1
|
Jahangir M, Yazdani O, Kahrizi MS, Soltanzadeh S, Javididashtbayaz H, Mivefroshan A, Ilkhani S, Esbati R. Clinical potential of PD-1/PD-L1 blockade therapy for renal cell carcinoma (RCC): a rapidly evolving strategy. Cancer Cell Int 2022; 22:401. [PMID: 36510217 PMCID: PMC9743549 DOI: 10.1186/s12935-022-02816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy has become a game-changing therapeutic approach revolutionizing the treatment setting of human malignancies, such as renal cell carcinoma (RCC). Despite the remarkable clinical activity of anti-PD-1 or anti-PD-L1 monoclonal antibodies, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might ultimately favor cancer development in patients with clinical responses. In light of this, recent reports have signified that the addition of other therapeutic modalities to PD-1/PD-L1 blockade therapy might improve clinical responses in advanced RCC patients. Until, combination therapy with PD-1/PD-L1 blockade therapy plus cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitor (ipilimumab) or various vascular endothelial growth factor receptors (VEGFRs) inhibitors axitinib, such as axitinib and cabozantinib, has been approved by the United States Food and Drug Administration (FDA) as first-line treatment for metastatic RCC. In the present review, we have focused on the therapeutic benefits of the PD-1/PD-L1 blockade therapy as a single agent or in combination with other conventional or innovative targeted therapies in RCC patients. We also offer a glimpse into the well-determined prognostic factor associated with the clinical response of RCC patients to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Mohammadsaleh Jahangir
- grid.411746.10000 0004 4911 7066Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeed Kahrizi
- grid.411705.60000 0001 0166 0922Department of Surgery, Alborz University of Medical Sciences, Karaj, Alborz Iran
| | - Sara Soltanzadeh
- grid.411705.60000 0001 0166 0922Department of Radiation Oncology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Javididashtbayaz
- grid.411768.d0000 0004 1756 1744Baran Oncology Clinic, Medical Faculty, Islamic Azad University of Mashhad, Mashhad, Iran
| | - Azam Mivefroshan
- grid.412763.50000 0004 0442 8645Department of Adult Nephrology, Urmia University of Medical Sciences, Urmia, Iran
| | - Saba Ilkhani
- grid.411600.2Department of Surgery and Vascular Surgery, Shohada-ye-Tajrish Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Romina Esbati
- grid.411600.2School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Opportunities and obstacles for the melanoma immunotherapy using T cell and chimeric antigen receptor T (CAR-T) applications: a literature review. Mol Biol Rep 2022; 49:10627-10633. [PMID: 35715610 DOI: 10.1007/s11033-022-07633-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy procedure includes taking personal T cells and processing or genetic engineering using specific antigens and in vitro expanding and eventually infusing into the patient's body to unleash immune responses. Adoptive cell therapy (ACT) includes lymphocytes taking, in vitro selection and expansion and processing for stimulation or activation and infusion into the patient's body. Immune checkpoint inhibitors (ICIs), ACT and CAR-T cell therapies have demonstrated acceptable results. However, rare CAR-T cells tissue infiltration, off-target toxicity and resistance development include main disadvantages of CAR-T cell based therapy. Selection of suitable target antigens and novel engineered immune cells are warranted in future studies using "surfaceome" analysis. Employment of cytokines (IL-2, IL-7) for T cells activation has been also associated with specific anti-melanoma function which overcome telomeres shortening and further T cells differentiation. In resistant cases, rapidly accelerated fibrosarcoma B-type and mitogen-activated extracellular signal-regulated kinase inhibitors have been mostly applied. The aim of this study was evaluation of CAR-T cell and adoptive cell therapies efficiency for the treatment of melanoma.
Collapse
|
3
|
Ernst M, Giubellino A. The Current State of Treatment and Future Directions in Cutaneous Malignant Melanoma. Biomedicines 2022; 10:822. [PMID: 35453572 PMCID: PMC9029866 DOI: 10.3390/biomedicines10040822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant melanoma is the leading cause of death among cutaneous malignancies. While its incidence is increasing, the most recent cancer statistics show a small but clear decrease in mortality rate. This trend reflects the introduction of novel and more effective therapeutic regimens, including the two cornerstones of melanoma therapy: immunotherapies and targeted therapies. Immunotherapies exploit the highly immunogenic nature of melanoma by modulating and priming the patient's own immune system to attack the tumor. Treatments combining immunotherapies with targeted therapies, which disable the carcinogenic products of mutated cancer cells, have further increased treatment efficacy and durability. Toxicity and resistance, however, remain critical challenges to the field. The present review summarizes past treatments and novel therapeutic interventions and discusses current clinical trials and future directions.
Collapse
Affiliation(s)
| | - Alessio Giubellino
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
Liu Y, Wang G, Chai D, Dang Y, Zheng J, Li H. iNKT: A new avenue for CAR-based cancer immunotherapy. Transl Oncol 2022; 17:101342. [PMID: 35063813 PMCID: PMC8784340 DOI: 10.1016/j.tranon.2022.101342] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 01/16/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell is a T lymphocyte-based immunotherapy, which achieves great successes in treating blood malignancies and provides new hope to cue advanced cancer patients. Invariant natural killer T (iNKT) cells are a kind of special T lymphocytes characterized by expressing invariant TCR of Vα24Vβ11 to recognize CD1d-presented glycolipid antigens, which bridge innate and adaptive immune responses. iNKT cells themselves show strong anti-tumor effect in tumor models via CD1d-mediated killing of CD1d-positive tumor cells and immunosuppressive TAMs and MDSCs, and are closely related to the prognosis of cancer patients. iNKT cells are not restricted to polymorphic human leukocyte antigen (HLA) and can prevent Graft versus Host Disease (GvHD), which makes it to be an ideal CAR vector for allogeneic therapy. Although CAR-iNKT was developed and verified by several different teams and attracts more and more attentions, many obstacles are still needed to be resolved before obtaining CAR-iNKT therapeutics. In this review, we summarized the current status of clinical application of iNKT cells and the latest achievements of CAR-iNKT cells, which provides new insight in CAR-iNKT development and usages.
Collapse
Affiliation(s)
- Yilin Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yuanyuan Dang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
5
|
Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies. Vaccines (Basel) 2022; 10:vaccines10020196. [PMID: 35214655 PMCID: PMC8877108 DOI: 10.3390/vaccines10020196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/30/2022] Open
Abstract
Alternatives to conventional cancer treatments are highly sought after for high-risk malignancies that have a poor response to established treatment modalities. With research advancing rapidly in the past decade, neoantigen-based immunotherapeutic approaches represent an effective and highly tolerable therapeutic option. Neoantigens are tumor-specific antigens that are not expressed in normal cells and possess significant immunogenic potential. Several recent studies have described the conceptual framework and methodologies to generate neoantigen-based vaccines as well as the formulation of appropriate clinical trials to advance this approach for patient care. This review aims to describe some of the key studies in the recent literature in this rapidly evolving field and summarize the current advances in neoantigen identification and selection, vaccine generation and delivery, and the optimization of neoantigen-based therapeutic strategies, including the early data from pivotal clinical studies.
Collapse
|
6
|
Wei T, Leisegang M, Xia M, Kiyotani K, Li N, Zeng C, Deng C, Jiang J, Harada M, Agrawal N, Li L, Qi H, Nakamura Y, Ren L. Generation of neoantigen-specific T cells for adoptive cell transfer for treating head and neck squamous cell carcinoma. Oncoimmunology 2021; 10:1929726. [PMID: 34104546 PMCID: PMC8158031 DOI: 10.1080/2162402x.2021.1929726] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Adoptive cell therapy using TCR-engineered T cells (TCR-T cells) represents a promising strategy for treating relapsed and metastatic cancers. We previously established methods to identify neoantigen-specific TCRs based on patients’ PBMCs. However, in clinical practice isolation of PBMCs from advanced-stage cancer patients proves to be difficult. In this study, we substituted blood-derived T cells for tumor-infiltrating lymphocytes (TILs) and used an HLA-matched cell line of antigen-presenting cells (APCs) to replace autologous dendritic cells. Somatic mutations were determined in head and neck squamous cell carcinoma resected from two patients. HLA-A*02:01-restricted neoantigen libraries were constructed and transferred into HLA-matched APCs for stimulation of patient TILs. TCRs were isolated from reactive TIL cultures and functionality was tested using TCR- T cells in vitro and in vivo. To exemplify the screening approach, we identified the targeted neoantigen leading to recognition of the minigene construct that stimulated the strongest TIL response. Neoantigen peptides were used to load MHC-tetramers for T cell isolation and a TCR was identified targeting the KIAA1429D1358E mutation. TCR-T cells were activated, exhibited cytotoxicity, and secreted cytokines in a dose-dependent manner, and only when stimulated with the mutant peptide. Furthermore, comparable to a neoantigen-specific TCR that was isolated from the patient’s PBMCs, KIAA1429D1358E-specific TCR T cells destroyed human tumors in mice. The established protocol provides the required flexibility to methods striving to identify neoantigen-specific TCRs. By using an MHC-matched APC cell line and neoantigen-encoding minigene libraries, autologous TILs can be stimulated and screened when patient PBMCs and/or tumor material are not available anymore. Abbreviations: Head and neck squamous cell carcinoma (HNSCC); adoptive T cell therapy (ACT); T cell receptor (TCR); tumor-infiltrating lymphocytes (TIL); cytotoxic T lymphocyte (CTL); peripheral blood mononuclear cell (PBMC); dendritic cell (DC); antigen-presenting cells (APC)
Collapse
Affiliation(s)
- Teng Wei
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China.,Institute of Clinical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Matthias Leisegang
- Institute of Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,David and Etta Jonas Center for Cellular Therapy, the University of Chicago, Chicago, IL, USA.,German Cancer Consortium (DKTK), Partner Site Berlin, Berlin, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ming Xia
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Kazuma Kiyotani
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Ning Li
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Chenquan Zeng
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Chunyan Deng
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Jinxing Jiang
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Makiko Harada
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Nishant Agrawal
- Department of Surgery, The University of Chicago, Chicago, IL, USA
| | - Liangping Li
- Institute of Clinical Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Hui Qi
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| | - Yusuke Nakamura
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Lili Ren
- Cytotherapy Laboratory, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Guangdong, China
| |
Collapse
|
7
|
Predicting the Clinical Outcome of Lung Adenocarcinoma Using a Novel Gene Pair Signature Related to RNA-Binding Protein. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8896511. [PMID: 33195699 PMCID: PMC7643376 DOI: 10.1155/2020/8896511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Adenocarcinoma is the most common type of lung cancer, and patients have varying prognoses. RNA-binding proteins (RBP) are deemed to be closely associated with tumorigenesis and development, but the exact mechanism is currently unknown. This study was aimed at constructing a new robust prognostic model based on RNA-binding protein-related gene pair scores for better clinical guidance. The model for this study was constructed based on data of lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database. Prognosis-related RBP gene pair models were created based on differentially expressed genes, and the accuracy of the models was verified in a different age, staging, and other subdatasets. A total of 379 RNA-binding protein-related genes were differentially expressed in tumor tissue. From these genes, we constructed a prognostic model consisting of 33 gene pairs, which were found to be significantly associated with survival in TCGA dataset (P < 0.0001, hazard ratio (HR) = 4.380 (3.139 to 6.111)) and different subdatasets. As expected, the results were verified in the GEO validation cohort (P = 7.8 × 10−3, HR = 1.597 (1.095 to 2.325)). We found that the signature exhibited an independent prognostic factor in both the univariate and multivariate Cox regression analyses (P < 0.001). CIBERSORT was applied to estimate the fractions of infiltrated immune cells in bulk tumor tissues. CD8 T cells, activated dendritic cells, regulatory T cells (Tregs), and activated CD4 memory T cells presented a significantly lower fraction in the high-risk group (P < 0.01). Patients in the high-risk group had significantly higher tumor mutational burden (TMB) (P = 4.953e − 04) and lower levels of immune cells (P = 3.473e − 05) and stromal cells (P = 0.005) in the tumor microenvironment than those in the low-risk group. Furthermore, the Protein-protein interaction (PPI) network and various enrichment analyses have genuinely uncovered the interrelationships and potential functions of the RBP genes within the model. The results of the present study validated the importance of RNA-binding proteins in tumorigenesis and progression and support the RBP gene-related signature as a promising marker for prognosis prediction in lung adenocarcinoma.
Collapse
|
8
|
Meng L, He X, Zhang X, Zhang X, Wei Y, Wu B, Li W, Li J, Xiao Y. Predicting the clinical outcome of melanoma using an immune-related gene pairs signature. PLoS One 2020; 15:e0240331. [PMID: 33031392 PMCID: PMC7544036 DOI: 10.1371/journal.pone.0240331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Melanoma is rare but dangerous skin cancer, and it can spread rather quickly in the advanced stages of the tumor. Abundant evidence suggests the relationship between tumor development and progression and the immune system. A robust gene risk model could provide an accurate prediction of clinical outcomes. The present study aimed to explore a robust signature of immune-related gene pairs (IRGPs) for estimating overall survival (OS) in malignant melanoma. METHODS Clinical and genetic data of skin cutaneous melanoma (SKCM) patients from The Cancer Genome Atlas (TCGA) was performed as a training dataset to identify candidate IRGPs for the prognosis of melanoma. Two independent datasets from the Gene Expression Omnibus (GEO) database (GSE65904) and TCGA dataset (TCGA-UVM) were selected for external validation. Univariate and multivariate Cox regression analyses were then performed to explore the prognostic power of the IRGPs signature and other clinical factors. CIBERSORTx was applied to estimate the fractions of infiltrated immune cells in bulk tumor tissues. RESULTS A signature consisted of 33 IRGPs was established which was significantly associated with patients' survival in the TCGA-SKCM dataset (P = 2.0×10-16, Hazard Ratio (HR) = 4.220 (2.909 to 6.122)). We found the IRGPs signature exhibited an independent prognostic factor in all the three independent cohorts in both the univariate and multivariate Cox analysis (P<0.01). The prognostic efficacy of the signature remained unaffected regardless of whether BRAF or NRAS was mutated. As expected, the results were verified in the GSE65904 dataset and the TCGA-UVM dataset. We found an apparent shorter OS in patients of the high-risk group in the GSE65904 dataset (P = 2.1×10-3; HR = 1.988 (1.309 to 3.020)). The trend in the results of the survival analysis in TCGA-UVM was as we expected, but the result was not statistically significant (P = 0.117, HR = 4.263 (1.407 to 12.91)). CD8 T cells, activated dendritic cells (DCs), regulatory T cells (Tregs), and activated CD4 memory T cells presented a significantly lower fraction in the high-risk group in the TCGA-SKCM dataset(P <0.01). CONCLUSION The results of the present study support the IRGPs signature as a promising marker for prognosis prediction in melanoma.
Collapse
Affiliation(s)
- Liangliang Meng
- Medical School of Chinese PLA, Beijing, China
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Radiology, Chinese PAP Beijing Corps Hospital, Beijing, China
| | - Xiaoxi He
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaobo Zhang
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yingtian Wei
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Bin Wu
- Department of Radiology, Chinese PAP Beijing Corps Hospital, Beijing, China
| | - Wei Li
- Department of Radiology, Chinese PAP Beijing Corps Hospital, Beijing, China
| | - Jing Li
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|