1
|
Chakraborty A, Bodhak S, Tah I, Kant S, Saha D, Dey KK, Gupta N, Ghosh M, Tripathy S, Allu AR, Biswas K. Tailored Bioactive Glass Coating: Navigating Devitrification Toward a Superior Implant Performance. ACS Biomater Sci Eng 2024; 10:5300-5312. [PMID: 39087496 DOI: 10.1021/acsbiomaterials.4c01032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of well-adherent, amorphous, and bioactive glass coatings for metallic implants remains a critical challenge in biomedical engineering. Traditional bioactive glasses are susceptible to crystallization and exhibit a thermal expansion mismatch with implant materials. This study introduces a novel approach to overcome these limitations by employing systematic Na2O substitution with CaO in borosilicate glasses. In-depth structural analysis (MD simulations, Raman spectroscopy, and NMR) reveals a denser network with smaller silicate rings, enhancing thermal stability, reducing thermal expansion, and influencing dissolution kinetics. This tailored composition exhibited optimal bioactivity (in vitro formation of bone-like apatite within 3 days) and a coefficient of thermal expansion closely matching Ti-6Al-4V, a widely used implant material. Furthermore, a consolidation process, meticulously designed with insights from crystallization kinetics and the viscosity-temperature relationship, yielded a crack-free, amorphous coating on Ti-6Al-4V substrates. This novel coating demonstrates excellent cytocompatibility and strong antibacterial action, suggesting superior clinical potential compared with existing technologies.
Collapse
Affiliation(s)
- Anustup Chakraborty
- Specialty Glass Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Subhadip Bodhak
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Indrajit Tah
- Specialty Glass Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Shashi Kant
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Debolina Saha
- Bioceramics and Coating Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Krishna K Dey
- Department of Physics, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Neelima Gupta
- Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Manasi Ghosh
- Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sucheta Tripathy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Amarnath R Allu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Energy Materials and Devices Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
| | - Kaushik Biswas
- Specialty Glass Division, CSIR-Central Glass & Ceramic Research Institute, 196, Raja S C Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
2
|
Westhauser F, Arango-Ospina M, Hupa L, Renkawitz T, Boccaccini AR, Kunisch E. A comparative analysis of the cytocompatibility, protein adsorption, osteogenic and angiogenic properties of the 45S5- and S53P4-bioactive glass compositions. Biomed Mater 2024; 19:025027. [PMID: 38266275 DOI: 10.1088/1748-605x/ad2210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Despite their long history of application in orthopedics, the osteogenic and angiogenic properties as well as the cytocompatibility and protein adsorption of the 45S5- (in wt%: 45.0 SiO2, 24.5 Na2O, 24.5 CaO, 6.0 P2O5) and S53P4- (in wt%: 53.0 SiO2, 23.0 Na2O, 20.0 CaO, 4.0 P2O5) bioactive glass (BG) compositions have not yet been directly compared in one and the same experimental setting. In this study, the influence of morphologically equal granules of both BGs on proliferation, viability, osteogenic differentiation and angiogenic response of human bone-marrow-derived mesenchymal stromal cells (BMSCs) was assessed. Furthermore, their impact on vascular tube formation and adsorption of relevant proteins was evaluated. Both BGs showed excellent cytocompatibility and stimulated osteogenic differentiation of BMSCs. The 45S5-BG showed enhanced stimulation of bone morphogenic protein 2 (BMP2) gene expression and protein production compared to S53P4-BG. While gene expression and protein production of vascular endothelial growth factor (VEGF) were stimulated, both BGs had only limited influence on tubular network formation. 45S5-BG adsorbed a higher portion of proteins, namely BMP2 and VEGF, on its surface. In conclusion, both BGs show favorable properties with slight advantages for 45S5-BG. Since protein adsorption on BG surfaces is important for their biological performance, the composition of the proteome formed by osteogenic cells cultured on BGs should be analyzed in order to gain a deeper understanding of the mechanisms that are responsible for BG-mediated stimulation of osteogenic differentiation.
Collapse
Affiliation(s)
- Fabian Westhauser
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Leena Hupa
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland
| | - Tobias Renkawitz
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Elke Kunisch
- Department of Orthopedics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
3
|
Ranganathan P, Sugumaran V, Purushothaman B, Rajendran AR, Subramanian B. Rapidly derived equimolar Ca: P phasic bioactive glass infused flexible gelatin multi-functional scaffolds - A promising tissue engineering. J Mech Behav Biomed Mater 2024; 150:106264. [PMID: 38029463 DOI: 10.1016/j.jmbbm.2023.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The study aims to design and fabricate an ultra-easier multi-functional biomedical polymeric scaffold loaded with unique equimolar Ca:P phasic bioactive glass material (BG). Gelatin (G) - 45S5 bioactive glass (BG) scaffolds were synthesized via a simple laboratory refrigerator with higher biocompatibility and cytocompatibility. The results proved that BG has enhanced bio-mineralization of the scaffolds and results support that the G: BG (1:2) ratio is the more appropriate composition. Brunauer-Emmett-Teller (BET) study confirms the higher surface area for pure Gelatin and G: BG (1:2). Scanning Electron Microscopic images display the precipitation of hydroxycarbonate apatite layer over the scaffolds on immersing it in simulated body fluid. Alkaline phosphate activity proved that G: BG (1:2) scaffold could induce mitogenesis in MG-63 osteoblast cells, thus helping in hard tissue regeneration. Sirius red collagen deposition showed that higher content bioactive glass incorporated Gelatin polymeric scaffold G: BG (1:2) could induce rapid collagen secretion of NIH 3T3 fibroblast cell line that could help in soft tissue regeneration and earlier wound healing. The scaffolds were also tested for cell viability using NIH 3T3 fibroblast cell lines and MG 63 osteoblastic cell lines through methyl thiazolyl tetrazolium (MTT) assay. Thus, the study shows a scaffold of appropriate composition G: BG (1:2) can be a multifunctional material to regenerate hard and soft tissues.
Collapse
Affiliation(s)
- Priya Ranganathan
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India; Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Vijayakumari Sugumaran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Bargavi Purushothaman
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Vellapanchavadi, Chennai 600077, India
| | - Ajay Rakkesh Rajendran
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
4
|
An enduring in vitro wound healing phase recipient by bioactive glass-graphene oxide nanocomposites. Sci Rep 2022; 12:16162. [PMID: 36171341 PMCID: PMC9519557 DOI: 10.1038/s41598-022-20575-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/15/2022] [Indexed: 11/27/2022] Open
Abstract
Bioactive glass (BG) is an interesting topic in soft tissue engineering because of its biocompatibility and bonding potential to increase fibroblast cell proliferation, synthesize growth factors, and stimulate granulation tissue development. The proposed BG with and without sodium (Na), prepared by the sol–gel method, is employed in wound healing studies. The BG/graphene oxide (GO) and BG (Na-free)/GO nanocomposites were investigated against fibroblast L929 cells in vitro; the 45S5 BG nanocomposites exhibited desired cell viability (80%), cell proliferation (30%), cell migration (25%), metabolic activity, and wound contraction due to extracellular matrix (ECM) production and enhanced protein release by fibroblast cells. Additionally, the antioxidant assays for BG, BG (Na-free), GO, and BG/GO, BG (Na-free)/GO were evaluated for effective wound healing properties. The results showed decreased inflammation sites in the wound area, assessed by the (2,2-diphenyl-1-picryl-hydrazyl-hydrate) (DPPH) assay with ~ 80% radical scavenging activity, confirming their anti-inflammatory and improved wound healing properties.
Collapse
|
5
|
Bioactive Silicon Nitride Implant Surfaces with Maintained Antibacterial Properties. J Funct Biomater 2022; 13:jfb13030129. [PMID: 36135564 PMCID: PMC9500919 DOI: 10.3390/jfb13030129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Silicon nitride (Si3N4) is a promising biomaterial, currently used in spinal fusion implants. Such implants should result in high vertebral union rates without major complications. However, pseudarthrosis remains an important complication that could lead to a need for implant replacement. Making silicon nitride implants more bioactive could lead to higher fusion rates, and reduce the incidence of pseudarthrosis. In this study, it was hypothesized that creating a highly negatively charged Si3N4 surface would enhance its bioactivity without affecting the antibacterial nature of the material. To this end, samples were thermally, chemically, and thermochemically treated. Apatite formation was examined for a 21-day immersion period as an in-vitro estimate of bioactivity. Staphylococcus aureus bacteria were inoculated on the surface of the samples, and their viability was investigated. It was found that the thermochemically and chemically treated samples exhibited enhanced bioactivity, as demonstrated by the increased spontaneous formation of apatite on their surface. All modified samples showed a reduction in the bacterial population; however, no statistically significant differences were noticed between groups. This study successfully demonstrated a simple method to improve the in vitro bioactivity of Si3N4 implants while maintaining the bacteriostatic properties.
Collapse
|
6
|
Li Y, Ramesh V, Bider F, Bradshaw N, Rehbock C, Boccaccini AR, Barcikowski S. Co-doping of iron and copper ions in nanosized bioactive glass by reactive laser fragmentation in liquids. J Biomed Mater Res A 2022; 110:1537-1550. [PMID: 35437923 DOI: 10.1002/jbm.a.37393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
Bioactive glass (BG) is a frequently used biomaterial applicable in bone tissue engineering and known to be particularly effective when applied in nanoscopic dimensions. In this work, we employed the scalable reactive laser fragmentation in liquids method to produce nanosized 45S5 BG in the presence of light-absorbing Fe and Cu ions. Here, the function of the ions was twofold: (i) increasing the light absorption and thus causing a significant increase in laser fragmentation efficiency by a factor of 100 and (ii) doping the BG with bioactive metal ions up to 4 wt%. Our findings reveal an effective downsizing of the BG from micrometer-sized educts into nanoparticles having average diameters of <50 nm. This goes along with successful element-specific incorporation of the metal ions into the BG, inducing co-doping of Fe and Cu ions as verified by energy-dispersive X-ray spectroscopy (EDX). In this context, the overall amorphous structure is retained, as evidenced by X-ray powder diffraction (XRD). We further demonstrate that the level of doping for both elements can be adjusted by changing the BG/ion concentration ratio during laser fragmentation. Consecutive ion release experiments using inductively-coupled plasma mass spectrometry (ICP-MS) were conducted to assess the potential bioactivity of the doped nanoscopic BG samples, and cell culture experiments using MG-63 osteoblast-like cells demonstrated their cytocompatibility. The elegant method of in situ co-doping of Fe and Cu ions during BG nanosizing may provide functionality-advanced biomaterials for future studies on angiogenesis or bone regeneration, particularly as the level of doping may be adjusted by ion concentrations and ion type in solution.
Collapse
Affiliation(s)
- Yaya Li
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Vaijayanthi Ramesh
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Faina Bider
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nathan Bradshaw
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Christoph Rehbock
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan Barcikowski
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| |
Collapse
|
7
|
Sugumaran V, Krishnamoorthy E, Kamalakkannan A, Ramachandran RC, Subramanian B. Unscrambling the Influence of Sodium Cation on the Structure, Bioactivity, and Erythrocyte Compatibility of 45S5 Bioactive Glass. ACS APPLIED BIO MATERIALS 2022; 5:1576-1590. [PMID: 35362945 DOI: 10.1021/acsabm.1c01322] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 45S5 bioglass uttering Class A bioactivity promotes both osteoconduction as well as osteoinduction. Though one of the higher reactive bioactive materials known with structural and physiological influence upon ionic modulation, poor mechanical properties are perceived. The possible solution to overcome the weak stability is to choose material's composition that provides retained bioactivity and improved mechanical stability. Meanwhile, primary burst out of Na+ ions increases the local pH, harms cell life, and acts as a well-known disruptive modifying species that weakens the bioactive glass network, decreasing network connectivity, showing faster degradation and lowering mechanical stability. Therefore, in this study, more detailed systematic exploration on structural influence of sodium monovalent cation and its behavior on physiological environment was genuinely studied and reported that bioactivity of the bioactive glass can be highly achieved even without Na+ ions. The result exhibits benefits of sodium free bioactive glass (denoted as No Na+ BG) over Na+ BG and exhibits improved mechanical stability and also possible degradability, having in-built apatite phase even before immersion in simulated body fluid (SBF). Also, sodium free bioglass proved as a superior candidate for erythrocyte compatibility with rapid clotting tendency on interaction with blood and a promising replacement for 45S5 bioglass in all aspects especially in mechanical stability view, which can withstand more than 5 months in phosphate buffer saline (PBS).
Collapse
Affiliation(s)
- Vijayakumari Sugumaran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025, India
| | - Elakkiya Krishnamoorthy
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025, India
| | - Annamalai Kamalakkannan
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025, India
| | - Riju Chandran Ramachandran
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025, India
| | - Balakumar Subramanian
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai, Tamilnadu 600025, India
| |
Collapse
|
8
|
Jaimes ATC, Kirste G, de Pablos-Martín A, Selle S, de Souza E Silva JM, Massera J, Karpukhina N, Hill RG, Brauer DS. Nano-imaging confirms improved apatite precipitation for high phosphate/silicate ratio bioactive glasses. Sci Rep 2021; 11:19464. [PMID: 34593912 PMCID: PMC8484619 DOI: 10.1038/s41598-021-98863-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/18/2021] [Indexed: 11/21/2022] Open
Abstract
Bioactive glasses convert to a biomimetic apatite when in contact with physiological solutions; however, the number and type of phases precipitating depends on glass composition and reactivity. This process is typically followed by X-ray diffraction and infrared spectroscopy. Here, we visualise surface mineralisation in a series of sodium-free bioactive glasses, using transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDXS) and X-ray nano-computed tomography (nano-CT). In the glasses, the phosphate content was increased while adding stoichiometric amounts of calcium to maintain phosphate in an orthophosphate environment in the glass. Calcium fluoride was added to keep the melting temperature low. TEM brought to light the presence of phosphate clustering and nearly crystalline calcium fluoride environments in the glasses. A combination of analytical methods, including solid-state NMR, shows how with increasing phosphate content in the glass, precipitation of calcium fluoride during immersion is superseded by fluorapatite precipitation. Nano-CT gives insight into bioactive glass particle morphology after immersion, while TEM illustrates how compositional changes in the glass affect microstructure at a sub-micron to nanometre-level.
Collapse
Affiliation(s)
- Altair T Contreras Jaimes
- Otto Schott Institute of Materials Research, Friedrich Schiller University, Fraunhoferstr. 6, 07743, Jena, Germany
| | - Gloria Kirste
- Otto Schott Institute of Materials Research, Friedrich Schiller University, Fraunhoferstr. 6, 07743, Jena, Germany.,Leibniz Institute for Solid State and Materials Research Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Araceli de Pablos-Martín
- Otto Schott Institute of Materials Research, Friedrich Schiller University, Fraunhoferstr. 6, 07743, Jena, Germany. .,Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Str. 1, 06120, Halle, Germany.
| | - Susanne Selle
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Str. 1, 06120, Halle, Germany
| | - Juliana Martins de Souza E Silva
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Str. 1, 06120, Halle, Germany.,Institute of Physics, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Str. 4, 06120, Halle, Germany
| | - Jonathan Massera
- Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720, Tampere, Finland
| | - Natalia Karpukhina
- Dental Physical Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Robert G Hill
- Dental Physical Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Delia S Brauer
- Otto Schott Institute of Materials Research, Friedrich Schiller University, Fraunhoferstr. 6, 07743, Jena, Germany.
| |
Collapse
|
9
|
S C, S B. Insight into the impingement of different sodium precursors on structural, biocompatible, and hemostatic properties of bioactive materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111959. [PMID: 33812587 DOI: 10.1016/j.msec.2021.111959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 11/27/2022]
Abstract
Bioactive materials play a significant role in biomedical engineering for plethora of applications. To date, there is no evident report on the role of sodium precursors in structural changes towards their acceleration in biocompatibility. This study highlights the impact and role of two different sodium precursors (sodium nitrate and sodium hydroxide) on the structural changes and their potential formulations in biomineralization and biocompatibility. Structural characteristics enunciate the significant crystallization of NaCaPO4, Na2Ca2Si3O9, and Na1.8Ca1.1Si6O14 phases with pertinent Q2 stretching's while using sodium nitrate than sodium hydroxide. XPS spectra authenticate the elevated sodium content while using sodium nitrate as sodium precursor. One-dimensional structures with well faceted morphology and superior alkaline environment preferentially support the biomineralization and bactericidal properties in sodium nitrate-bioglass, was confirmed through structural, morphological, elemental, and antibacterial investigations. Whereas, higher blood and cell-line compatibility with elevated protein adsorption rate is perceived for the bioglass prepared using sodium hydroxide source, and subsequently, higher hemostatic properties are considerably observed with sodium nitrate-bioglass. Higher mechanical stability (ultrasonic measurements) and controlled degradation rate are the stratagems of sodium nitrate to boost the basic criteria of bioactive materials. Hence, it is proposed that sodium nitrate is a highly preferable source to develop bioactive and stable bioglass formulations.
Collapse
Affiliation(s)
- Chitra S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India
| | - Balakumar S
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai 600025, India.
| |
Collapse
|
10
|
Tiskaya M, Shahid S, Gillam D, Hill R. The use of bioactive glass (BAG) in dental composites: A critical review. Dent Mater 2021; 37:296-310. [PMID: 33441250 DOI: 10.1016/j.dental.2020.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/23/2020] [Accepted: 11/21/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE In recent years, numerous studies have analyzed the role of bioactive glass (BAG) as remineralizing additives in dental restorative composites. This current review provides a critical analysis of the existing literature, particularly focusing on BAGs prepared via the melt-quench route that form an "apatite-like" phase when immersed in physiological-like solutions. METHODS Online databases (Science Direct, PubMed and Google Scholar) were used to collect data published from 1962 to 2020. The research papers were analyzed and the relevant papers were selected for this review. Sol-gel BAGs were not included in this review since it is not a cost-effective manufacturing technique that can be upscaled and is difficult to incorporate fluoride. RESULTS BAGs release Ca2+, PO43- and F- ions, raise the pH and form apatite. There are numerous published papers on the bioactivity of BAGs, but the different glass compositions, volume fractions, particle sizes, immersion media, time points, and the characterization techniques used, make comparison difficult. Several papers only use certain characterization techniques that do not provide a full picture of the behavior of the glass. It was noted that in most studies, mechanical properties were measured on dry samples, which does not replicate the conditions in the oral environment. Therefore, it is recommended that samples should be immersed for longer time periods in physiological solutions to mimic clinical environments. SIGNIFICANCE BAGs present major benefits in dentistry, especially their capacity to form apatite, which could potentially fill any marginal gaps produced due to polymerization shrinkage.
Collapse
Affiliation(s)
- Melissa Tiskaya
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK.
| | - Saroash Shahid
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK
| | - David Gillam
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK
| | - Robert Hill
- Queen Mary University of London, Barts & The London School of Medicine and Dentistry, Institute of Dentistry, Centre for Oral Bioengineering, Mile End Road, London E1 4NS, UK
| |
Collapse
|
11
|
A New Customized Bioactive Glass Filler to Functionalize Resin Composites: Acid-Neutralizing Capability, Degree of Conversion, and Apatite Precipitation. J Clin Med 2020; 9:jcm9041173. [PMID: 32325886 PMCID: PMC7230164 DOI: 10.3390/jcm9041173] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/19/2023] Open
Abstract
This study introduced an experimental bioactive glass (BG) with a lower Na2O content than conventional BG 45S5 (10.5 wt% vs. 24.5 wt%), additionally containing CaF2 (12 wt%) and a network connectivity similar to that of BG 45S5. A series of experimental composites functionalized with 5-40 wt% of the novel BG was prepared and compared to a corresponding series of experimental composites functionalized with 5-40 wt% of BG 45S5. Commercial acidneutralizing materials (alkasite, giomer, and glass ionomer) were used as references. The capabilities of the materials to neutralize hydrochloric acid (pH = 2.6) and lactic acid (pH = 4.5) were evaluated by real-time pH measurements over 1 h. The degree of conversion and precipitation of calcium phosphate were also investigated. Data were analyzed using one-way and Welch ANOVA at an overall level of significance of 0.05. The acid-neutralizing potential of the experimental BG incorporated into resin composites was generally comparable to that of BG 45S5, and better than that of a giomer and glass ionomer. Fluorine was identified in the precipitate that developed on the composites functionalized with the experimental BG, suggesting a capability of forming fluorapatite. Unlike the 45S5 composition, the experimental BG did not impair the degree of conversion of resin composites. The novel BG filler is therefore an interesting candidate for future investigations of caries-preventive resin composites, and their potential clinical applicability for restorative, preventive, and orthodontic purposes.
Collapse
|
12
|
The role of CaO/SiO 2 ratio and P 2O 5 content in gel-derived bioactive glass-polymer composites in the modulation of their bioactivity and osteoinductivity in human BMSCs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110535. [PMID: 32228933 DOI: 10.1016/j.msec.2019.110535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
We obtained a range of PLGA-based composites containing sol-gel bioactive glasses (SBG) from the SiO2-CaO and SiO2-CaO-P2O5 systems. Eight SBGs with different CaO/SiO2 ratios with and without P2O5 were incorporated at 50% w/w to PLGA matrix and structured into thin films suitable for cell culture. The SBG/PLGA composites were examined for their bioactivity in simulated body fluid (SBF), ion release profile in culture media with and without cells, and osteoinductivity in standard human bone marrow stromal cell (hBMSC) cultures without osteogenic growth factors. Our results indicate different surface activity of composites depending on the presence/absence of P2O5 in SBG composition. Furthermore, ion release profile to culture medium differed depending on the presence/absence of cells. Direct culture of hBMSC on the SiO2-CaO/PLGA composite films resulted in elevated Runx-2 mRNA, opposite to low Runx-2 mRNA levels on SiO2-CaO-P2O5/PLGA films. All studied composites increased Osx mRNA levels. Whereas some of SiO2-CaO/PLGA composites did not elevate BMP-2 and -6 proteins in hBMSC cultures, high levels of these BMPs were present in all cultures on SiO2-CaO-P2O5/PLGA composites. All composites induced BMP-related Tak1 signalling, whereas Smad1 signalling was restricted mostly to composites containing three-component SBGs. ALP activity of hBMSC and BMP-related luciferase activity of mouse BRITE cells differed depending on whether the cells were stimulated with culture medium conditioned with SBG/PLGA composites or the cells were directly cultured on the composite surfaces. Altogether, beyond bioactivity and osteoinductivity of SBG/PLGA composites, our studies show key differences in the biological response to both the bioactive material dissolution products and upon direct cell-material contacts.
Collapse
|
13
|
Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive Glass Applications in Dentistry. Int J Mol Sci 2019; 20:E5960. [PMID: 31783484 PMCID: PMC6928922 DOI: 10.3390/ijms20235960] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
At present, researchers in the field of biomaterials are focusing on the oral hard and soft tissue engineering with bioactive ingredients by activating body immune cells or different proteins of the body. By doing this natural ground substance, tissue component and long-lasting tissues grow. One of the current biomaterials is known as bioactive glass (BAG). The bioactive properties make BAG applicable to several clinical applications involving the regeneration of hard tissues in medicine and dentistry. In dentistry, its uses include dental restorative materials, mineralizing agents, as a coating material for dental implants, pulp capping, root canal treatment, and air-abrasion, and in medicine it has its applications from orthopedics to soft-tissue restoration. This review aims to provide an overview of promising and current uses of bioactive glasses in dentistry.
Collapse
Affiliation(s)
| | - Dinesh Rokaya
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
| | - Zohaib Khurshid
- Prosthodontic and Dental Implantology Department, College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Islamic International Dental College, Riphah International University Islamabad 44000, Pakistan
| |
Collapse
|
14
|
Xie F, Ionescu E, Arango-Ospina M, Riedel R, Boccaccini AR, Gonzalo-Juan I. Facile Preparative Access to Bioactive Silicon Oxycarbides with Tunable Porosity. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3862. [PMID: 31766736 PMCID: PMC6926626 DOI: 10.3390/ma12233862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
In the present work, Ca-containing silicon oxycarbides (SiCaOC) with varying Ca content have been synthesized via sol-gel processing and thermal treatment in inert gas atmosphere (pyrolysis). It has been shown that the as-prepared SiCaOC materials with low Ca loadings (Ca/Si molar ratios = 0.05 or 0.12) were X-ray amorphous; their glassy network contains Q3 sites, indicating the presence of Ca2+ at non-bridging-oxygen sites. SiCaOC with high Ca content (i.e., Ca/Si molar ratio = 0.50) exhibits the presence of crystalline calcium silicate (mainly pseudowollastonite). Furthermore, it has been shown that the incorporation of Ca into the SiOC glassy network has a significant effect on its porosity and specific surface area. Thus, the as-prepared Ca-free SiOC material is shown to be non-porous and having a specific surface area (SSA) of 22.5 m2/g; whereas SiCaOC with Ca/Si molar ratio of 0.05 exhibits mesoporosity and a SSA value of 123.4 m2/g. The further increase of Ca content leads to a decrease of the SSA and the generation of macroporosity in SiCaOC; thus, SiCaOC with Ca/Si molar ratio of 0.12 is macroporous and exhibits a SSA value of 39.5 m2/g. Bioactivity assessment in simulated body fluid (SBF) confirms the hydroxyapatite formation on all SiCaOC samples after seven days soaking, unlike the relatively inert ternary silicon oxycarbide reference. In particular, SiCaOC with a Ca/Si molar ratio of 0.05 shows an increased apatite forming ability compared to that of SiCaOC with Ca/Si molar ratio of 0.12; this difference is considered to be a direct consequence of the significantly higher SSA of the sample with the Ca/Si ratio of 0.05. The present work indicates two effects of Ca incorporation into the silicon oxycarbide glassy network on its bioactivity: Firstly, Ca2+ is shown to contribute to the slight depolymerization of the network, which clearly triggers the hydroxyapatite formation (compare the bioactive behavior of SiOC to that of SiCaOC with Ca/Si molar ratio 0.12 upon SBF exposure); secondly, the Ca2+ incorporation seems to strongly affect the porosity and SSA in the prepared SiCaOC materials. There is an optimum of Ca loading into the silicon oxycarbide glassy network (at a Ca/Si molar ration of 0.05), which provides mesoporosity and reaches maximum SSA, both highly beneficial for the bioactive behavior of the materials. An increase of the Ca loading leads, in addition to the crystallization of calcium silicates, to a coarsening of the pores (i.e., macroporosity) and a significant decrease of the SSA, both negatively affecting the bioactivity.
Collapse
Affiliation(s)
- Fangtong Xie
- Institute of Materials Science, Technische Universität Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany; (F.X.); (R.R.); (I.G.-J.)
| | - Emanuel Ionescu
- Institute of Materials Science, Technische Universität Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany; (F.X.); (R.R.); (I.G.-J.)
| | - Marcela Arango-Ospina
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen, Germany; (M.A.-O.); (A.R.B.)
| | - Ralf Riedel
- Institute of Materials Science, Technische Universität Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany; (F.X.); (R.R.); (I.G.-J.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, D-91058 Erlangen, Germany; (M.A.-O.); (A.R.B.)
| | - Isabel Gonzalo-Juan
- Institute of Materials Science, Technische Universität Darmstadt, Otto-Berndt-Str. 3, D-64287 Darmstadt, Germany; (F.X.); (R.R.); (I.G.-J.)
| |
Collapse
|