1
|
Le Gall J, Dehainault C, Boutte M, Petitalot A, Caputo SM, Courtois L, Vacher S, Bieche I, Radvanyi F, Pacquement H, Doz F, Lumbroso-Le Rouic L, Gauthier Villars M, Stoppa-Lyonnet D, Lallemand F, Houdayer C, Golmard L. Germline HPF1 retrogene insertion in RB1 gene involved in cancer predisposition. J Med Genet 2023; 61:78-83. [PMID: 37541786 DOI: 10.1136/jmg-2022-109105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/23/2023] [Indexed: 08/06/2023]
Abstract
About half of the human genome is composed of repeated sequences derived from mobile elements, mainly retrotransposons, generally without pathogenic effect. Familial forms of retinoblastoma are caused by germline pathogenic variants in RB1 gene. Here, we describe a family with retinoblastoma affecting a father and his son. No pathogenic variant was identified after DNA analysis of RB1 gene coding sequence and exon-intron junctions. However, RB1 mRNA analysis showed a chimeric transcript with insertion of 114 nucleotides from HPF1 gene inside RB1 gene. This chimeric transcript led to an insertion of 38 amino acids in functional domain of retinoblastoma protein. Subsequent DNA analysis in RB1 intron 17 revealed the presence of a full-length HPF1 retrogene insertion in opposite orientation. Functional assay shows that this insertion has a deleterious impact on retinoblastoma protein function. This is the first report of a full-length retrogene insertion involved in human Mendelian disease leading to a chimeric transcript and a non-functional chimeric protein. Some retrogene insertions may be missed by standard diagnostic genetic testing, so contribution of retrogene insertions to human disease may be underestimated. The increasing use of whole genome sequencing in diagnostic settings will help to get a more comprehensive view of retrogenes.
Collapse
Affiliation(s)
- Jessica Le Gall
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Catherine Dehainault
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Matteo Boutte
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Laura Courtois
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris, France
- Université de Paris, Paris, France
| | - François Radvanyi
- Department of Genetics, PSL University, Paris, France
- Molecular Oncology Team, UMR144, Paris, France
| | - Hélène Pacquement
- Department of Genetics, PSL University, Paris, France
- Oncology Center SIREDO, Institut Curie, Paris, France
| | - François Doz
- Molecular Oncology Team, UMR144, Paris, France
- Oncology Center SIREDO, Institut Curie, Paris, France
| | - Livia Lumbroso-Le Rouic
- Department of Genetics, PSL University, Paris, France
- Department of Ophthalmology, Institut Curie, Paris, France
| | - Marion Gauthier Villars
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - François Lallemand
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| | - Claude Houdayer
- Department of Genetics, University Hospital Centre Rouen, Rouen, France
| | - Lisa Golmard
- Department of Genetics, Institut Curie, Paris, France
- Department of Genetics, PSL University, Paris, France
| |
Collapse
|
2
|
Lin AT, Hammond-Kaarremaa L, Liu HL, Stantis C, McKechnie I, Pavel M, Pavel SSM, Wyss SSÁ, Sparrow DQ, Carr K, Aninta SG, Perri A, Hartt J, Bergström A, Carmagnini A, Charlton S, Dalén L, Feuerborn TR, France CAM, Gopalakrishnan S, Grimes V, Harris A, Kavich G, Sacks BN, Sinding MHS, Skoglund P, Stanton DWG, Ostrander EA, Larson G, Armstrong CG, Frantz LAF, Hawkins MTR, Kistler L. The history of Coast Salish "woolly dogs" revealed by ancient genomics and Indigenous Knowledge. Science 2023; 382:1303-1308. [PMID: 38096292 PMCID: PMC7615573 DOI: 10.1126/science.adi6549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
Ancestral Coast Salish societies in the Pacific Northwest kept long-haired "woolly dogs" that were bred and cared for over millennia. However, the dog wool-weaving tradition declined during the 19th century, and the population was lost. In this study, we analyzed genomic and isotopic data from a preserved woolly dog pelt from "Mutton," collected in 1859. Mutton is the only known example of an Indigenous North American dog with dominant precolonial ancestry postdating the onset of settler colonialism. We identified candidate genetic variants potentially linked with their distinct woolly phenotype. We integrated these data with interviews from Coast Salish Elders, Knowledge Keepers, and weavers about shared traditional knowledge and memories surrounding woolly dogs, their importance within Coast Salish societies, and how colonial policies led directly to their disappearance.
Collapse
Affiliation(s)
- Audrey T Lin
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
| | - Liz Hammond-Kaarremaa
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Vancouver Island University, Nanaimo, BC, Canada
| | - Hsiao-Lei Liu
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Chris Stantis
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA
| | - Iain McKechnie
- Department of Anthropology, University of Victoria, Victoria, BC, Canada
| | - Michael Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
| | - Susan sa'hLa mitSa Pavel
- Twana/Skokomish Indian Tribe, Skokomish Nation, WA, USA
- Coast Salish Wool Weaving Center, Skokomish Nation, WA, USA
- The Evergreen State College, Olympia, WA, USA
| | | | | | | | - Sabhrina Gita Aninta
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Angela Perri
- Department of Anthropology, Texas A&M University, College Station, TX, USA
- Chronicle Heritage, Phoenix, AZ, USA
| | - Jonathan Hartt
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Anders Bergström
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alberto Carmagnini
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sophy Charlton
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
- BioArCh, Department of Archaeology, University of York, York, UK
| | - Love Dalén
- Centre for Palaeogenetics, Stockholm, Sweden
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Tatiana R Feuerborn
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Vaughan Grimes
- Department of Archaeology, Memorial University of Newfoundland, St. Johns, NL, Canada
| | - Alex Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gwénaëlle Kavich
- Museum Conservation Institute, Smithsonian Institution, Suitland, MD, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | | - Pontus Skoglund
- Ancient Genomics Laboratory, The Francis Crick Institute, London, UK
| | - David W G Stanton
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Greger Larson
- PalaeoBARN, School of Archaeology, University of Oxford, Oxford, UK
| | - Chelsey G Armstrong
- Department of Indigenous Studies, Simon Fraser University, Burnaby, BC, Canada
| | - Laurent A F Frantz
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Melissa T R Hawkins
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Logan Kistler
- Department of Anthropology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
3
|
Akiyama M. Isolated autosomal recessive woolly hair/hypotrichosis: genetics, pathogenesis and therapies. J Eur Acad Dermatol Venereol 2021; 35:1788-1796. [PMID: 33988877 DOI: 10.1111/jdv.17350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/16/2021] [Indexed: 01/05/2023]
Abstract
Isolated autosomal recessive woolly hair/hypotrichosis (ARWH) is a rare hereditary hair disease characterized by tightly curled sparse hair at birth or in early infancy. Patients with ARWH consist of genetically heterogeneous groups. Woolly hair autosomal recessive 1 (ARWH1) (MIM #278150), woolly hair autosomal recessive 2 (ARWH2) (MIM #604379) and woolly hair autosomal recessive 3 (ARWH3) (MIM #616760) are caused by mutations in LPAR6, LIPH and KRT25, respectively. In addition, nonsense variants in C3ORF52 (*611956) were identified in ARWH patients. The frequencies of the mutations in the causative genes in ARWH patients are thought to differ by ethnicity and country/geographical area. Large numbers of ARWH families with LIPH mutations have been described only in populations from Japan, Pakistan and the Volga-Ural region of Russia. In that region of Russia, most ARWH families have an extremely prevalent founder mutation, the deletion of exon 4, in LIPH. In the Pakistani population, 47.2% of ARWH families had the disease due to LIPH mutations and 52.8% of them carried LPAR6 mutations. The prevalent, recurrent LIPH mutation c.659_660delTA (p.Ile220Argfs*29) was found in more than half of Pakistani ARWH families with LIPH mutations. Most Japanese ARWH families (98.7%) harbour LIPH mutations, including the two highly prevalent, recurrent LIPH mutations c.736T>A (p.Cys246Ser) and c.742C>A (p.His248Asn). In ARWH patients whose disease was due to LIPH, LPAR6 or C3ORF52 mutations, the loss of function of LIPH, LPAR6 or C3ORF52 leads to reduced LIPH-LPA-LPAR6 signalling, resulting in the decreased transactivation of EGFR signalling and the phenotype of underdeveloped hairs. Our recent prospective interventional study suggests that topical minoxidil might be a promising treatment for ARWH due to LIPH mutations, although sufficiently effective treatments have not been established for ARWH yet.
Collapse
Affiliation(s)
- M Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|