1
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
2
|
Wächter J, Vestweber PK, Planz V, Windbergs M. Unravelling host-pathogen interactions by biofilm infected human wound models. Biofilm 2023; 6:100164. [PMID: 38025836 PMCID: PMC10656240 DOI: 10.1016/j.bioflm.2023.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Approximately 80 % of persistent wound infections are affected by the presence of bacterial biofilms, resulting in a severe clinical challenge associated with prolonged healing periods, increased morbidity, and high healthcare costs. Unfortunately, in vitro models for wound infection research almost exclusively focus on early infection stages with planktonic bacteria. In this study, we present a new approach to emulate biofilm-infected human wounds by three-dimensional human in vitro systems. For this purpose, a matured biofilm consisting of the clinical key wound pathogen Pseudomonas aeruginosa was pre-cultivated on electrospun scaffolds allowing for non-destructive transfer of the matured biofilm to human in vitro wound models. We infected tissue-engineered human in vitro skin models as well as ex vivo human skin explants with the biofilm and analyzed structural tissue characteristics, biofilm growth behavior, and biofilm-tissue interactions. The structural development of biofilms in close proximity to the tissue, resulting in high bacterial burden and in vivo-like morphology, confirmed a manifest wound infection on all tested wound models, validating their applicability for general investigations of biofilm growth and structure. The extent of bacterial colonization of the wound bed, as well as the subsequent changes in molecular composition of skin tissue, were inherently linked to the characteristics of the underlying wound models including their viability and origin. Notably, the immune response observed in viable ex vivo and in vitro models was consistent with previous in vivo reports. While ex vivo models offered greater complexity and closer similarity to the in vivo conditions, in vitro models consistently demonstrated higher reproducibility. As a consequence, when focusing on direct biofilm-skin interactions, the viability of the wound models as well as their advantages and limitations should be aligned to the particular research question of future studies. Altogether, the novel model allows for a systematic investigation of host-pathogen interactions of bacterial biofilms and human wound tissue, also paving the way for development and predictive testing of novel therapeutics to combat biofilm-infected wounds.
Collapse
Affiliation(s)
| | | | - Viktoria Planz
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Malissa A, Cappa F, Schreiner M, Marchetti-Deschmann M. Spectral Features Differentiate Aging-Induced Changes in Parchment-A Combined Approach of UV/VIS, µ-ATR/FTIR and µ-Raman Spectroscopy with Multivariate Data Analysis. Molecules 2023; 28:4584. [PMID: 37375138 DOI: 10.3390/molecules28124584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
From the moment of production, artworks are constantly exposed to changing environmental factors potentially inducing degradation. Therefore, detailed knowledge of natural degradation phenomena is essential for proper damage assessment and preservation. With special focus on written cultural heritage, we present a study on the degradation of sheep parchment employing accelerated aging with light (295-3000 nm) for one month, 30/50/80% relative humidity (RH) and 50 ppm sulfur dioxide with 30/50/80%RH for one week. UV/VIS spectroscopy detected changes in the sample surface appearance, showing browning after light-aging and increased brightness after SO2-aging. Band deconvolution of ATR/FTIR and Raman spectra and factor analysis of mixed data (FAMD) revealed characteristic changes of the main parchment components. Spectral features for degradation-induced structural changes of collagen and lipids turned out to be different for the employed aging parameters. All aging conditions induced denaturation (of different degrees) indicated by changes in the secondary structure of collagen. Light treatment resulted in the most pronounced changes for collagen fibrils in addition to backbone cleavage and side chain oxidations. Additional increased disorder for lipids was observed. Despite shorter exposure times, SO2-aging led to a weakening of protein structures induced by transitions of stabilizing disulfide bonds and side chain oxidations.
Collapse
Affiliation(s)
- Antonia Malissa
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
- Institute of Science and Technology in Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Federica Cappa
- Institute of Science and Technology in Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Manfred Schreiner
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
- Institute of Science and Technology in Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | | |
Collapse
|
4
|
Chen R, Liu F, Zhang C, Wang W, Yang R, Zhao Y, Peng J, Kong W, Huang J. Trends in digital detection for the quality and safety of herbs using infrared and Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1128300. [PMID: 37025139 PMCID: PMC10072231 DOI: 10.3389/fpls.2023.1128300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Herbs have been used as natural remedies for disease treatment, prevention, and health care. Some herbs with functional properties are also used as food or food additives for culinary purposes. The quality and safety inspection of herbs are influenced by various factors, which need to be assessed in each operation across the whole process of herb production. Traditional analysis methods are time-consuming and laborious, without quick response, which limits industry development and digital detection. Considering the efficiency and accuracy, faster, cheaper, and more environment-friendly techniques are highly needed to complement or replace the conventional chemical analysis methods. Infrared (IR) and Raman spectroscopy techniques have been applied to the quality control and safety inspection of herbs during the last several decades. In this paper, we generalize the current application using IR and Raman spectroscopy techniques across the whole process, from raw materials to patent herbal products. The challenges and remarks were proposed in the end, which serve as references for improving herb detection based on IR and Raman spectroscopy techniques. Meanwhile, make a path to driving intelligence and automation of herb products factories.
Collapse
Affiliation(s)
- Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Chu Zhang
- School of Information Engineering, Huzhou University, Huzhou, China
| | - Wei Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Rui Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Yiying Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Wenwen Kong
- College of Mathematics and Computer Science, Zhejiang A & F University, Hangzhou, China
| | - Jing Huang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Gorcea M, Lane ME, Moore DJ. Exploratory In Vivo Biophysical Studies of Stratum Corneum Lipid Organization in Human Face and Arm Skin. Int J Pharm 2022; 622:121887. [DOI: 10.1016/j.ijpharm.2022.121887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
|
6
|
Song Y, Cong Y, Wang B, Zhang N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin Drug Deliv 2020; 17:551-571. [PMID: 32116058 DOI: 10.1080/17425247.2020.1737671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Various pharmaceutical preparations are widely used for clinical treatment. Elucidation of the mechanisms of drug release and evaluation of drug efficacy in biological samples are important in drug design and drug quality control.Areas covered: This review classifies recent applications of Fourier transform infrared (FTIR) spectroscopy in the field of medicine to comprehend drug release and diffusion. Drug release is affected by many factors of preparations, such as drug delivery system and microstructure polymorphism. The applications of FTIR imaging and nano-FTIR technique in biological samples lay a foundation for studying drug mechanism in vivo.Expert opinion: FTIR spectroscopy meets the research needs on preparations to understand the processes and mechanisms underlying drug release. The combination of attenuated total reflectance-FTIR imaging and nano-FTIR accompanied by chemometrics is a potent tool to overcome the deficiency of conventional infrared detection. FTIR shows an enormous potential in drug characterization, drug quality control, and bio-sample detection.
Collapse
Affiliation(s)
- Yijie Song
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanhua Cong
- Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai, China
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Fujii MY, Gato K, Ozawa Y, Hisada H, Koide T, Inoue M, Fukami T. In Situ Monitoring of Lipid Phase State Make Target Lipid Mixtures Similar to Intercellular Lipid in the Stratum Corneum. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mika Yoshimura Fujii
- Milott Cosmetic Corporation 2976‐12 Sugeta, Kanagawa Yokohama 221‐0864 Japan
- Department of Molecular Pharmaceutics Meiji Pharmaceutical University 2‐522‐1 Noshio, Kiyose Tokyo 204‐8588 Japan
| | - Katsuhiko Gato
- Department of Molecular Pharmaceutics Meiji Pharmaceutical University 2‐522‐1 Noshio, Kiyose Tokyo 204‐8588 Japan
| | - Yosuke Ozawa
- Department of Molecular Pharmaceutics Meiji Pharmaceutical University 2‐522‐1 Noshio, Kiyose Tokyo 204‐8588 Japan
| | - Hiroshi Hisada
- Department of Molecular Pharmaceutics Meiji Pharmaceutical University 2‐522‐1 Noshio, Kiyose Tokyo 204‐8588 Japan
| | - Tatsuo Koide
- Division of Drugs National Institute of Health Sciences Setagaya Tokyo 158‐8501 Japan
| | - Motoki Inoue
- Department of Molecular Pharmaceutics Meiji Pharmaceutical University 2‐522‐1 Noshio, Kiyose Tokyo 204‐8588 Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics Meiji Pharmaceutical University 2‐522‐1 Noshio, Kiyose Tokyo 204‐8588 Japan
| |
Collapse
|
8
|
Bezci SE, Werbner B, Zhou M, Malollari KG, Dorlhiac G, Carraro C, Streets A, O'Connell GD. Radial variation in biochemical composition of the bovine caudal intervertebral disc. JOR Spine 2019; 2:e1065. [PMID: 31572982 PMCID: PMC6764789 DOI: 10.1002/jsp2.1065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022] Open
Abstract
Bovine caudal discs have been widely used in spine research due to their increased availability, large size, and mechanical and biochemical properties that are comparable to healthy human discs. However, despite their extensive use, the radial variations in bovine disc composition have not yet been rigorously quantified with high spatial resolution. Previous studies were limited to qualitative analyses or provided limited spatial resolution in biochemical properties. Thus, the main objective of this study was to provide quantitative measurements of biochemical composition with higher spatial resolution than previous studies that employed traditional biochemical techniques. Specifically, traditional biochemical analyses were used to measure water, sulfated glycosaminoglycan, collagen, and DNA contents. Gravimetric water content was compared to data obtained through Raman spectroscopy and differential scanning calorimetry. Additionally, spatial distribution of lipids in the disc's collagen network was visualized and quantified, for the first time, using multi-modal second harmonic generation (SHG) and Coherent anti-Stokes Raman (CARS) microscopy. Some heterogeneity was observed in the nucleus pulposus, where the water content and water-to-protein ratio of the inner nucleus were greater than the outer nucleus. In contrast, the bovine annulus fibrosus exhibited a more heterogeneous distribution of biochemical properties. Comparable results between orthohydroxyproline assay and SHG imaging highlight the potential benefit of using SHG microscopy as a less destructive method for measuring collagen content, particularly when relative changes are of interest. CARS images showed that lipid deposits were distributed equally throughout the disc and appeared either as individual droplets or as clusters of small droplets. In conclusion, this study provided a more comprehensive assessment of spatial variations in biochemical composition of the bovine caudal disc.
Collapse
Affiliation(s)
- Semih E. Bezci
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Benjamin Werbner
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Minhao Zhou
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | | | - Gabriel Dorlhiac
- Berkeley Biophysics ProgramUniversity of CaliforniaBerkeleyCalifornia
| | - Carlo Carraro
- Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyCalifornia
| | - Aaron Streets
- Berkeley Biophysics ProgramUniversity of CaliforniaBerkeleyCalifornia
- Department of BioengineeringUniversity of CaliforniaBerkeleyCalifornia
- Chan‐Zuckerberg BiohubSan FranciscoCalifornia
| | - Grace D. O'Connell
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCalifornia
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
9
|
Investigation on the Cancer Invasion and Metastasis of Skin Squamous Cell Carcinoma by Raman Spectroscopy. Molecules 2019; 24:molecules24112059. [PMID: 31151168 PMCID: PMC6600666 DOI: 10.3390/molecules24112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 11/23/2022] Open
Abstract
Raman spectroscopy facilitates accurate and minimally invasive investigation on biomedical samples to reveal their molecular-level biological information. In this work, the cancer field effects of squamous cell carcinoma (SCC) tissues were illustrated by Raman microspectroscopy. Referenced with hematoxylin and eosin (H&E) stained microscopic images, the biochemical variations during SCC progress were meticulously described by the Raman spectral features in different pathological areas of two lesion types, including the biochemical changes in collagen, lipids, DNA, and other components of SCC diffusion and metastasis. The experimental results demonstrated that the intensities of the Raman peaks representing collagen (853, 936, and 1248 cm−1) were decreased, whereas the intensities of peaks corresponding to DNA (720, 1327 cm−1) and lipids (1305 cm−1) were increased significantly in cancerous lesions, which testified that SCC originates from the epidermis and invades the dermis gradually. The achieved results not only described the molecular mechanism of skin carcinogenesis, but also provided vital reference data for in vivo skin cancer diagnosis using Raman spectroscopy.
Collapse
|
10
|
Wang H, Zhang Q, Mao G, Conroy O, Pyatski Y, Fevola MJ, Cula GO, Maitra P, Mendelsohn R, Flach CR. Novel confocal Raman microscopy method to investigate hydration mechanisms in human skin. Skin Res Technol 2019; 25:653-661. [PMID: 30932226 DOI: 10.1111/srt.12698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 02/14/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND Skin hydration is essential for maintaining stratum corneum (SC) flexibility and facilitating maturation events. Moisturizers contain multiple ingredients to maintain and improve skin hydration although a complete understanding of hydration mechanisms is lacking. The ability to differentiate the source of the hydration (water from the environment or deeper skin regions) upon application of product will aid in designing more efficacious formulations. MATERIALS AND METHODS Novel confocal Raman microscopy (CRM) experiments allow us to investigate mechanisms and levels of hydration in the SC. Using deuterium oxide (D2 O) as a probe permits the differentiation of endogenous water (H2 O) from exogenous D2 O. Following topical application of D2 O, we first compare in vivo skin depth profiles with those obtained using ex vivo skin. Additional ex vivo experiments are conducted to quantify the kinetics of D2 O diffusion in the epidermis by introducing D2 O under the dermis. RESULTS Relative D2 O depth profiles from in vivo and ex vivo measurements compare well considering procedural and instrumental differences. Additional in vivo experiments where D2 O was applied following topical glycerin application increased the longevity of D2 O in the SC. Reproducible rates of D2 O diffusion as a function of depth have been established for experiments where D2 O is introduced under ex vivo skin. CONCLUSION Unique information regarding hydration mechanisms are obtained from CRM experiments using D2 O as a probe. The source and relative rates of hydration can be delineated using ex vivo skin with D2 O underneath. One can envision comparing these depth-dependent rates in the presence and absence of topically applied hydrating agents to obtain mechanistic information.
Collapse
Affiliation(s)
- Hequn Wang
- Johnson and Johnson Consumer Companies, Inc., Skillman, New Jersey
| | - Qihong Zhang
- Department of Chemistry, Rutgers University, Newark, New Jersey
| | - Guangru Mao
- Johnson and Johnson Consumer Companies, Inc., Skillman, New Jersey
| | - Oscar Conroy
- Johnson and Johnson Consumer Companies, Inc., Skillman, New Jersey
| | - Yelena Pyatski
- Department of Chemistry, Rutgers University, Newark, New Jersey
| | - Michael J Fevola
- Johnson and Johnson Consumer Companies, Inc., Skillman, New Jersey
| | | | | | | | - Carol R Flach
- Department of Chemistry, Rutgers University, Newark, New Jersey
| |
Collapse
|
11
|
Azuma M, Fujii M, Inoue M, Hisada H, Koide T, Kemper M, Yamamoto Y, Suzuki N, Suzuki T, Fukami T. Molecular State of Active Pharmaceutical Ingredients in Ketoprofen Dermal Patches Characterized by Pharmaceutical Evaluation. Biol Pharm Bull 2018; 41:1348-1354. [PMID: 30175772 DOI: 10.1248/bpb.b18-00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular states of ketoprofen and the interaction between ketoprofen and other pharmaceutical excipients in the matrix layer were examined to determine their effect on the pharmaceutical properties of original and generic ketoprofen dermal patches (generic patches A and B). Molecular states of ketoprofen were evaluated using polarized light microscopy, Raman spectroscopy and powder X-ray diffraction. For the original ketoprofen patch, crystalline components were not observed in the matrix layer. However, crystalline ketoprofen was observed in the two generic ketoprofen patches. Moreover, the ketoprofen exhibited hydrogen bonding with the pharmaceutical excipients or patch materials in the generic products. Skin permeation of ketoprofen from the patches was evaluated using hairless mouse skin. Twelve hours after application, the original patch demonstrated the highest level of cumulative skin permeation of ketoprofen. This was followed by generic patch B while generic patch A showed the lowest level of permeation. Fluxes were calculated from the skin permeation profiles. The original patch was approx. 2.4-times faster compared with generic patch A and approximately 1.9-times faster compared with generic patch B. This investigation suggested that pharmaceutical properties such as skin permeability for these types of products are affected by the precipitation of crystalline ketoprofen in the matrix layer and the interaction of ketoprofen with the pharmaceutical excipients or patch materials.
Collapse
Affiliation(s)
- Motoshige Azuma
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Mika Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Motoki Inoue
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Hiroshi Hisada
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences
| | | | | | | | | | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University
| |
Collapse
|
12
|
Olmos V, Marro M, Loza-Alvarez P, Raldúa D, Prats E, Piña B, Tauler R, de Juan A. Assessment of tissue-specific multifactor effects in environmental -omics studies of heterogeneous biological samples: Combining hyperspectral image information and chemometrics. Talanta 2018; 194:390-398. [PMID: 30609549 DOI: 10.1016/j.talanta.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023]
Abstract
The use of hyperspectral imaging techniques in biological studies has increased in the recent years. Hyperspectral images (HSI) provide chemical information and preserve the morphology and original structure of heterogeneous biological samples, which can be potentially useful in environmental -omics studies when effects due to several factors, e.g., contaminant exposure, phenotype,…, at a specific tissue level need to be investigated. Yet, no available strategies exist to exploit adequately this kind of information. This work offers a novel chemometric strategy to pass from the raw image information to useful knowledge in terms of statistical assessment of the multifactor effects of interest in -omic studies. To do so, unmixing of the hyperspectral image measurement is carried out to provide tissue-specific information. Afterwards, several specific ANOVA-Simultaneous Component Analysis (ASCA) models are generated to properly assess and interpret the diverse effect of the factors of interest on the spectral fingerprints of the different tissues characterized. The unmixing step is performed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) on multisets of biological images related to each studied condition and provides reliable HSI spectral signatures and related image maps for each specific tissue in the regions imaged. The variability associated with these signatures within a population is obtained through an MCR-based resampling step on representative pixel subsets of the images analyzed. All spectral fingerprints obtained for a particular tissue in the different conditions studied are used to obtain the related ASCA model that will help to assess the significance of the factors studied on the tissue and, if relevant, to describe the associated fingerprint modifications. The potential of the approach is assessed in a real case of study linked to the investigation of the effect of exposure time to chlorpyrifos-oxon (CPO) on ocular tissues of different phenotypes of zebrafish larvae from Raman HSI of eye cryosections. The study allowed the characterization of melanin, crystalline and internal eye tissue and the phenotype, exposure time and the interaction of the two factors were found to be significant in the changes found in all kind of tissues. Factor-related changes in the spectral fingerprint were described and interpreted per each kind of tissue characterized.
Collapse
Affiliation(s)
- Víctor Olmos
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | - Mónica Marro
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Av. Carl Friedrich Gauss 3, 08860 Castelldefels, Barcelona, Spain
| | - Demetrio Raldúa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Diagnostic (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Eva Prats
- Research and Development Centre (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Benjamí Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Diagnostic (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Diagnostic (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Duconseille A, Gaillard C, Santé-Lhoutellier V, Astruc T. Molecular and structural changes in gelatin evidenced by Raman microspectroscopy. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Bakonyi M, Gácsi A, Kovács A, Szűcs MB, Berkó S, Csányi E. Following-up skin penetration of lidocaine from different vehicles by Raman spectroscopic mapping. J Pharm Biomed Anal 2018. [PMID: 29524770 DOI: 10.1016/j.jpba.2018.02.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The application of local anesthetics, usually administered by subcutaneous injection, is common in the course of diagnostic, therapeutic, and cosmetic dermatology procedures. The effective dermal delivery of lidocaine could offer a solution to many adverse effects caused by needle insertion, such as pain, local reactions or toxicity, and additionally, it avoids the disruption of anatomical landmarks. Therefore, novel dermal formulations of local anesthetics are needed to overcome the barrier function of the skin and provide sufficient and prolonged anesthesia. In our study, we aimed to investigate and compare the penetration profiles of four different lidocaine containing formulations (hydrogel, oleogel, lyotropic liquid crystal and nanostructured lipid carrier) by Raman microscopic mapping of the drug. The application of Raman spectroscopy provided information about the spatial distribution of lidocaine in the skin ex vivo. The penetration of lidocaine from lyotropic liquid crystal and nanostructured carrier reached deeper skin layers and a higher amount of the drug was diffused into the skin, compared with hydrogel and oleogel. This study confirmed that nanostructured carriers can improve skin penetration properties of lidocaine and proved the applicability of Raman spectroscopy in the research of dermatological preparations ex vivo as a nondestructive, relatively easy and fast technique.
Collapse
Affiliation(s)
- Mónika Bakonyi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Attila Gácsi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Mária-Budai Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary
| | - Erzsébet Csányi
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, H-6720, Hungary.
| |
Collapse
|
15
|
Olmos V, Marro M, Loza-Alvarez P, Raldúa D, Prats E, Padrós F, Piña B, Tauler R, de Juan A. Combining hyperspectral imaging and chemometrics to assess and interpret the effects of environmental stressors on zebrafish eye images at tissue level. JOURNAL OF BIOPHOTONICS 2018; 11:e201700089. [PMID: 28766927 DOI: 10.1002/jbio.201700089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
Changes on an organism by the exposure to environmental stressors may be characterized by hyperspectral images (HSI), which preserve the morphology of biological samples, and suitable chemometric tools. The approach proposed allows assessing and interpreting the effect of contaminant exposure on heterogeneous biological samples monitored by HSI at specific tissue levels. In this work, the model example used consists of the study of the effect of the exposure of chlorpyrifos-oxon on zebrafish tissues. To assess this effect, unmixing of the biological sample images followed by tissue-specific classification models based on the unmixed spectral signatures is proposed. Unmixing and classification are performed by multivariate curve resolution-alternating least squares (MCR-ALS) and partial least squares-discriminant analysis (PLS-DA), respectively. Crucial aspects of the approach are: (1) the simultaneous MCR-ALS analysis of all images from 1 population to take into account biological variability and provide reliable tissue spectral signatures, and (2) the use of resolved spectral signatures from control and exposed populations obtained from resampling of pixel subsets analyzed by MCR-ALS multiset analysis as information for the tissue-specific PLS-DA classification models. Classification results diagnose the presence of a significant effect and identify the spectral regions at a tissue level responsible for the biological change.
Collapse
Affiliation(s)
- Víctor Olmos
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| | - Mònica Marro
- Institut de Ciencies Fotòniques (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Pablo Loza-Alvarez
- Institut de Ciencies Fotòniques (ICFO), The Barcelona Institute of Science and Technology, Castelldefels, Spain
| | - Demetrio Raldúa
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Diagnostic (IDAEA-CSIC), Barcelona, Spain
| | - Eva Prats
- Research and Development Centre (CID-CSIC), Barcelona, Spain
| | - Francesc Padrós
- Pathological Diagnostic Service in Fish, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Diagnostic (IDAEA-CSIC), Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Diagnostic (IDAEA-CSIC), Barcelona, Spain
| | - Anna de Juan
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, Spain
| |
Collapse
|
16
|
Relevant aspects of unmixing/resolution analysis for the interpretation of biological vibrational hyperspectral images. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Ogunleke A, Bobroff V, Chen HH, Rowlette J, Delugin M, Recur B, Hwu Y, Petibois C. Fourier-transform vs. quantum-cascade-laser infrared microscopes for histo-pathology: From lab to hospital? Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Sekar SKV, Mosca S, Farina A, Martelli F, Taroni P, Valentini G, Cubeddu R, Pifferi A. Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media. OPTICS EXPRESS 2017; 25:4585-4597. [PMID: 28380730 DOI: 10.1364/oe.25.004585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a new technique, frequency offset Raman spectroscopy (FORS), to probe Raman spectra of diffusive media in depth. The proposed methodology obtains depth sensitivity exploiting changes in optical properties (absorption and scattering) with excitation wavelengths. The approach was demonstrated experimentally on a two-layer tissue phantom and compared with the already consolidated spatially offset Raman spectroscopy (SORS) technique. FORS attains a similar enhancement of signal from deep layers as SORS, namely 2.81 against 2.62, while the combined hybrid FORS-SORS approach leads to a markedly higher 6.0 enhancement. Differences and analogies between FORS and SORS are discussed, suggesting FORS as an additional or complementary approach for probing heterogeneous media such as biological tissues in depth.
Collapse
|
19
|
Bunaciu AA, Hoang VD, Aboul-Enein HY. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review. Crit Rev Anal Chem 2016; 47:194-203. [PMID: 27786540 DOI: 10.1080/10408347.2016.1253454] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.
Collapse
Affiliation(s)
- Andrei A Bunaciu
- a SCIENT-Research Center for Instrumental Analysis , Tancabesti-Snagov , Romania
| | - Vu Dang Hoang
- b Department of Analytical Chemistry and Toxicology , Hanoi University of Pharmacy , Hanoi , Vietnam
| | - Hassan Y Aboul-Enein
- c Pharmaceutical and Medicinal Chemistry Department , Pharmaceutical and Drug Industries Research Division , Egypt
| |
Collapse
|
20
|
Balázs B, Sipos P, Danciu C, Avram S, Soica C, Dehelean C, Varju G, Erős G, Budai-Szűcs M, Berkó S, Csányi E. ATR-FTIR and Raman spectroscopic investigation of the electroporation-mediated transdermal delivery of a nanocarrier system containing an antitumour drug. BIOMEDICAL OPTICS EXPRESS 2016; 7:67-78. [PMID: 26819818 PMCID: PMC4722911 DOI: 10.1364/boe.7.000067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 05/06/2023]
Abstract
The aim of the present work was the optimization of the transdermal delivery of a lyotropic liquid crystal genistein-based formulation (LLC-GEN). LLC was chosen as medium in view of the poor solubility of GEN in water. Membrane diffusion and penetration studies were carried out with a Franz diffusion cell, through a synthetic membrane in vitro, a chick chorioallantoic membrane ex ovo, and ex vivo excised human epidermis. Thereafter, LLC-GEN was combined with electroporation (EP) to enhance the transdermal drug delivery. The synergistic effect of EP was verified by in vivo ATR-FTIR and ex vivo Raman spectroscopy on hairless mouse skin.
Collapse
Affiliation(s)
- Boglárka Balázs
- Department of Pharmaceutical Technology, University of Szeged, Szeged, H-6720, Hungary
- Gedeon Richter Plc., Budapest, H-1103, Hungary
| | - Péter Sipos
- Department of Pharmaceutical Technology, University of Szeged, Szeged, H-6720, Hungary
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Stefana Avram
- Discipline of Pharmacology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Codruta Soica
- Discipline of Pharmaceutical Chemistry, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Cristina Dehelean
- Department of Toxicology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Gábor Varju
- Dr. Derm Clinic of Anti-Aging Dermatology, Aesthetic Laser and Plastic Surgery, Budapest, H-1026, Hungary
| | - Gábor Erős
- Department of Dermatology and Allergology, University of Szeged, Szeged, H-6720, Hungary
- Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, H-6720, Hungary
| | - Mária Budai-Szűcs
- Department of Pharmaceutical Technology, University of Szeged, Szeged, H-6720, Hungary
| | - Szilvia Berkó
- Department of Pharmaceutical Technology, University of Szeged, Szeged, H-6720, Hungary
| | - Erzsébet Csányi
- Department of Pharmaceutical Technology, University of Szeged, Szeged, H-6720, Hungary
| |
Collapse
|
21
|
Quatela A, Tfayli A, Baillet-Guffroy A. Examination of the effect of Stratum Corneum isolation process on the integrity of the barrier function: a confocal Raman spectroscopy study. Skin Res Technol 2015; 22:75-80. [DOI: 10.1111/srt.12231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2015] [Indexed: 11/28/2022]
Affiliation(s)
- A. Quatela
- Laboratory of Analytical Chemistry; Analytical Chemistry Group of Paris-Sud (GCAPS-EA4041); Faculty of Pharmacy; University of Paris-Sud; Châtenay-Malabry France
| | - A. Tfayli
- Laboratory of Analytical Chemistry; Analytical Chemistry Group of Paris-Sud (GCAPS-EA4041); Faculty of Pharmacy; University of Paris-Sud; Châtenay-Malabry France
| | - A. Baillet-Guffroy
- Laboratory of Analytical Chemistry; Analytical Chemistry Group of Paris-Sud (GCAPS-EA4041); Faculty of Pharmacy; University of Paris-Sud; Châtenay-Malabry France
| |
Collapse
|
22
|
Leroy M, Labbé JF, Ouellet M, Jean J, Lefèvre T, Laroche G, Auger M, Pouliot R. A comparative study between human skin substitutes and normal human skin using Raman microspectroscopy. Acta Biomater 2014; 10:2703-11. [PMID: 24530562 DOI: 10.1016/j.actbio.2014.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/27/2014] [Accepted: 02/03/2014] [Indexed: 11/17/2022]
Abstract
Research in the field of bioengineered skin substitutes is motivated by the need to find new dressings for people affected by skin injuries (burns, diabetic ulcers), and to develop adequate skin models to test new formulations developed in vitro. Thanks to advances in tissue engineering, it is now possible to produce human skin substitutes without any exogenous material, using the self-assembly method developed by the Laboratoire d'Organogénèse Expérimentale. These human skin substitutes consist of a dermis and a stratified epidermis (stratum corneum and living epidermis). Raman microspectroscopy has been used to characterize and compare the molecular organization of skin substitutes with normal human skin. Our results confirm that the stratum corneum is a layer rich in lipids which are well ordered (trans conformers) in both substitutes and normal human skin. The amount of lipids decreases and more gauche conformers appear in the living epidermis in both cases. However, the results also show that there are fewer lipids in the substitutes and that the lipids are more organized in the normal human skin. Concerning the secondary structure of proteins and protein content, the data show that they are similar in the substitutes and in the normal human skin. In fact, the epidermis is rich in α-keratin, whereas the dermis contains mainly type I collagen.
Collapse
Affiliation(s)
- Marie Leroy
- Laboratoire d'Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada; Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada; Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Jean-François Labbé
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Marise Ouellet
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Jessica Jean
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada
| | - Thierry Lefèvre
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface (LIS), Département de Génie des Mines, de la Métallurgie et des Matériaux, Centre de Recherche sur les Matériaux Avancés (CERMA), Université Laval, 1065 avenue de la médecine, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec, Hôpital St-François d'Assise, 10 rue de l'Espinay, Québec, QC G1L 3L5, Canada
| | - Michèle Auger
- Département de Chimie, Regroupement québécois sur la fonction, la structure et l'ingénierie des protéines (PROTEO), CERMA, Université Laval, 1045 avenue de la médecine, Québec, QC G1V 0A6, Canada.
| | - Roxane Pouliot
- Centre LOEX de l'Université Laval, Génie Tissulaire et Régénération: LOEX-Centre de Recherche du CHU de Québec, Hôpital de l'Enfant Jesus, 1401, 18(e) rue, Québec, QC G1J 1Z4, Canada.
| |
Collapse
|
23
|
Characterization of the structure of human skin substitutes by infrared microspectroscopy. Anal Bioanal Chem 2013; 405:8709-18. [DOI: 10.1007/s00216-013-7103-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/29/2013] [Indexed: 01/23/2023]
|