1
|
Refaey MS, Abosalem EF, Yasser El-Basyouni R, Elsheriri SE, Elbehary SH, Fayed MAA. Exploring the therapeutic potential of medicinal plants and their active principles in dental care: A comprehensive review. Heliyon 2024; 10:e37641. [PMID: 39318809 PMCID: PMC11420497 DOI: 10.1016/j.heliyon.2024.e37641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Since the human population realized how important it was to maintain overall health and the weight of disease, they have been looking for therapeutic qualities in natural environments. The use of plants having medicinal qualities for the treatment and prevention of illnesses that may have an impact on general health is known as herbal medicine. There has been a noticeable increase in interest lately in the combination of synthetic contemporary medications and traditional herbal remedies. About 80 % of people rely on it for healthcare, particularly in developing nations. One important aspect of overall health is said to be oral healthcare. The World Health Organization views oral health as a crucial component of overall health and well-being. Because they are more readily available, less expensive, and have fewer adverse effects than pharmaceutical treatments, using natural medicines to treat pathologic oro-dental disorders can make sense. The current evaluation of the literature sought to investigate the range and scope of the use of herbal products and their secondary metabolites in maintaining oral health, encompassing several oral healthcare domains such as halitosis, gingivitis, periodontitis, and other oral disorders. Therefore, there are many herbs discussed in this work and their mechanism in the treatment and improvement of many oral ailments. Besides, compounds that are useful in oral treatment with their natural sources and the cases where they can be used. To prevent any possible side effects or drug interactions, a doctor's consultation is necessary before using dental medicine. Although herbal therapy is safe and with minimum side effects, it is also strongly advised to do a more thorough preclinical and clinical evaluation before using herbal medicines officially.
Collapse
Affiliation(s)
- Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Esraa Fawzy Abosalem
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Rana Yasser El-Basyouni
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Shymaa E Elsheriri
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Sara Hassan Elbehary
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
2
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Adolpho LF, Gomes MPO, Freitas GP, Bighetti-Trevisan RL, Ramos JIR, Campeoti GH, Zatta GC, Almeida ALG, Tarone AG, Marostica-Junior MR, Rosa AL, Beloti MM. Jaboticaba Peel Extract Attenuates Ovariectomy-Induced Bone Loss by Preserving Osteoblast Activity. BIOLOGY 2024; 13:526. [PMID: 39056719 PMCID: PMC11273516 DOI: 10.3390/biology13070526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Therapies to prevent osteoporosis are relevant since it is one of the most common non-communicable human diseases in the world and the most prevalent bone disorder in adults. Since jaboticaba peel extract (JPE) added to the culture medium enhanced the osteogenic potential of mesenchymal stem cells (MSCs) derived from osteoporotic rats, we hypothesized that JPE prevents the development of ovariectomy-induced osteoporosis. Ovariectomized rats were treated with either JPE (30 mg/kg of body weight) or its vehicle for 90 days, starting 7 days after the ovariectomy. Then, the femurs were subjected to microcomputed tomography and histological analyses, and the osteoblast and adipocyte differentiation of MSCs was evaluated. JPE attenuated ovariectomy-induced bone loss, as evidenced by higher bone volume/total volume and trabecular number, along with lower trabecular separation and bone marrow adiposity. These protective effects of JPE on bone tissue are due to its ability to prevent the imbalance between osteoblast and adipocyte differentiation of MSCs, since, compared with MSCs derived from ovariectomized rats treated with vehicle, MSCs treated with JPE exhibited higher gene and protein expression of osteogenic markers and extracellular matrix mineralization, as well as lower gene expression of adipogenic markers. These data highlight the potential therapeutic use of JPE to prevent osteoporosis.
Collapse
Affiliation(s)
- Letícia Faustino Adolpho
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Maria Paula Oliveira Gomes
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Gileade Pereira Freitas
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Goiás, Avenida Universitária, s/n—Setor Leste Universitário, Goiânia 74605-020, GO, Brazil;
| | - Rayana Longo Bighetti-Trevisan
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Jaqueline Isadora Reis Ramos
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Gabriela Hernandes Campeoti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Guilherme Crepi Zatta
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Adriana Luisa Gonçalves Almeida
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Adriana Gadioli Tarone
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, SP, Brazil; (A.G.T.); (M.R.M.-J.)
| | - Mario Roberto Marostica-Junior
- School of Food Engineering, University of Campinas, Rua Monteiro Lobato 80, Campinas 13083-862, SP, Brazil; (A.G.T.); (M.R.M.-J.)
| | - Adalberto Luiz Rosa
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| | - Marcio Mateus Beloti
- Bone Research Lab, Ribeirão Preto School of Dentistry, University of São Paulo, Av do Café s/n, Ribeirão Preto 14040-904, SP, Brazil; (L.F.A.); (M.P.O.G.); (R.L.B.-T.); (J.I.R.R.); (G.H.C.); (G.C.Z.); (A.L.G.A.); (A.L.R.)
| |
Collapse
|
4
|
Zhang L, Wang M, Qiu H, Wei Y, Zhou L, Nian N, Shi Z, Hu D, Ma B. Epicatechin gallate promotes vascularization in co-culture of human osteoblasts and outgrowth endothelial cells. Exp Biol Med (Maywood) 2023; 248:732-745. [PMID: 37354086 PMCID: PMC10408553 DOI: 10.1177/15353702231171894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 06/26/2023] Open
Abstract
Prevascularization is crucial for the survival of tissue-engineered bone and further bone repair/regeneration. Since epicatechin gallate (ECG), the most abundant flavanol in green tea, shows potential beneficial effects on endothelial cells and bone cells, we decided to investigate whether it promotes vascularization/angiogenesis and osteogenesis using a co-culture system containing human primary osteoblasts (POBs) and outgrowth endothelial cells (OECs). We found that treatment with ECG (1) significantly enhanced microvessel formation in co-culture of POB and OECs, (2) improved cell viability/proliferation and the angiogenic/osteogenic capacities of OEC/POBs, (3) significantly increased the levels of E-selectin, IL-6, TNF-α, IFN-γ, VEGF, and PDGF-BB in co-cultures of POB and OEC, and (4) upregulated HIF-1α, HIF-2α, NF-κB, iNOS, GLUT1, VEGF, and Ang1/2 but downregulated PHD1 in monocultures of OEC or POB. Our findings demonstrate that ECG promotes angiogenesis and osteogenesis (probably via HIF signaling) in co-cultures of OECs and POBs. ECG thus has potential applications in the promotion of angiogenesis/vascularization in many tissue constructs including those of bone.
Collapse
Affiliation(s)
- Liyan Zhang
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Miaoran Wang
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Huiqing Qiu
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
- Department of Geriatrics, The First Hospital of Hebei Medical University, Shijiazhuang 050030, China
| | - Yusen Wei
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Lu Zhou
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Nannan Nian
- Graduate School, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhongli Shi
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, The First Hospital of Hebei Medical University, Shijiazhuang 050030, China
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang 050030, China
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
5
|
Zou JH, Chen F, Li YL, Chen H, Sun TK, Du SM, Zhang J. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on orthodontic tooth movement and root resorption in rats. Arch Oral Biol 2023; 150:105691. [PMID: 37043987 DOI: 10.1016/j.archoralbio.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To study the effect of EGCG on tooth movement and root resorption during orthodontic treatment in rats. METHODS A total of thirty six male Wistar rats were randomly and equally divided into three groups: control, 50 mg/kg EGCG, and 100 mg/kg EGCG. During the experiment, the subjects were submitted to an orthodontic tooth movement (OTM) model, rats in the experimental groups were given the corresponding dose of EGCG, while rats in the control group were administrated with an equal volume of normal saline solution by gavage. After 14 days of OTM, the rats were sacrificed by transcardial perfusion. Micro-CT of rat maxillaes was taken to analyze OTM distance and root resorption. The maxillary samples were prepared as histological sections for H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical (IHC) staining to be observed and analyzed. RESULTS The OTM distance and root resorption of rats in the dosed group decreased, and the number of TRAP positive cells in their periodontium decreased significantly. The expression level of RANKL was decreased in the EGCG group compared to the control group, while that of OPG, OCN and Runx2 was increased. Effects were more pronounced in 100 mg/kg group than in 50 mg/kg group. CONCLUSION EGCG reduces OTM and orthodontic induced root resorption (OIRR) in rats, and is able to attenuate osteoclastogenesis on the pressure side and promote osteogenesis on the tension side.
Collapse
Affiliation(s)
- Jing-Hua Zou
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fei Chen
- Department of Stomatology, Rizhao Traditional Chinese Medicine Hospital, Rizhao, China
| | - Yi-Lin Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tong-Ke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Si-Meng Du
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
6
|
Zhang Z, Yu Y, Zhu G, Zeng L, Xu S, Cheng H, Ouyang Z, Chen J, Pathak JL, Wu L, Yu L. The Emerging Role of Plant-Derived Exosomes-Like Nanoparticles in Immune Regulation and Periodontitis Treatment. Front Immunol 2022; 13:896745. [PMID: 35757759 PMCID: PMC9231591 DOI: 10.3389/fimmu.2022.896745] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Periodontitis is an infectious oral disease, which leads to the destruction of periodontal tissues and tooth loss. Although the treatment of periodontitis has improved recently, the effective treatment of periodontitis and the periodontitis-affected periodontal tissues is still a challenge. Therefore, it is urgent to explore new therapeutic strategies for periodontitis. Natural products show anti-microbial, anti-inflammatory, anti-oxidant and bone protective effects to periodontitis and most of these natural products are safe and cost-effective. Among these, the plant-derived exosome-like nanoparticles (PELNs), a type of natural nanocarriers repleted with lipids, proteins, RNAs, and other active molecules, show the ability to enter mammalian cells and regulate cellular activities. Reports from the literature indicate the great potential of PELNs in the regulation of immune functions, inflammation, microbiome, and tissue regeneration. Moreover, PELNs can also be used as drug carriers to enhance drug stability and cellular uptake in vivo. Since regulation of immune function, inflammation, microbiome, and tissue regeneration are the key phenomena usually targeted during periodontitis treatment, the PELNs hold the promising potential for periodontitis treatment. This review summarizes the recent advances in PELNs-related research that are related to the treatment of periodontitis and regeneration of periodontitis-destructed tissues and the underlying mechanisms. We also discuss the existing challenges and prospects of the application of PELNs-based therapeutic approaches for periodontitis treatment.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Guanxiong Zhu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Liting Zeng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Shaofen Xu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Haoyu Cheng
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Zhaoguang Ouyang
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Jianwei Chen
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lihong Wu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| | - Lina Yu
- Department of Preventive Dentistry, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,School and Hospital of Stomatology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Texturized P(VDF-TrFE)/BT membrane enhances bone neoformation in calvaria defects regardless of the association with photobiomodulation therapy in ovariectomized rats. Clin Oral Investig 2021; 26:1053-1065. [PMID: 34370100 DOI: 10.1007/s00784-021-04089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES The purpose of this investigation was to evaluate in vivo the response of bone tissue to photobiomodulation when associated with texturized P(VDF-TrFE)/BT in calvaria defects of ovariectomized rats. MATERIALS AND METHODS Wistar Hannover rats were submitted to ovariectomy/control surgery. Calvaria bone defects of 5-mm diameter were performed after 90 days of ovariectomy. The animals were divided into OVX (without laser (L) and membrane), OVX + P(VDF-TrFE)/BT, OVX + P(VDF-TrFE)/BT + L, and OVX + PTFE + L. It was utilized a low-intensity gallium-aluminum-arsenide laser (GaAlAs) with 780-nm wavelength and 30-J/cm2 energy density in 12 sessions (120 s). Thirty days after the bone defect the animals were euthanized for histological, microtomographic, and molecular evaluation. Quantitative analysis was analyzed by statistical software for p < 0.05. RESULTS Histological parameters showed bone tissue formation at the borders of all group defects. The association of photobiomodulation and texturized P(VDF-TrFE)/BT was not synergistic and did not show significant changes in morphometric analysis and biomarkers gene expression. Nevertheless, texturized P(VDF-TrFE)/BT membrane enhanced bone repair regardless of the association with photobiomodulation therapy, with an increase of connectivity density when compared to the OVX + PTFE + L group. The association of photobiomodulation therapy and PTFE was synergistic, increasing the expression of Runx2, Alp, Bsp, Bglap, Sp7, and Rankl, even though not enough to reflect significance in the morphometric parameters. CONCLUSIONS The utilization of texturized P (VDF-TrFE)/BT, regardless of the association with photobiomodulation therapy, enhanced bone repair in an experimental model of osteoporosis.
Collapse
|
8
|
Jara CM, Pereira KKY, Maito FLDM, Adorno CG, Gomes MS. Impact of endodontic and periodontal diseases and treatments on the aorta and liver of obese and non-obese rats. Int Endod J 2021; 54:2074-2085. [PMID: 34351629 DOI: 10.1111/iej.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022]
Abstract
AIM To evaluate the impact of the presence and treatment of periodontal disease (PD) and apical periodontitis (AP) on the aorta and liver of obese and non-obese rats. METHODOLOGY One hundred and forty Wistar rats were divided into two groups, according to the diet administered: normal diet (-n), without obesity; and cafeteria diet (-c), with induced obesity. These groups were divided into seven subgroups according to the specific experimental protocols: naïve control (NC); AP; AP with treatment (APt); PD; PE with treatment (PDt); AP and PD (APPD); and AP and PD with treatment (APPDt). AP and PD lesions were induced for four weeks. Four weeks after treatments, the animals were euthanatized, and the aorta and liver were dissected for histological evaluation. For the comparison of the thickness of the aorta between groups, the Kruskal-Wallis test was used, followed by the Mann-Whitney test. For the analysis of other variables related to the aorta and liver outcomes, logistic regression was carried out. RESULTS Both PD and AP were associated with the development of histological alterations in the aortic arch, with no significant difference between obese and non-obese animals (p = .17). The aorta thickness was increased significantly (p < .05) with the combination of PD and AP in obese rats (APPDt-c group) compared with the other groups (NC-n, APt-n, APt-c and AP-c). The logistic regression models revealed that the untreated (OR = 7.78; 95%CI = 2.4-25) and treated (OR = 2.9; 95%CI = 1.0-8.4) groups were significantly more likely to have endothelial alterations compared with the control groups (p = .002). Obesity (OR = 16.5; 95%CI = 3.4-81.3) was the only predictor variable of liver steatosis (p < .001). CONCLUSION Histological alterations in the aortic arch of obese and non-obese rats were observed in the presence of periodontal disease and apical periodontitis. The combination of PD and AP increased the aorta thickness in obese rats. A reduction of vascular endothelial lesions was observed with the treatments of PD and AP.
Collapse
Affiliation(s)
- Cynthia Mireya Jara
- Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Faculty of Dentistry of the National University of Asunción, Asunción, Paraguay
| | | | | | | | - Maximiliano Schünke Gomes
- Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Medical and Dental Center of the Military Police of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
9
|
Vargas-Sanchez PK, Pitol DL, de Sousa LG, Beloti MM, Rosa AL, Rossi AC, Siéssere S, Bombonato-Prado KF. Green tea extract rich in epigallocatechin gallate impairs alveolar bone loss in ovariectomized rats with experimental periodontal disease. Int J Exp Pathol 2020; 101:277-288. [PMID: 33174663 DOI: 10.1111/iep.12379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 09/17/2020] [Indexed: 12/30/2022] Open
Abstract
Periodontal disease and osteoporosis are characterized by bone resorption, and researchers have shown an association between these two diseases through increasing loss of systemic bone mass and triggering alveolar bone loss. Green tea is a common and easily accessible beverage, and evidences show that flavonoid epigallocatechin gallate (EGCG) could decrease bone loss in pathologies such as osteoporosis and periodontal disease. In order to verify its possible effects and apply them in the treatment and prevention of these diseases, this investigation aimed to evaluate the influence of green tea extract (GTE) on bone metabolism of ovariectomized rats after experimental periodontal disease (EPD) by histological, morphological and microtomographic parameters. Wistar female rats were divided into Sham, Sham + EPD, Sham + EPD + GTE, OVX, OVX + EPD and OVX + EPD + GTE groups. Immediately after surgery, gavage administration of 50 mg/kg of green tea extract (GTE) was performed for 60 days, with subsequent induction of periodontal disease by ligature 15 days before euthanasia. Mandible and femur samples were collected for histological, morphometric and microtomographic analysis. The results were analysed by means of statistical software with significance set at 5%. Histological and morphometric analysis showed a significant decrease in alveolar and femoral trabecular bone loss in groups that received GTE. Microtomographic results showed that trabecular thickness and bone surface density values in alveolar bone interradicular septum of the OVX + EPD + GTE groups were similar to the Sham group. The results obtained suggest that green tea extract may improve bone metabolism in osteoporotic rats with periodontal disease.
Collapse
Affiliation(s)
- Paula Katherine Vargas-Sanchez
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimitrius Leonardo Pitol
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gustavo de Sousa
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Márcio Mateus Beloti
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Adalberto Luiz Rosa
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ana Cláudia Rossi
- Department of Biosciences, School of Dentistry of Piracicaba, Campinas State University, Campinas, Brazil
| | - Selma Siéssere
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Karina Fittipaldi Bombonato-Prado
- Bone Research Lab, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|