1
|
Molero A, Hernandez S, Alonso M, Peressini M, Curto D, Lopez-Rios F, Conde E. Assessment of PD-L1 expression and tumour infiltrating lymphocytes in early-stage non-small cell lung carcinoma with artificial intelligence algorithms. J Clin Pathol 2024:jcp-2024-209766. [PMID: 39419594 DOI: 10.1136/jcp-2024-209766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
AIMS To study programmed death ligand 1 (PD-L1) expression and tumour infiltrating lymphocytes (TILs) in patients with early-stage non-small cell lung carcinoma (NSCLC) with artificial intelligence (AI) algorithms. METHODS The study included samples from 50 early-stage NSCLCs. PD-L1 immunohistochemistry (IHC) stained slides (clone SP263) were scored manually and with two different AI tools (PathAI and Navify Digital Pathology) by three pathologists. TILs were digitally assessed on H&E and CD8 IHC stained sections with two different algorithms (PathAI and Navify Digital Pathology, respectively). The agreement between observers and methods for each biomarker was analysed. For PD-L1, the turn-around time (TAT) for manual versus AI-assisted scoring was recorded. RESULTS Agreement was higher in tumours with low PD-L1 expression regardless of the approach. Both AI-powered tools identified a significantly higher number of cases equal or above 1% PD-L1 tumour proportion score as compared with manual scoring (p=0.00015), a finding with potential therapeutic implications. Regarding TAT, there were significant differences between manual scoring and AI use (p value <0.0001 for all comparisons). The total TILs density with the PathAI algorithm and the total density of CD8+ cells with the Navify Digital Pathology software were significantly correlated (τ=0.49 (95% CI 0.37, 0.61), p value<0.0001). CONCLUSIONS This preliminary study supports the use of AI algorithms for the scoring of PD-L1 and TILs in patients with NSCLC.
Collapse
Affiliation(s)
- Aida Molero
- Pathology, Complejo Asistencial de Segovia, Segovia, Spain
| | - Susana Hernandez
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Marta Alonso
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Melina Peressini
- Tumor Microenvironment and Immunotherapy Research Group, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Daniel Curto
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Universidad Complutense de Madrid, Madrid, Spain
| | - Esther Conde
- Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 de Octubre (i+12), CIBERONC, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Schukow CP, Allen TC. Digital and Computational Pathology Are Pathologists' Physician Extenders. Arch Pathol Lab Med 2024; 148:866-870. [PMID: 38531382 DOI: 10.5858/arpa.2023-0537-ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 03/28/2024]
Affiliation(s)
- Casey P Schukow
- From the Department of Pathology, Corewell Health's Beaumont Hospital, Royal Oak, Michigan
| | - Timothy Craig Allen
- From the Department of Pathology, Corewell Health's Beaumont Hospital, Royal Oak, Michigan
| |
Collapse
|
3
|
Hilgers L, Ghaffari Laleh N, West NP, Westwood A, Hewitt KJ, Quirke P, Grabsch HI, Carrero ZI, Matthaei E, Loeffler CML, Brinker TJ, Yuan T, Brenner H, Brobeil A, Hoffmeister M, Kather JN. Automated curation of large-scale cancer histopathology image datasets using deep learning. Histopathology 2024; 84:1139-1153. [PMID: 38409878 DOI: 10.1111/his.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Artificial intelligence (AI) has numerous applications in pathology, supporting diagnosis and prognostication in cancer. However, most AI models are trained on highly selected data, typically one tissue slide per patient. In reality, especially for large surgical resection specimens, dozens of slides can be available for each patient. Manually sorting and labelling whole-slide images (WSIs) is a very time-consuming process, hindering the direct application of AI on the collected tissue samples from large cohorts. In this study we addressed this issue by developing a deep-learning (DL)-based method for automatic curation of large pathology datasets with several slides per patient. METHODS We collected multiple large multicentric datasets of colorectal cancer histopathological slides from the United Kingdom (FOXTROT, N = 21,384 slides; CR07, N = 7985 slides) and Germany (DACHS, N = 3606 slides). These datasets contained multiple types of tissue slides, including bowel resection specimens, endoscopic biopsies, lymph node resections, immunohistochemistry-stained slides, and tissue microarrays. We developed, trained, and tested a deep convolutional neural network model to predict the type of slide from the slide overview (thumbnail) image. The primary statistical endpoint was the macro-averaged area under the receiver operating curve (AUROCs) for detection of the type of slide. RESULTS In the primary dataset (FOXTROT), with an AUROC of 0.995 [95% confidence interval [CI]: 0.994-0.996] the algorithm achieved a high classification performance and was able to accurately predict the type of slide from the thumbnail image alone. In the two external test cohorts (CR07, DACHS) AUROCs of 0.982 [95% CI: 0.979-0.985] and 0.875 [95% CI: 0.864-0.887] were observed, which indicates the generalizability of the trained model on unseen datasets. With a confidence threshold of 0.95, the model reached an accuracy of 94.6% (7331 classified cases) in CR07 and 85.1% (2752 classified cases) for the DACHS cohort. CONCLUSION Our findings show that using the low-resolution thumbnail image is sufficient to accurately classify the type of slide in digital pathology. This can support researchers to make the vast resource of existing pathology archives accessible to modern AI models with only minimal manual annotations.
Collapse
Affiliation(s)
- Lars Hilgers
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Narmin Ghaffari Laleh
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Alice Westwood
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Katherine J Hewitt
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Heike I Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Zunamys I Carrero
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Emylou Matthaei
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Chiara M L Loeffler
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tanwei Yuan
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Tissue Bank, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
4
|
Kim D, Thrall MJ, Michelow P, Schmitt FC, Vielh PR, Siddiqui MT, Sundling KE, Virk R, Alperstein S, Bui MM, Chen-Yost H, Donnelly AD, Lin O, Liu X, Madrigal E, Zakowski MF, Parwani AV, Jenkins E, Pantanowitz L, Li Z. The current state of digital cytology and artificial intelligence (AI): global survey results from the American Society of Cytopathology Digital Cytology Task Force. J Am Soc Cytopathol 2024:S2213-2945(24)00039-5. [PMID: 38744615 DOI: 10.1016/j.jasc.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The integration of whole slide imaging (WSI) and artificial intelligence (AI) with digital cytology has been growing gradually. Therefore, there is a need to evaluate the current state of digital cytology. This study aimed to determine the current landscape of digital cytology via a survey conducted as part of the American Society of Cytopathology (ASC) Digital Cytology White Paper Task Force. MATERIALS AND METHODS A survey with 43 questions pertaining to the current practices and experiences of WSI and AI in both surgical pathology and cytology was created. The survey was sent to members of the ASC, the International Academy of Cytology (IAC), and the Papanicolaou Society of Cytopathology (PSC). Responses were recorded and analyzed. RESULTS In total, 327 individuals participated in the survey, spanning a diverse array of practice settings, roles, and experiences around the globe. The majority of responses indicated there was routine scanning of surgical pathology slides (n = 134; 61%) with fewer respondents scanning cytology slides (n = 150; 46%). The primary challenge for surgical WSI is the need for faster scanning and cost minimization, whereas image quality is the top issue for cytology WSI. AI tools are not widely utilized, with only 16% of participants using AI for surgical pathology samples and 13% for cytology practice. CONCLUSIONS Utilization of digital pathology is limited in cytology laboratories as compared to surgical pathology. However, as more laboratories are willing to implement digital cytology in the near future, the establishment of practical clinical guidelines is needed.
Collapse
Affiliation(s)
- David Kim
- Department of Pathology & Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Michael J Thrall
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Pamela Michelow
- Department of Anatomical Pathology, National Health Laboratory Service, Johannesburg, South Africa; Division of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Fernando C Schmitt
- Department of Pathology, Medical Faculty of Porto University, Porto, Portugal
| | - Philippe R Vielh
- Department of Pathology, Medipath and American Hospital of Paris, Paris, France
| | - Momin T Siddiqui
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Kaitlin E Sundling
- The Wisconsin State Laboratory of Hygiene and Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Renu Virk
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Susan Alperstein
- Department of Pathology and Laboratory Medicine, New York Presbyterian-Weill Cornell Medicine, New York, New York
| | - Marilyn M Bui
- The Departments of Pathology and Machine Learning, Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Amber D Donnelly
- University of Nebraska Medical Center, Cytotechnology Education, College of Allied Health Professions, Omaha, Nebraska
| | - Oscar Lin
- Department of Pathology & Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xiaoying Liu
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Emilio Madrigal
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Maureen F Zakowski
- Department of Pathology, Molecular, and Cell-Based Medicine, Mount Sinai Medical Center, New York, New York
| | - Anil V Parwani
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
5
|
Munari E, Scarpa A, Cima L, Pozzi M, Pagni F, Vasuri F, Marletta S, Dei Tos AP, Eccher A. Cutting-edge technology and automation in the pathology laboratory. Virchows Arch 2024; 484:555-566. [PMID: 37930477 PMCID: PMC11062949 DOI: 10.1007/s00428-023-03637-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023]
Abstract
One of the goals of pathology is to standardize laboratory practices to increase the precision and effectiveness of diagnostic testing, which will ultimately enhance patient care and results. Standardization is crucial in the domains of tissue processing, analysis, and reporting. To enhance diagnostic testing, innovative technologies are also being created and put into use. Furthermore, although problems like algorithm training and data privacy issues still need to be resolved, digital pathology and artificial intelligence are emerging in a structured manner. Overall, for the field of pathology to advance and for patient care to be improved, standard laboratory practices and innovative technologies must be adopted. In this paper, we describe the state-of-the-art of automation in pathology laboratories in order to lead technological progress and evolution. By anticipating laboratory needs and demands, the aim is to inspire innovation tools and processes as positively transformative support for operators, organizations, and patients.
Collapse
Affiliation(s)
- Enrico Munari
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Piazza Del Mercato, 15, 25121, Brescia, BS, Italy.
| | - Aldo Scarpa
- Pathology Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy.
| | - Luca Cima
- Pathology Unit, Department of Laboratory Medicine, Santa Chiara Hospital, APSS, Trento, Italy
| | - Matteo Pozzi
- Bruno Kessler Foundation, Trento, Italy
- University of Trento, CIBIO Department, Trento, Italy
| | - Fabio Pagni
- Pathology Unit, Department of Medicine and Surgery, University of Milano-Bicocca, IRCCS Fondazione San Gerardo Dei Tintori, Monza, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Stefano Marletta
- Pathology Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Angelo Paolo Dei Tos
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padua School of Medicine, Padua, Italy
| | - Albino Eccher
- Section of Pathology, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
6
|
Chen RJ, Ding T, Lu MY, Williamson DFK, Jaume G, Song AH, Chen B, Zhang A, Shao D, Shaban M, Williams M, Oldenburg L, Weishaupt LL, Wang JJ, Vaidya A, Le LP, Gerber G, Sahai S, Williams W, Mahmood F. Towards a general-purpose foundation model for computational pathology. Nat Med 2024; 30:850-862. [PMID: 38504018 PMCID: PMC11403354 DOI: 10.1038/s41591-024-02857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Quantitative evaluation of tissue images is crucial for computational pathology (CPath) tasks, requiring the objective characterization of histopathological entities from whole-slide images (WSIs). The high resolution of WSIs and the variability of morphological features present significant challenges, complicating the large-scale annotation of data for high-performance applications. To address this challenge, current efforts have proposed the use of pretrained image encoders through transfer learning from natural image datasets or self-supervised learning on publicly available histopathology datasets, but have not been extensively developed and evaluated across diverse tissue types at scale. We introduce UNI, a general-purpose self-supervised model for pathology, pretrained using more than 100 million images from over 100,000 diagnostic H&E-stained WSIs (>77 TB of data) across 20 major tissue types. The model was evaluated on 34 representative CPath tasks of varying diagnostic difficulty. In addition to outperforming previous state-of-the-art models, we demonstrate new modeling capabilities in CPath such as resolution-agnostic tissue classification, slide classification using few-shot class prototypes, and disease subtyping generalization in classifying up to 108 cancer types in the OncoTree classification system. UNI advances unsupervised representation learning at scale in CPath in terms of both pretraining data and downstream evaluation, enabling data-efficient artificial intelligence models that can generalize and transfer to a wide range of diagnostically challenging tasks and clinical workflows in anatomic pathology.
Collapse
Affiliation(s)
- Richard J Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tong Ding
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Ming Y Lu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Drew F K Williamson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Guillaume Jaume
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew H Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Bowen Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zhang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Daniel Shao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Mane Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Lukas Oldenburg
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca L Weishaupt
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Judy J Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anurag Vaidya
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Long Phi Le
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Health Sciences and Technology, Harvard-MIT, Cambridge, MA, USA
| | - Georg Gerber
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sharifa Sahai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Walt Williams
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
7
|
Lami K, Ota N, Yamaoka S, Bychkov A, Matsumoto K, Uegami W, Munkhdelger J, Seki K, Sukhbaatar O, Attanoos R, Berezowska S, Brcic L, Cavazza A, English JC, Fabro AT, Ishida K, Kashima Y, Kitamura Y, Larsen BT, Marchevsky AM, Miyazaki T, Morimoto S, Ozasa M, Roden AC, Schneider F, Smith ML, Tabata K, Takano AM, Tanaka T, Tsuchiya T, Nagayasu T, Sakanashi H, Fukuoka J. Standardized Classification of Lung Adenocarcinoma Subtypes and Improvement of Grading Assessment Through Deep Learning. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:2066-2079. [PMID: 37544502 DOI: 10.1016/j.ajpath.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/04/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
The histopathologic distinction of lung adenocarcinoma (LADC) subtypes is subject to high interobserver variability, which can compromise the optimal assessment of patient prognosis. Therefore, this study developed convolutional neural networks capable of distinguishing LADC subtypes and predicting disease-specific survival, according to the recently established LADC tumor grades. Consensus LADC histopathologic images were obtained from 17 expert pulmonary pathologists and one pathologist in training. Two deep learning models (AI-1 and AI-2) were trained to predict eight different LADC classes. Furthermore, the trained models were tested on an independent cohort of 133 patients. The models achieved high precision, recall, and F1 scores exceeding 0.90 for most of the LADC classes. Clear stratification of the three LADC grades was reached in predicting the disease-specific survival by the two models, with both Kaplan-Meier curves showing significance (P = 0.0017 and 0.0003). Moreover, both trained models showed high stability in the segmentation of each pair of predicted grades with low variation in the hazard ratio across 200 bootstrapped samples. These findings indicate that the trained convolutional neural networks improve the diagnostic accuracy of the pathologist and refine LADC grade assessment. Thus, the trained models are promising tools that may assist in the routine evaluation of LADC subtypes and grades in clinical practice.
Collapse
Affiliation(s)
- Kris Lami
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriaki Ota
- Systems Research & Development Center, Technology Bureau, NS Solutions Corp., Yokohama, Japan
| | - Shinsuke Yamaoka
- Systems Research & Development Center, Technology Bureau, NS Solutions Corp., Yokohama, Japan
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wataru Uegami
- Department of Pathology, Kameda Medical Center, Kamogawa, Japan
| | | | - Kurumi Seki
- Department of Pathology, Kameda Medical Center, Kamogawa, Japan
| | | | - Richard Attanoos
- Department of Cellular Pathology, Cardiff University, Cardiff, United Kingdom
| | - Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luka Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Alberto Cavazza
- Unit of Pathologic Anatomy, Azienda USL/IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - John C English
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kaori Ishida
- Department of Pathology, Kansai Medical University, Hirakata City, Japan
| | - Yukio Kashima
- Department of Pathology, Hyogo Prefectural Awaji Medical Center, Sumoto City, Japan
| | - Yuka Kitamura
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; N Lab Co. Ltd., Nagasaki, Japan
| | - Brandon T Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | | | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shimpei Morimoto
- Innovation Platform & Office for Precision Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mutsumi Ozasa
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Maxwell L Smith
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona
| | - Kazuhiro Tabata
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Angela M Takano
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
| | - Tomonori Tanaka
- Department of Diagnostic Pathology, Kobe University Hospital, Kobe, Japan
| | - Tomoshi Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hidenori Sakanashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Pathology, Kameda Medical Center, Kamogawa, Japan.
| |
Collapse
|
8
|
Chatterji S, Niehues JM, van Treeck M, Loeffler CML, Saldanha OL, Veldhuizen GP, Cifci D, Carrero ZI, Abu-Eid R, Speirs V, Kather JN. Prediction models for hormone receptor status in female breast cancer do not extend to males: further evidence of sex-based disparity in breast cancer. NPJ Breast Cancer 2023; 9:91. [PMID: 37940649 PMCID: PMC10632426 DOI: 10.1038/s41523-023-00599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Breast cancer prognosis and management for both men and women are reliant upon estrogen receptor alpha (ERα) and progesterone receptor (PR) expression to inform therapy. Previous studies have shown that there are sex-specific binding characteristics of ERα and PR in breast cancer and, counterintuitively, ERα expression is more common in male than female breast cancer. We hypothesized that these differences could have morphological manifestations that are undetectable to human observers but could be elucidated computationally. To investigate this, we trained attention-based multiple instance learning prediction models for ERα and PR using H&E-stained images of female breast cancer from the Cancer Genome Atlas (TCGA) (n = 1085) and deployed them on external female (n = 192) and male breast cancer images (n = 245). Both targets were predicted in the internal (AUROC for ERα prediction: 0.86 ± 0.02, p < 0.001; AUROC for PR prediction = 0.76 ± 0.03, p < 0.001) and external female cohorts (AUROC for ERα prediction: 0.78 ± 0.03, p < 0.001; AUROC for PR prediction = 0.80 ± 0.04, p < 0.001) but not the male cohort (AUROC for ERα prediction: 0.66 ± 0.14, p = 0.43; AUROC for PR prediction = 0.63 ± 0.04, p = 0.05). This suggests that subtle morphological differences invisible upon visual inspection may exist between the sexes, supporting previous immunohistochemical, genomic, and transcriptomic analyses.
Collapse
Affiliation(s)
- Subarnarekha Chatterji
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - Jan Moritz Niehues
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Marko van Treeck
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Chiara Maria Lavinia Loeffler
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Oliver Lester Saldanha
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Gregory Patrick Veldhuizen
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Didem Cifci
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
| | - Zunamys Itzell Carrero
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
| | - Rasha Abu-Eid
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
- Institute of Dentistry, University of Aberdeen, Aberdeen, UK
| | - Valerie Speirs
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK.
| | - Jakob Nikolas Kather
- Else Kröner Fresenius Centre for Digital Health, Carl Gustav Carus Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Department of Medicine III, University Hospital RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen, Aachen, Germany
- Department of Medicine I, University Hospital and Faculty of Medicine, Technical University of Dresden, Dresden, Germany
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| |
Collapse
|
9
|
Palazzi X, Barale-Thomas E, Bawa B, Carter J, Janardhan K, Marxfeld H, Nyska A, Saravanan C, Schaudien D, Schumacher VL, Spaet RH, Tangermann S, Turner OC, Vezzali E. Results of the European Society of Toxicologic Pathology Survey on the Use of Artificial Intelligence in Toxicologic Pathology. Toxicol Pathol 2023; 51:216-224. [PMID: 37732701 DOI: 10.1177/01926233231182115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The European Society of Toxicologic Pathology (ESTP) initiated a survey through its Pathology 2.0 workstream in partnership with sister professional societies in Europe and North America to generate a snapshot of artificial intelligence (AI) usage in the field of toxicologic pathology. In addition to demographic information, some general questions explored AI relative to (1) the current status of adoption across organizations; (2) technical and methodological aspects; (3) perceived business value and finally; and (4) roadblocks and perspectives. AI has become increasingly established in toxicologic pathology with most pathologists being supportive of its development despite some areas of uncertainty. A salient feature consisted of the variability of AI awareness and adoption among the responders, as the spectrum extended from pathologists having developed familiarity and technical skills in AI, to colleagues who had no interest in AI as a tool in toxicologic pathology. Despite a general enthusiasm for these techniques, the overall understanding and trust in AI algorithms as well as their added value in toxicologic pathology were generally low, suggesting room for the need for increased awareness and education. This survey will serve as a basis to evaluate the evolution of AI penetration and acceptance in this domain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hanover, Germany
| | | | | | | | - Oliver C Turner
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey, USA
| | | |
Collapse
|
10
|
Dolezal JM, Wolk R, Hieromnimon HM, Howard FM, Srisuwananukorn A, Karpeyev D, Ramesh S, Kochanny S, Kwon JW, Agni M, Simon RC, Desai C, Kherallah R, Nguyen TD, Schulte JJ, Cole K, Khramtsova G, Garassino MC, Husain AN, Li H, Grossman R, Cipriani NA, Pearson AT. Deep learning generates synthetic cancer histology for explainability and education. NPJ Precis Oncol 2023; 7:49. [PMID: 37248379 PMCID: PMC10227067 DOI: 10.1038/s41698-023-00399-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
Collapse
Affiliation(s)
- James M Dolezal
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Rachelle Wolk
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Hanna M Hieromnimon
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Frederick M Howard
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | | | | | - Siddhi Ramesh
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Sara Kochanny
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Jung Woo Kwon
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Meghana Agni
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Richard C Simon
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Chandni Desai
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Raghad Kherallah
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Tung D Nguyen
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin at Madison, Madison, WN, USA
| | - Kimberly Cole
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Galina Khramtsova
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Marina Chiara Garassino
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA
| | - Aliya N Husain
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Huihua Li
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA
| | - Robert Grossman
- University of Chicago, Center for Translational Data Science, Chicago, IL, USA
| | - Nicole A Cipriani
- Department of Pathology, University of Chicago Medicine, Chicago, IL, USA.
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
11
|
Niehues JM, Quirke P, West NP, Grabsch HI, van Treeck M, Schirris Y, Veldhuizen GP, Hutchins GGA, Richman SD, Foersch S, Brinker TJ, Fukuoka J, Bychkov A, Uegami W, Truhn D, Brenner H, Brobeil A, Hoffmeister M, Kather JN. Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: A retrospective multi-centric study. Cell Rep Med 2023; 4:100980. [PMID: 36958327 PMCID: PMC10140458 DOI: 10.1016/j.xcrm.2023.100980] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient.
Collapse
Affiliation(s)
- Jan Moritz Niehues
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Philip Quirke
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Nicholas P West
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Heike I Grabsch
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Pathology, GROW School for Oncology and Reproduction, Maastricht University Medical Center+, 6229 HX Maastricht, the Netherlands
| | - Marko van Treeck
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Yoni Schirris
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands; University of Amsterdam, 1012 WP Amsterdam, the Netherlands
| | - Gregory P Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Gordon G A Hutchins
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Susan D Richman
- Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Titus J Brinker
- Digital Biomarkers for Oncology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Wataru Uegami
- Department of Pathology, Kameda Medical Center, Kamogawa 296-8602, Chiba, Japan
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Tissue Bank, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany; Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK; Department of Medicine I, University Hospital Dresden, 01307 Dresden, Germany; Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
12
|
Saldanha OL, Muti HS, Grabsch HI, Langer R, Dislich B, Kohlruss M, Keller G, van Treeck M, Hewitt KJ, Kolbinger FR, Veldhuizen GP, Boor P, Foersch S, Truhn D, Kather JN. Direct prediction of genetic aberrations from pathology images in gastric cancer with swarm learning. Gastric Cancer 2023; 26:264-274. [PMID: 36264524 PMCID: PMC9950158 DOI: 10.1007/s10120-022-01347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Computational pathology uses deep learning (DL) to extract biomarkers from routine pathology slides. Large multicentric datasets improve performance, but such datasets are scarce for gastric cancer. This limitation could be overcome by Swarm Learning (SL). METHODS Here, we report the results of a multicentric retrospective study of SL for prediction of molecular biomarkers in gastric cancer. We collected tissue samples with known microsatellite instability (MSI) and Epstein-Barr Virus (EBV) status from four patient cohorts from Switzerland, Germany, the UK and the USA, storing each dataset on a physically separate computer. RESULTS On an external validation cohort, the SL-based classifier reached an area under the receiver operating curve (AUROC) of 0.8092 (± 0.0132) for MSI prediction and 0.8372 (± 0.0179) for EBV prediction. The centralized model, which was trained on all datasets on a single computer, reached a similar performance. CONCLUSIONS Our findings demonstrate the feasibility of SL-based molecular biomarkers in gastric cancer. In the future, SL could be used for collaborative training and, thus, improve the performance of these biomarkers. This may ultimately result in clinical-grade performance and generalizability.
Collapse
Affiliation(s)
- Oliver Lester Saldanha
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Hannah Sophie Muti
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Heike I Grabsch
- Pathology and GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Rupert Langer
- Institute of Pathology, Inselspital, University of Bern, Bern, Switzerland
- Institute of Pathology and Molecular Pathology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Bastian Dislich
- Institute of Pathology, Inselspital, University of Bern, Bern, Switzerland
| | - Meike Kohlruss
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Gisela Keller
- Institute of Pathology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Marko van Treeck
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Katherine Jane Hewitt
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Fiona R Kolbinger
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gregory Patrick Veldhuizen
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, 52074, Aachen, Germany
- Department of Nephrology and Immunology, University Hospital RWTH Aachen, 52074, Aachen, Germany
| | - Sebastian Foersch
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany.
- Department of Medicine 1, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Berbís MA, McClintock DS, Bychkov A, Van der Laak J, Pantanowitz L, Lennerz JK, Cheng JY, Delahunt B, Egevad L, Eloy C, Farris AB, Fraggetta F, García del Moral R, Hartman DJ, Herrmann MD, Hollemans E, Iczkowski KA, Karsan A, Kriegsmann M, Salama ME, Sinard JH, Tuthill JM, Williams B, Casado-Sánchez C, Sánchez-Turrión V, Luna A, Aneiros-Fernández J, Shen J. Computational pathology in 2030: a Delphi study forecasting the role of AI in pathology within the next decade. EBioMedicine 2023; 88:104427. [PMID: 36603288 PMCID: PMC9823157 DOI: 10.1016/j.ebiom.2022.104427] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) is rapidly fuelling a fundamental transformation in the practice of pathology. However, clinical integration remains challenging, with no AI algorithms to date in routine adoption within typical anatomic pathology (AP) laboratories. This survey gathered current expert perspectives and expectations regarding the role of AI in AP from those with first-hand computational pathology and AI experience. METHODS Perspectives were solicited using the Delphi method from 24 subject matter experts between December 2020 and February 2021 regarding the anticipated role of AI in pathology by the year 2030. The study consisted of three consecutive rounds: 1) an open-ended, free response questionnaire generating a list of survey items; 2) a Likert-scale survey scored by experts and analysed for consensus; and 3) a repeat survey of items not reaching consensus to obtain further expert consensus. FINDINGS Consensus opinions were reached on 141 of 180 survey items (78.3%). Experts agreed that AI would be routinely and impactfully used within AP laboratory and pathologist clinical workflows by 2030. High consensus was reached on 100 items across nine categories encompassing the impact of AI on (1) pathology key performance indicators (KPIs) and (2) the pathology workforce and specific tasks performed by (3) pathologists and (4) AP lab technicians, as well as (5) specific AI applications and their likelihood of routine use by 2030, (6) AI's role in integrated diagnostics, (7) pathology tasks likely to be fully automated using AI, and (8) regulatory/legal and (9) ethical aspects of AI integration in pathology. INTERPRETATION This systematic consensus study details the expected short-to-mid-term impact of AI on pathology practice. These findings provide timely and relevant information regarding future care delivery in pathology and raise key practical, ethical, and legal challenges that must be addressed prior to AI's successful clinical implementation. FUNDING No specific funding was provided for this study.
Collapse
Affiliation(s)
- M. Alvaro Berbís
- Department of R&D, HT Médica, San Juan de Dios Hospital, Córdoba, Spain,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain,Corresponding author. Department of R&D, HT Médica, San Juan de Dios Hospital, Córdoba, 14011, Spain.
| | - David S. McClintock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andrey Bychkov
- Department of Pathology, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Jeroen Van der Laak
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Jochen K. Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Jerome Y. Cheng
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Brett Delahunt
- Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Lars Egevad
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Catarina Eloy
- Pathology Laboratory, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Alton B. Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Filippo Fraggetta
- Pathology Unit, Azienda Sanitaria Provinciale Catania, Gravina Hospital, Caltagirone, Italy
| | | | - Douglas J. Hartman
- Department of Anatomic Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Markus D. Herrmann
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eva Hollemans
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Aly Karsan
- Department of Pathology & Laboratory Medicine, University of British Columbia, Michael Smith Genome Sciences Centre, Vancouver, Canada
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - John H. Sinard
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - J. Mark Tuthill
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Bethany Williams
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - César Casado-Sánchez
- Department of Plastic and Reconstructive Surgery, La Paz University Hospital, Madrid, Spain
| | - Víctor Sánchez-Turrión
- Department of General Surgery and Digestive Tract, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| | - Antonio Luna
- Department of Integrated Diagnostics, HT Médica, Clínica Las Nieves, Jaén, Spain
| | - José Aneiros-Fernández
- Department of R&D, HT Médica, San Juan de Dios Hospital, Córdoba, Spain,Pathology Unit, Azienda Sanitaria Provinciale Catania, Gravina Hospital, Caltagirone, Italy
| | - Jeanne Shen
- Department of Pathology and Center for Artificial Intelligence in Medicine & Imaging, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
14
|
Ghaffari Laleh N, Truhn D, Veldhuizen GP, Han T, van Treeck M, Buelow RD, Langer R, Dislich B, Boor P, Schulz V, Kather JN. Adversarial attacks and adversarial robustness in computational pathology. Nat Commun 2022; 13:5711. [PMID: 36175413 PMCID: PMC9522657 DOI: 10.1038/s41467-022-33266-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing biomarkers directly from routine pathology slides. However, AI applications are vulnerable to adversarial attacks. Hence, it is essential to quantify and mitigate this risk before widespread clinical use. Here, we show that convolutional neural networks (CNNs) are highly susceptible to white- and black-box adversarial attacks in clinically relevant weakly-supervised classification tasks. Adversarially robust training and dual batch normalization (DBN) are possible mitigation strategies but require precise knowledge of the type of attack used in the inference. We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline, but are orders of magnitude more robust to white- and black-box attacks. At a mechanistic level, we show that this is associated with a more robust latent representation of clinically relevant categories in ViTs compared to CNNs. Our results are in line with previous theoretical studies and provide empirical evidence that ViTs are robust learners in computational pathology. This implies that large-scale rollout of AI models in computational pathology should rely on ViTs rather than CNN-based classifiers to provide inherent protection against perturbation of the input data, especially adversarial attacks. Artificial Intelligence can support diagnostic workflows in oncology, but they are vulnerable to adversarial attacks. Here, the authors show that convolutional neural networks are highly susceptible to white- and black-box adversarial attacks in clinically relevant classification tasks.
Collapse
Affiliation(s)
- Narmin Ghaffari Laleh
- Department of Medicine III, University Hospital RWTH Aachen, RWTH Aachen university, Aachen, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, University Hospital Aachen, Aachen, Germany
| | - Gregory Patrick Veldhuizen
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Tianyu Han
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Marko van Treeck
- Department of Medicine III, University Hospital RWTH Aachen, RWTH Aachen university, Aachen, Germany
| | - Roman D Buelow
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Rupert Langer
- Institute of Pathology, University of Bern, Bern, Switzerland.,Institute of Pathology and Molecular Pathology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - Bastian Dislich
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Peter Boor
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Volkmar Schulz
- Department of Physics of Molecular Imaging Systems, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany.,Physics Institute III B, RWTH Aachen University, Aachen, Germany.,Fraunhofer Institute for Digital Medicine MEVIS, Aachen, Germany.,Hyperion Hybrid Imaging Systems GmbH, Aachen, Germany
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, RWTH Aachen university, Aachen, Germany. .,Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany. .,Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany. .,Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK. .,Department of Medicine 1, University Hospital and Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Shmatko A, Ghaffari Laleh N, Gerstung M, Kather JN. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. NATURE CANCER 2022; 3:1026-1038. [PMID: 36138135 DOI: 10.1038/s43018-022-00436-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
Artificial intelligence (AI) methods have multiplied our capabilities to extract quantitative information from digital histopathology images. AI is expected to reduce workload for human experts, improve the objectivity and consistency of pathology reports, and have a clinical impact by extracting hidden information from routinely available data. Here, we describe how AI can be used to predict cancer outcome, treatment response, genetic alterations and gene expression from digitized histopathology slides. We summarize the underlying technologies and emerging approaches, noting limitations, including the need for data sharing and standards. Finally, we discuss the broader implications of AI in cancer research and oncology.
Collapse
Affiliation(s)
- Artem Shmatko
- Division of AI in Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | | | - Moritz Gerstung
- Division of AI in Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK.
| | - Jakob Nikolas Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
- Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
- Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Technical University Dresden, Dresden, Germany.
| |
Collapse
|