and University of Toronto, Toronto, Canada.
| |
Collapse
|
27
|
McCarthy AJ, Serra S, Chetty R. Traditional serrated adenoma: an overview of pathology and emphasis on molecular pathogenesis. BMJ Open Gastroenterol 2019; 6:e000317. [PMID: 31413858 PMCID: PMC6673762 DOI: 10.1136/bmjgast-2019-000317] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/21/2022] Open
Abstract
Objective To provide an overview of the pathology and molecular pathogenesis of traditional serrated adenomas (TSA). Design Describe the morphology and molecules that play a role in their pathogenesis. Results These exuberant polypoid lesions are typified by tall cells with deeply eosinophilic cytoplasm, elongated nuclei bearing delicate chromatin, ectopic crypt foci, deep clefting of the lining mucosa and an overall resemblance to small bowel mucosa. Broadly, TSAs arise via three mechanisms. They may be BRAF mutated and CpG island methylator phenotype (CIMP)-high: right sided, mediated through a microvesicular hyperplastic polyp or a sessile serrated adenoma, may also have RNF43 mutations and result in microsatellite stable (MSS) colorectal cancers (CRC). The second pathway that is mutually exclusive of the first is mediated through KRAS mutation with CIMP-low TSAs. These are left-sided TSAs, are not associated with another serrated polyp and result in MSS CRC. These TSAs also have RSPO3, RNF43 and p53 mutations together with aberrant nuclear localisation of β-catenin. Third, there is a smaller group of TSAs that are BRAF and KRAS wild type and arise by as yet unknown molecular events. All TSAs show retention of mismatch repair proteins. Conclusion These are characteristic unusual polyps with a complex molecular landscape.
Collapse
Affiliation(s)
- Aoife J McCarthy
- Division of Anatomical Pathology, Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Stefano Serra
- Division of Anatomical Pathology, Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Runjan Chetty
- Division of Anatomical Pathology, Laboratory Medicine Program, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Hashimoto T, Ogawa R, Yoshida H, Taniguchi H, Kojima M, Saito Y, Sekine S. EIF3E-RSPO2 and PIEZO1-RSPO2 fusions in colorectal traditional serrated adenoma. Histopathology 2019; 75:266-273. [PMID: 30916365 DOI: 10.1111/his.13867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/27/2019] [Accepted: 03/22/2019] [Indexed: 01/15/2023]
Abstract
AIMS Traditional serrated adenoma (TSA) is an uncommon type of colorectal serrated polyp. RSPO fusions, which potentiate WNT signalling, are common and characteristic genetic alterations in TSA. The aim of this study was to further characterise the prevalence and variation of RSPO fusions in TSA. METHODS AND RESULTS Quantitative polymerase chain reaction (PCR) analysis of 99 TSAs revealed overexpression of RSPO2 and RSPO3 in six and 29 lesions, respectively. Reverse transcription PCR identified previously reported PTPRK-RSPO3 fusion transcripts in all 29 TSAs with RSPO3 overexpression, confirming that PTPRK-RSPO3 is the predominant RSPO fusion in TSAs. Among the six lesions with RSPO2 overexpression, two overexpressed full-length RSPO2. An EIF3E-RSPO2 fusion, which is a known recurrent RSPO fusion in colorectal cancer, was detected in three lesions. In addition, rapid amplification of cDNA ends identified a novel PIEZO1-RSPO2 fusion in one TSA. All of the four TSAs with RSPO2 fusions concurrently had KRAS mutations and showed the classic histological features. CONCLUSIONS The present study identified EIF3E-RSPO2 and PIEZO1-RSPO2 in TSAs. Our observations expand the spectrum of RSPO fusions in TSAs, and suggest that TSAs are precursors of colorectal cancers with these RSPO2 fusions.
Collapse
Affiliation(s)
- Taiki Hashimoto
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Reiko Ogawa
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Taniguchi
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Motohiro Kojima
- Division of Pathology, Research Center for Innovative Oncology, National Cancer Center, Kashiwa, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
29
|
Identification of a novel PRR15L-RSPO2 fusion transcript in a sigmoid colon cancer derived from superficially serrated adenoma. Virchows Arch 2019; 475:659-663. [PMID: 31209633 DOI: 10.1007/s00428-019-02604-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/15/2019] [Accepted: 06/06/2019] [Indexed: 01/26/2023]
Abstract
Superficially serrated adenoma (SuSA) is a recently proposed subtype of colorectal serrated lesion. We here report a sigmoid colon cancer derived from SuSA, which exhibited aggressive clinical behavior. Endoscopically, the tumor appeared as a superficial elevated lesion with a large nodule. Histological examination of the surgically resected material showed tubular adenocarcinoma associated with SuSA. Although tumor invasion was limited to the submucosal layer, lymph node and extranodal metastases were detected. The patient subsequently developed peritoneal metastases and died 15 months after surgery. Molecular analyses identified a KRAS mutation and a novel PRR15L-RSPO2 fusion, which retains the entire coding region of RSPO2, in both SuSA and adenocarcinoma components. The present study demonstrates the malignant potential of SuSA and expands the spectrum of RSPO fusions in colorectal neoplasms.
Collapse
|
30
|
Bhalla A, Zulfiqar M, Bluth MH. Molecular Diagnostics in Colorectal Carcinoma: Advances and Applications for 2018. Clin Lab Med 2019; 38:311-342. [PMID: 29776633 DOI: 10.1016/j.cll.2018.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The molecular pathogenesis and classification of colorectal carcinoma are based on the traditional adenomaecarcinoma sequence, serrated polyp pathway, and microsatellite instability (MSI). The genetic basis for hereditary nonpolyposis colorectal cancer is the detection of mutations in the MLH1, MSH2, MSH6, PMS2, and EPCAM genes. Genetic testing for Lynch syndrome includes MSI testing, methylator phenotype testing, BRAF mutation testing, and molecular testing for germline mutations in MMR genes. Molecular makers with predictive and prognostic implications include quantitative multigene reverse transcriptase polymerase chain reaction assay and KRAS and BRAF mutation analysis. Mismatch repair-deficient tumors have higher rates of programmed death-ligand 1 expression. Cell-free DNA analysis in fluids are proving beneficial for diagnosis and prognosis in these disease states towards effective patient management.
Collapse
Affiliation(s)
- Amarpreet Bhalla
- Department of Pathology and Anatomical Sciences, Jacobs School of Buffalo, Buffalo, NY 14203, USA.
| | | | - Martin H Bluth
- Department of Pathology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; Pathology Laboratories, Michigan Surgical Hospital, 21230 Dequindre Road, Warren, MI 48091, USA
| |
Collapse
|
31
|
Hashimoto T, Tanaka Y, Ogawa R, Mori T, Yoshida H, Taniguchi H, Hiraoka N, Kojima M, Oono Y, Saito Y, Sekine S. Superficially serrated adenoma: a proposal for a novel subtype of colorectal serrated lesion. Mod Pathol 2018; 31:1588-1598. [PMID: 29789649 DOI: 10.1038/s41379-018-0069-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022]
Abstract
We describe a series of colorectal polyps characterized by mixed adenomatous and serrated features, herein referred to as superficially serrated adenomas. Twenty superficially serrated adenomas were obtained from 11 female and 9 male patients aged 62-87 years. Most lesions endoscopically appeared as small sessile polyps, but larger lesions were plaque-like (2-20 mm; median, 5 mm). Eighteen lesions (90%) were located in the sigmoid colon or rectum. They consisted primarily of straight, adenomatous glands but showed serration confined to the superficial layer. Immunohistochemistry revealed CK20 expression in the upper layer. Proliferating cells, determined by their expression of Ki-67, were localized to the middle to bottom layers. Genetic analyses identified KRAS mutations in 19 lesions and a BRAF mutation in one lesion. Furthermore, RSPO fusions and/or overexpression were observed in 18 lesions and truncating APC mutations were observed in the two remaining lesions. Consistent with the presence of WNT pathway gene alterations, all superficially serrated adenomas showed focal or diffuse nuclear β-catenin accumulation. Since concurrent KRAS mutations and RSPO fusions are reportedly common in traditional serrated adenomas, we reviewed 129 traditional serrated adenomas and found 15 lesions (12%) that were associated with superficially serrated adenoma components. Remarkably, all but one superficially serrated adenoma-associated traditional serrated adenoma exhibited concurrent KRAS mutations and RSPO fusions/overexpression. The present study suggests that superficially serrated adenoma is a morphologically and molecularly distinct type of colorectal serrated polyp that is histogenetically related to traditional serrated adenoma.
Collapse
Affiliation(s)
- Taiki Hashimoto
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Yusaku Tanaka
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Reiko Ogawa
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Taisuke Mori
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Yoshida
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Taniguchi
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Motohiro Kojima
- Division of Pathology, Research Center for Innovative Oncology, National Cancer Center, Chiba, Kashiwa, Japan
| | - Yasuhiro Oono
- Endoscopy Division, National Cancer Center Hospital East, Chiba, Kashiwa, Japan
| | - Yutaka Saito
- Endoscopy Division, National Cancer Center Hospital, Tokyo, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan. .,Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
32
|
Li C, Cao J, Zhang N, Tu M, Xu F, Wei S, Chen X, Xu Y. Identification of RSPO2 Fusion Mutations and Target Therapy Using a Porcupine Inhibitor. Sci Rep 2018; 8:14244. [PMID: 30250044 PMCID: PMC6155119 DOI: 10.1038/s41598-018-32652-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/03/2018] [Indexed: 01/21/2023] Open
Abstract
Cancers are driven by a variety of somatic gene mutations and identifying these mutations enables the development of novel target drugs. We have sought to identify abnormalities in Wnt pathway-related genes that are sensitive to Wnt inhibitor treatment. We examined Patient Derived Xenograft (PDX) RNA samples and found new R-Spondin 2 (RSPO2) transcript fusions with the EMC2, PVT1 or HNF4G genes. These fusion events were identified in about 1.4% of the digestive system cancer samples. We then examined the oncogenic effects of the RSPO2-EMC2 fusion gene and confirmed that it can drive oncogenesis, sustain tumor growth and promote metastasis. Finally, we used a Wnt pathway Porcupine inhibitor CGX1321 to treat PDX mouse models containing RSPO2 fusion genes. All the RSPO2 fusion tumors responded to the treatment and stopped progression. Our data show that Wnt pathway inhibition could provide an effective treatment for cancers containing RSPO2 fusion. The RSPO2 fusion will serve as a good biomarker for screening patients to support clinical treatment of digestive system cancers using Wnt pathway inhibitors.
Collapse
Affiliation(s)
- Chong Li
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Jing Cao
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Ning Zhang
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Meiqing Tu
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Fengwei Xu
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Shuang Wei
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Xiaojing Chen
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Yuhong Xu
- Pharmacy School, Shanghai Jiaotong University, Shanghai, 200240, China.
| |
Collapse
|
33
|
Hiromoto T, Murakami T, Akazawa Y, Sasahara N, Saito T, Sakamoto N, Mitomi H, Nagahara A, Yao T. Immunohistochemical and genetic characteristics of a colorectal mucin-rich variant of traditional serrated adenoma. Histopathology 2018; 73:444-453. [DOI: 10.1111/his.13643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Takafumi Hiromoto
- Department of Gastroenterology; Juntendo University School of Medicine; Tokyo Japan
- Department of Human Pathology; Juntendo University School of Medicine; Tokyo Japan
| | - Takashi Murakami
- Department of Gastroenterology; Juntendo University School of Medicine; Tokyo Japan
- Department of Human Pathology; Juntendo University School of Medicine; Tokyo Japan
| | - Yoichi Akazawa
- Department of Gastroenterology; Juntendo University School of Medicine; Tokyo Japan
- Department of Human Pathology; Juntendo University School of Medicine; Tokyo Japan
| | - Noriko Sasahara
- Department of Human Pathology; Juntendo University School of Medicine; Tokyo Japan
| | - Tsuyoshi Saito
- Department of Human Pathology; Juntendo University School of Medicine; Tokyo Japan
| | - Naoto Sakamoto
- Department of Gastroenterology; Juntendo University School of Medicine; Tokyo Japan
| | - Hiroyuki Mitomi
- Department of Diagnostic Pathology and Laboratory Medicine; Odawara Municipal Hospital; Odawara Japan
| | - Akihito Nagahara
- Department of Gastroenterology; Juntendo University School of Medicine; Tokyo Japan
| | - Takashi Yao
- Department of Human Pathology; Juntendo University School of Medicine; Tokyo Japan
| |
Collapse
|