1
|
Cui M, Li Y, Li J, Jia N, Cao W, Li Z, Li X, Chu X. Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride. J Microencapsul 2024; 41:157-169. [PMID: 38451031 DOI: 10.1080/02652048.2024.2324810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
OBJECTIVE To investigate the transdermal mechanisms and compare the differences in transdermal delivery of Sinomenine hydrochloride (SN) between solid lipid nanoparticles (SLN), liposomes (LS), and nanoemulsions (NE). METHODS SN-SLN, SN-LS and SN-NE were prepared by ultrasound, ethanol injection and spontaneous emulsification, respectively. FTIR, DSC, in vitro skin penetration, activation energy (Ea) analysis were used to explore the mechanism of drug penetration across the skin. RESULTS The particle size and encapsulation efficiency were 126.60 nm, 43.23 ± 0.48%(w/w) for SN-SLN, 224.90 nm, 78.31 ± 0.75%(w/w) for SN-LS, and 83.22 nm, 89.01 ± 2.16%(w/w) for SN-LS. FTIR and DSC showed the preparations had various levels of impacts on the stratum corneum's lipid structure which was in the order of SLN > NE > LS. Ea values of SN-SLN, SN-LS, and SN-NE crossing the skin were 2.504, 1.161, and 2.510 kcal/mol, respectively. CONCLUSION SLN had a greater degree of alteration on the skin cuticle, which allows SN to permeate skin more effectively.
Collapse
Affiliation(s)
- Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Wenxuan Cao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengguang Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiang Li
- Anhui Province Institute for Food and Drug Control, Hefei, China
| | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Anhui Education Department (AUCM), Engineering Technology Research Center of Modernized Pharmaceutics, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Pareek A, Kumari L, Pareek A, Chaudhary S, Ratan Y, Janmeda P, Chuturgoon S, Chuturgoon A. Unraveling Atopic Dermatitis: Insights into Pathophysiology, Therapeutic Advances, and Future Perspectives. Cells 2024; 13:425. [PMID: 38474389 PMCID: PMC10931328 DOI: 10.3390/cells13050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Atopic dermatitis (AD) is an inflammatory skin condition that frequently develops before the onset of allergic rhinitis or asthma. More than 10% of children are affected by this serious skin condition, which is painful for the sufferers. Recent research has connected the environment, genetics, the skin barrier, drugs, psychological factors, and the immune system to the onset and severity of AD. The causes and consequences of AD and its cellular and molecular origins are reviewed in this paper. The exploration of interleukins and their influence on the immunological pathway in AD has been facilitated by using relevant biomarkers in clinical trials. This approach enables the identification of novel therapeutic modalities, fostering the potential for targeted translational research within the realm of personalized medicine. This review focuses on AD's pathophysiology and the ever-changing therapeutic landscape. Beyond the plethora of biologic medications in various stages of approval or development, a range of non-biologic targeted therapies, specifically small molecules, have emerged. These include Janus kinase (JAK) inhibitors like Baricitinib, Upadacitinib, and Abrocitinib, thus expanding the spectrum of therapeutic options. This review also addresses the latest clinical efficacy data and elucidates the scientific rationale behind each targeted treatment for atopic dermatitis.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Lipika Kumari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Simran Chaudhary
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, India; (A.P.); (S.C.); (Y.R.)
| | - Pracheta Janmeda
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali 304022, India; (L.K.)
| | - Sanam Chuturgoon
- Northdale Hospital, Department of Health, Pietermaritzburg 3200, South Africa
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
3
|
Lee MS, Kim SJ, Lee JB, Yoo HS. Clinical evaluation of the brightening effect of chitosan-based cationic liposomes. J Cosmet Dermatol 2022; 21:6822-6829. [PMID: 36052771 DOI: 10.1111/jocd.15350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cationic liposomes can enhance the permeability of drugs in 3-D skin. Chitosan is considered a safe material for percutaneous delivery; thus, this study uses chitosan-incorporated cationic liposomes. AIMS This study investigated the improvement in skin brightness, melanin, and melasma after treatment niacinamide-incorporated chitosan cationic liposomes. METHODS A skin brightening agent, niacinamide, was formulated into cationic liposomes to facilitate percutaneous absorption and was clinically tested in 21 Korean female subjects. Cationic liposomes were prepared using a high-pressure homogenizer after mixing an oil phase containing lecithin and cholesterol and an aqueous phase containing niacinamide and chitosan. RESULTS The cationic liposomes exhibited stability over 28 days, with a particle size of 255-275 nm and zeta potential of 10-14 mV. Cationic liposomes containing niacinamide and a control formulation were applied to the left and right side of the face, respectively, twice daily for 28 days. Skin brightness, melanin index, and area of melasma were significantly enhanced where cationic liposomes were used, in comparison with formulations without cationic liposomes, demonstrating a 1.38-2.08-fold improvement. CONCLUSION Thus, we established that chitosan liposomes augmented the percutaneous absorption of niacinamide and improved the appearance of the skin.
Collapse
Affiliation(s)
- Mi So Lee
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Su Ji Kim
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Jun Bae Lee
- Innovation Lab., Cosmax R&I Center, Seongnam-si, Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Science, Kangwon National University, Chuncheon, Korea.,Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon, Korea
| |
Collapse
|
4
|
Anicescu MC, Dinu-Pîrvu CE, Talianu MT, Ghica MV, Anuța V, Prisada RM, Nicoară AC, Popa L. Insights from a Box-Behnken Optimization Study of Microemulsions with Salicylic Acid for Acne Therapy. Pharmaceutics 2022; 14:174. [PMID: 35057071 PMCID: PMC8778434 DOI: 10.3390/pharmaceutics14010174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box-Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability-with a reduced mechanical work-and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.
Collapse
Affiliation(s)
- Maria-Cristina Anicescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Răzvan-Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Anca Cecilia Nicoară
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| |
Collapse
|
5
|
Using a Cellular System to Directly Assess the Effects of Cosmetic Microemulsion Encapsulated DeoxyArbutin. Int J Mol Sci 2021; 22:ijms222313110. [PMID: 34884914 PMCID: PMC8658635 DOI: 10.3390/ijms222313110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022] Open
Abstract
DeoxyArbutin (dA) is a tyrosinase inhibitor that has effective skin-lightening activity and has no obvious cytotoxicity toward melanocytes. With the aim of directly evaluating the effects of microemulsions containing dA on cells, we developed oil-in-water (O/W) microemulsions with relatively lower cytotoxicities by using polysorbate-series surfactants. Measurement of the transparent properties and particle size analysis at different storage time periods revealed that the developed microemulsions were stable. Moreover, the developed microemulsions had direct effects on B16-F10 mouse melanoma cells. The anti-melanogenesis activities of dA-containing microemulsions were evidently better than that of the free dA group. The results demonstrated that the developed microemulsion encapsulating dA may allow the use of deoxyArbutin instead of hydroquinone to treat dermal hyperpigmentation disorders in the future.
Collapse
|
6
|
Jovanovic JD, Adnadjevic BK. Kinetics of the Release of Nicotinamide Absorbed on Partially Neutralized Poly(acrylic-co-methacrylic acid) Xerogel under the Conditions of Simultaneous Microwave Heating and Cooling. Gels 2021; 7:gels7040193. [PMID: 34842663 PMCID: PMC8628703 DOI: 10.3390/gels7040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 01/28/2023] Open
Abstract
The kinetics of release of nicotinamide (NIAM) that was absorbed on partially neutralized poly(acrylic-co-methacrylic) (PAM) xerogel/hydrogel, under the conditions of simultaneous microwave heating and cooling (SMHC) were examined. The kinetics curves of NIAM release into an aqueous solution at temperatures of 308-323 K were recorded. By applying the model-fitting method (MFM), it was found that the kinetics of NIAM release can be modeled by a kinetic model of a first-order chemical reaction. The values of the release rate constants (kM) at different temperatures were calculated, and their values were found to be within the range 8.4 10-3 s -1-15.7 10-3 s-1. It has been established that the Arrhenius equation was valid even in the conditions of SMHC. The values of the kinetic parameters (activation energy (Ea) and pre-exponential factor (A) of the NIAM release process adsorbed on PAM xerogel/hydrogel were calculated as follows: Ea = 25.6 kJ/mol and ln (A/s-1) = 5.21. It has been proven that the higher value of the rate constant at SMHC in relation to CH is not a consequence of the overheating of the reaction system or the appearance of "hot-points". The values of change of the enthalpy of activation (ΔH*) and the change of entropy of activation (ΔS*) were calculated as follows: ΔH* = +23.82 kJ/mol and ΔS* = -201.4 J/mol K. The calculated higher values of the kinetic parameters and thermodynamic parameters of activation are explained by the formation of a specific activated complex under SMHC, whose structure and degree of order are different than in the one formed under CH.
Collapse
Affiliation(s)
- Jelena D. Jovanovic
- Institute of General and Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11001 Belgrade, Serbia
- Correspondence:
| | - Borivoj K. Adnadjevic
- Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12–16, 11001 Belgrade, Serbia;
| |
Collapse
|
7
|
Ren R, Bao S, Qian W, Zhao H. Topical ALA-Photodynamic Therapy Combined with Acne Debridement and Meticulous Nursing for the Treatment of Moderate-Severe Acne in Adolescent Patients. Clin Cosmet Investig Dermatol 2021; 14:1303-1310. [PMID: 34566420 PMCID: PMC8459091 DOI: 10.2147/ccid.s322768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022]
Abstract
Objective The present study aims to explore the effect of acne debridement + meticulous nursing on 5-aminolevulinic acid photodynamic therapy (ALA-PDT) in adolescent patients with moderate–severe acne. Methods A total of 60 adolescent patients with moderate–severe acne who were admitted to our plastic surgery outpatient clinic between January 2018 and January 2020 were selected as the subjects of the present retrospective study. The patients were divided into two groups: the observation group and the control group (n = 30, each). Patients in the control group were treated with standardized ALA-PDT and conventional nursing, while patients in the observation group were treated with ALA-PDT and acne debridement + meticulous nursing intervention. The treatment’s therapeutic effect, adverse reaction incidence, and patient satisfaction 6 months after treatment were compared between the two groups. Results The acne debridement + meticulous nursing effectiveness was 86.7% in the observation group and 60% in the control group, and the adverse reaction incidence was 20% in the observation group and 46.7% in the control group. There existed statistically significant differences in the above-stated indicators between the two groups (p < 0.05). The difference in the visual analogue scores (VASs) for pain, which were measured immediately after the operations, between the two groups was not statistically significant (p > 0.05); however, the respective VAS differences between the two groups at 30 min and 60 min after the operation were statistically significant (p < 0.05). There was a statistically significant difference in patient satisfaction between the two groups (p < 0.05). Conclusion In adolescent patients with ALA-PDT-treated moderate–severe acne, the application of acne debridement + meticulous nursing could improve the clinical treatment efficacy and patient comfort as well as reduce the adverse reaction incidence. For these reasons, the treatment method could be worth promoting in clinical practice.
Collapse
Affiliation(s)
- Rongxin Ren
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Shiwei Bao
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wenjiang Qian
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Hongyi Zhao
- Department of Plastic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|