1
|
Fan L, Luan X, Jia Y, Ma L, Wang Z, Yang Y, Chen Q, Cui X, Luo D. Protective effect and mechanism of lycium barbarum polysaccharide against UVB-induced skin photoaging. Photochem Photobiol Sci 2024; 23:1931-1943. [PMID: 39379645 DOI: 10.1007/s43630-024-00642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Cellular senescence can be categorized into two main types, including exogenous and endogenous aging. Photoaging, which is aging induced by ultraviolet (UV) radiation, significantly contributes to exogenous aging, accounting for approximately 80% of such cases. Superoxide Dismutase (SOD) is a class of antioxidant enzymes, with SOD2 being predominantly localized in the mitochondrial matrix. Ultraviolet radiation (UVR) inhibits SOD2 activity by acetylating the key lysine residues on SOD2. Sirtuin3 (SIRT3), the principal mitochondrial deacetylase, enhances the anti-oxidant capacity of SOD2 by deacetylating. Lycium barbarum polysaccharide (LBP) is the main bioactive component extracted from Lycium barbarum (LB). It has been reported to have numerous potential health benefits, such as anti-oxidation, anti-aging, anti-inflammatory and anti-apoptotic properties. Furthermore, LBP has been shown to regulate hepatic oxidative stress via the SIRT3-SOD2 pathway. The aim of this study was to construct a UVB-Stress-induced Premature Senescence (UVB-SIPS) model to investigate the protective effects and underlying mechanisms of LBP against UVB-induced skin photoaging. METHODS Irradiated with different UVB doses to select the suitable dose for constructing the UVB-SIPS model. Cell morphology was observed using a microscope. The proportion of senescent cells was assessed by senescence-associated β-galactosidase (SA-β-gal) staining. Cell viability was studied using the Cell Counting Kit-8 (CCK-8). Intracellular levels of reactive oxygen species (ROS) were observed using flow cytometry and an inverted fluorescence microscope. Expression of γ-H2AX was investigated using flow cytometry. Western blot (WB) was used to verify the expression of senescence-associated proteins (p21, p53, MMP-1, and MMP-3). Enzyme-Linked Immunosorbnent Assay (ELISA) was used to measure pro-inflammatory cytokines levels (IL-6, TNF-α). WB was also used to analyze the expression of SIRT3, SOD2, and Ac-SOD2, and a specific kit was employed to detect SOD2 activity. RESULTS Our results suggested that the UVB-SIPS group pre-treated with LBP exhibited a reduced proportion of cells positive for SA-β-gal staining, mitigated production of intracellular ROS, an amelioration in γ-H2AX expression, and down-regulated expression of senescence-associated proteins and pro-inflammatory cytokines as compared to the UVB-SIPS group. Moreover, in contrast to the control group, the UVB-SIPS group showed regulated SIRT3 expression and SOD activity, elevated Ac-SOD2 expression and an increased ratio of Ac-SOD2/SOD2. However, the UVB-SIPS group pre-treated with LBP showed an upregulation of SIRT3 expression and enhanced SOD activity, a reduction in AC-SOD2 expression, and a decreased ratio of AC-SOD2/SOD2, compared to the untreated UVB-SIPS group. Additionally, the photo-protective effect of LBP was diminished following treatment with 3-TYP, a SIRT3-specific inhibitor. This study suggested that LBP, a natural component, exhibits anti-oxidant and anti-photoaging properties, potentially mediated through the SIRT3-SOD2 pathway.
Collapse
Affiliation(s)
- Lipan Fan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Chinese Academy of Sciences Zhong Guan Cun Hospital, Beijing, China
| | - Xingbao Luan
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuanyuan Jia
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liwen Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Department of Dermatology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321, Zhongshan Road, Nanjing, Jiangsu, China
| | - Zhaopeng Wang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuting Yang
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qian Chen
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaomei Cui
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Department of Medical Cosmetology, Department of Dermatology, Affiliated Hospital of Nantong University, Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Kim HJ, Jin SP, Kang J, Bae SH, Son JB, Oh JH, Youn H, Kim SK, Kang KW, Chung JH. Uncovering the impact of UV radiation on mitochondria in dermal cells: a STED nanoscopy study. Sci Rep 2024; 14:8675. [PMID: 38622160 PMCID: PMC11018800 DOI: 10.1038/s41598-024-55778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Mitochondria are essential organelles in cellular energy metabolism and other cellular functions. Mitochondrial dysfunction is closely linked to cellular damage and can potentially contribute to the aging process. The purpose of this study was to investigate the subcellular structure of mitochondria and their activities in various cellular environments using super-resolution stimulated emission depletion (STED) nanoscopy. We examined the morphological dispersion of mitochondria below the diffraction limit in sub-cultured human primary skin fibroblasts and mouse skin tissues. Confocal microscopy provides only the overall morphology of the mitochondrial membrane and an indiscerptible location of nucleoids within the diffraction limit. Conversely, super-resolution STED nanoscopy allowed us to resolve the nanoscale distribution of translocase clusters on the mitochondrial outer membrane and accurately quantify the number of nucleoids per cell in each sample. Comparable results were obtained by analyzing the translocase distribution in the mouse tissues. Furthermore, we precisely and quantitatively analyzed biomolecular distribution in nucleoids, such as the mitochondrial transcription factor A (TFAM), using STED nanoscopy. Our findings highlight the efficacy of super-resolution fluorescence imaging in quantifying aging-related changes on the mitochondrial sub-structure in cells and tissues.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea.
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Jooyoun Kang
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Hyeon Bae
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jung Bae Son
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, South Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080, South Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 08826, South Korea
| | - Keon Wook Kang
- Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, 03080, South Korea.
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea.
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Seoul, 03080, South Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
3
|
Olszewska AM, Nowak JI, Król O, Flis D, Żmijewski MA. Different impact of vitamin D on mitochondrial activity and morphology in normal and malignant keratinocytes, the role of genomic pathway. Free Radic Biol Med 2024; 210:286-303. [PMID: 38040270 DOI: 10.1016/j.freeradbiomed.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Deregulation of mitochondria activity is one of the hallmarks of cancerogenesis and an important target for cancer therapy. Therefore, we compared the impact of an active form of vitamin D3 (1,25(OH)2D3) on mitochondrial morphology and bioenergetics in human squamous cell carcinoma (A431) and immortalized HaCaT keratinocytes. It was shown that mitochondria of cancerous A431 cells differ from that observed in HaCaT keratinocytes in terms of network, morphology, bioenergetics, glycolysis, and mitochondrial DNA copy number, while treatment of A431 with 1,25(OH)2D3 partially eliminates these differences. Furthermore, mitochondrial membrane potential, basal respiration, and mitochondrial reactive oxygen species production were decreased in A431 cells treated with 1,25(OH)2D3. Additionally, the expression and protein level of mitophagy marker PINK1 was significantly increased in A431 1,25(OH)2D3 treated cells, but not observed in treated HaCaT cells. Knockout of VDR (vitamin D receptor) or RXRA (binding partner retinoid X receptor) partially altered mitochondrial morphology and function as well as mitochondrial response to 1,25(OH)2D3. Transcriptomic analysis on A431 cells treated with 1,25(OH)2D3 revealed modulation of expression of several mitochondrial-related genes involved in mitochondrial depolarization, mitochondrial protein translation (i.e. LYRM9, MARS2), and fusion-fission (OPA1, FIS1, MFN1 and 2), however, none of the genes coded by mitochondrial DNA was affected. Interestingly, in silico analyses of nuclear-encoded mitochondrial genes revealed that they are rather activated by the secondary genomic response to 1,25(OH)2D3. Taken together, 1,25(OH)2D3 remodels mitochondrial architecture and bioenergetics through VDR-dependent and only partially RXRA-dependent activation of the genomic pathway, thus outlining a new perspective for anticancer properties of vitamin D3 in relation to mitochondria in squamous cell carcinoma.
Collapse
Affiliation(s)
- Anna M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Joanna I Nowak
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland
| | - Oliwia Król
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Damian Flis
- Department of Pharmaceutical Pathophysiology, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Michał A Żmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211, Gdansk, Poland.
| |
Collapse
|
4
|
Lin Y, Ding Y, Wu Y, Yang Y, Liu Z, Xiang L, Zhang C. The underestimated role of mitochondria in vitiligo: From oxidative stress to inflammation and cell death. Exp Dermatol 2024; 33:e14856. [PMID: 37338012 DOI: 10.1111/exd.14856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Vitiligo is an acquired depigmentary disorder characterized by the depletion of melanocytes in the skin. Mitochondria shoulder multiple functions in cells, such as production of ATP, maintenance of redox balance, initiation of inflammation and regulation of cell death. Increasing evidence has implicated the involvement of mitochondria in the pathogenesis of vitiligo. Mitochondria alteration will cause the abnormalities of mitochondria functions mentioned above, ultimately leading to melanocyte loss through various cell death modes. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in mitochondrial homeostasis, and the downregulation of Nrf2 in vitiligo may correlate with mitochondria damage, making both mitochondria and Nrf2 promising targets in treatment of vitiligo. In this review, we aim to discuss the alterations of mitochondria and its role in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Yi Lin
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yuecen Ding
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yue Wu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Yiwen Yang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Ziqi Liu
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Leihong Xiang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| | - Chengfeng Zhang
- Department of Dermatology, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|