1
|
Yang S, Li K, Liu H, Lu J, Yang H, Wu D. Enhancing citric acid tolerance of Acetobacter tropicalis using chemical and physical mutagenesis and adaptive evolution to improve the quality of lemon fruit vinegar. J Food Sci 2024; 89:2581-2596. [PMID: 38551187 DOI: 10.1111/1750-3841.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 05/19/2024]
Abstract
The high concentration of citric acid in lemons limits the production of lemon fruit vinegar because it inhibits the metabolism of acetic acid bacteria and reduces the utilization of raw materials. This study aimed to enhance the citric acid tolerance of Acetobacter tropicalis by using complex mutagenesis and adaptive laboratory evolution (ALE) and improving the quality of lemon fruit vinegar. After mutagenesis and ALE, A. tropicalis JY-135 grew well under 40 g/L citric acid, and it showed high physiological activity and excellent fermentation performance under high concentrations of citric acid. The survival rate and ATP content of JY-135 were 15.27 and 9.30 times higher than that of the original strain J-2736. In the fermentation of lemon fruit vinegar, the acid production and the number of aroma-active compounds were 1.61-fold and 2.17-fold than J-2736. In addition, we found that citric acid tolerance of JY-135 is related to the respiratory electron-transport chain and the tricarboxylic acid (TCA) cycle. This work is of great significance for the production of high-quality lemon fruit vinegar and the enrichment of seed resources of acetic acid bacteria.
Collapse
Affiliation(s)
- Shaojie Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, P. R. China
| | - Kang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, P. R. China
| | - Hua Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, P. R. China
| | - Jian Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, P. R. China
| | - Hua Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, P. R. China
| | - Dianhui Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
2
|
Zhang W, Feng C, Zhang C, Song J, Li L, Xia M, Ding W, Zheng Y, Wang M. Improving the alcohol respiratory chain and energy metabolism by enhancing PQQ synthesis in Acetobacter pasteurianus. J Ind Microbiol Biotechnol 2024; 51:kuae036. [PMID: 39341788 PMCID: PMC11503474 DOI: 10.1093/jimb/kuae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Pyrroloquinoline quinone (PQQ) is one of the important coenzymes in living organisms. In acetic acid bacteria (AAB), it plays a crucial role in the alcohol respiratory chain, as a coenzyme of alcohol dehydrogenase (ADH). In this work, the PQQ biosynthetic genes were overexpressed in Acetobacter pasteurianus CGMCC 3089 to improve the fermentation performance. The result shows that the intracellular and extracellular PQQ contents in the recombinant strain A. pasteurianus (pBBR1-p264-pqq) were 152.53% and 141.08% higher than those of the control A. pasteurianus (pBBR1-p264), respectively. The catalytic activity of ADH and aldehyde dehydrogenase increased by 52.92% and 67.04%, respectively. The results indicated that the energy charge and intracellular ATP were also improved in the recombinant strain. The acetic acid fermentation was carried out using a 5 L self-aspirating fermenter, and the acetic acid production rate of the recombinant strain was 23.20% higher compared with the control. Furthermore, the relationship between the PQQ and acetic acid tolerance of cells was analyzed. The biomass of recombinant strain was 180.2%, 44.3%, and 38.6% higher than those of control under 2%, 3%, and 4% acetic acid stress, respectively. After being treated with 6% acetic acid for 40 min, the survival rate of the recombinant strain was increased by 76.20% compared with the control. Those results demonstrated that overexpression of PQQ biosynthetic genes increased the content of PQQ, therefore improving the acetic acid fermentation and the cell tolerance against acetic acid by improving the alcohol respiratory chain and energy metabolism. ONE SENTENCE SUMMARY The increase in PQQ content enhances the activity of the alcohol respiratory chain of Acetobacter pasteurianus, and the increase in energy charge enhances the tolerance of cells against acetic acid, therefore, improving the efficiency of acetic acid fermentation.
Collapse
Affiliation(s)
- Wenqing Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunxue Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jia Song
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wei Ding
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co., Ltd., Taiyuan 030400, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Shanxi Zilin Vinegar Industry Co., Ltd., Taiyuan 030400, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
3
|
Gao L, Shi W, Xia X. Genomic Plasticity of Acid-Tolerant Phenotypic Evolution in Acetobacter pasteurianus. Appl Biochem Biotechnol 2023; 195:6003-6019. [PMID: 36738389 DOI: 10.1007/s12010-023-04353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Acetic acid bacteria have a remarkable capacity to cope with elevated concentrations of cytotoxic acetic acid in their fermentation environment. In particular, the high-level acetate tolerance of Acetobacter pasteurianus that occurs in vinegar industrial settings must be constantly selected for. However, the improved acetic acid tolerance is rapidly lost without a selection pressure. To understand genetic and molecular biology of this acquired acetic acid tolerance in A. pasteurianus, we evolved three strains A. pasteurianus CICIM B7003, CICIM B7003-02, and ATCC 33,445 over 960 generations (4 months) in two initial acetic acids of 20 g·L-1 and 30 g·L-1, respectively. An acetic acid-adapted strain M20 with significantly improved specific growth rate of 0.159 h-1 and acid productivity of 1.61 g·L-1·h-1 was obtained. Comparative genome analysis of six evolved strains revealed that the genetic variations of adaptation were mainly focused on lactate metabolism, membrane proteins, transcriptional regulators, transposases, replication, and repair system. Among of these, lactate dehydrogenase, acetolactate synthase, glycosyltransferase, ABC transporter ATP-binding protein, two-component regulatory systems, the type II toxin-antitoxin system (RelE/RelB/StbE), exodeoxyribonuclease III, type I restriction endonuclease, tRNA-uridine 2-sulfurtransferase, and transposase might collaboratively contribute to the improved acetic acid tolerance in A. pasteurianus strains. The balance between repair factors and transposition variations might be the basis for genomic plasticity of A. pasteurianus strains, allowing the survival of populations and their offspring in acetic acid stress fluctuations. These observations provide important insights into the nature of acquired acetic acid tolerance phenotype and lay a foundation for future genetic manipulation of these strains.
Collapse
Affiliation(s)
- Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Wei Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| |
Collapse
|
4
|
Zou D, Ji J, Ye Y, Yang Y, Yu J, Wang M, Zheng Y, Sun X. Degradation of Ochratoxin A by a UV-Mutated Aspergillus niger Strain. Toxins (Basel) 2022; 14:toxins14050343. [PMID: 35622590 PMCID: PMC9146908 DOI: 10.3390/toxins14050343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that can contaminate a wide range of crops such as grains and grapes. In this study, a novel fungal mutant strain (FS-UV-21) with a high OTA degradation rate (74.5%) was obtained from Aspergillus niger irradiated with ultraviolet light (15 W for 20 min). The effect of pH, temperature, and inoculation concentration on the degradation of OTA by FS-UV-21 was investigated, and the results revealed that the detoxification effect was optimal (89.4%) at a pH of 8 and a temperature of 30 °C. Ultra-performance liquid chromatography-tandem mass spectrometry was used to characterize the degraded products of OTA, and the main degraded product was ochratoxin α. Triple quadrupole-linear ion trap-mass spectrometry combined with LightSight software was used to analyze the biotransformation pathway of OTA in FS-UV-21, to trace the degraded products, and to identify the main metabolite, P1 (C19H18ClNO6, m/z 404). After the FS-UV-21 strain was treated with OTA, the HepG2 cellular toxicity of the degradation products was significantly reduced. For the real sample, FS-UV-21 was used to remove OTA from wheat bran contaminated by mycotoxins through fermentation, resulting in the degradation of 59.8% of OTA in wheat bran. Therefore, FS-UV-21 can be applied to the degradation of OTA in agricultural products and food.
Collapse
Affiliation(s)
- Dong Zou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Jian Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
| | - Meng Wang
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Yi Zheng
- Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 214122, China;
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; (D.Z.); (J.J.); (Y.Y.); (Y.Y.); (J.Y.)
- Correspondence:
| |
Collapse
|
5
|
Gao L, Wu X, Li C, Xia X. Exploitation of Strong Constitutive and Stress-driven Promoters from Acetobacter pasteurianus for Improving Acetic acid Tolerance. J Biotechnol 2022; 350:24-30. [PMID: 35390361 DOI: 10.1016/j.jbiotec.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Acetobacter pasteurianus is an excellent cell factory for production of highly-strength acetic acid, and attracts an increasing attention in metabolic engineering. However, the available well-characterized constitutive and inducible promoters are rather limited to adjust metabolic fluxes in A. pasteurianus. In this study, we screened a panel of constitutive and acid stress-driven promoters based on time-series of RNA-seq data and characterized in A. pasteurianus and Escherichia coli. Nine constitutive promoters ranged in strength from 1.7-fold to 100-fold that of the well-known strong promoter Padh under non-acetic acid environment. Subsequently, an acetic acid-stable red fluorescent visual reporting system was established and applied to evaluate acid stress-driven promoter in A. pasteurianus during highly-acidic fermentation environment. PgroES was identified as acid stress-driven strong promoters, with expression outputs varied from 100% to 200% when acetic acid treatment. To assess their application potential, ultra-strong constitutive promoter Ptuf and acid stress-driven strong promoter PgroES were selected to overexpress acetyl-CoA synthase and greatly improved acetic acid tolerance. Notably, the acid stress-driven promoter displayed more favorable for regulating strain robustness against acid stress by overexpressing tolerance gene. In summary, this is the first well-characterized constitutive and acid stress-driven promoter library from A. pasteurianus, which could be used as a promising toolbox for metabolic engineering in acetic acid bacteria and other gram-negative bacteria.
Collapse
Affiliation(s)
- Ling Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, PR China
| | - Xiaodan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Chenyu Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, PR China.
| |
Collapse
|
6
|
Salimian Rizi E, Jahadi M, Zia M. Evaluation of gamma irradiation effect on morphological changes, macroscopic, microscopic characteristics and pigment production of
Monascus purpureus. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elahe Salimian Rizi
- Department of Food Science and Technology Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| | - Mahshid Jahadi
- Department of Food Science and Technology Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| | - Mohammadali Zia
- Department of Medical Basic Science Isfahan (Khorasgan) Branch Islamic Azad University Isfahan Iran
| |
Collapse
|
7
|
Chang YC, Reddy MV, Imura K, Onodera R, Kamada N, Sano Y. Two-Stage Polyhydroxyalkanoates (PHA) Production from Cheese Whey Using Acetobacter pasteurianus C1 and Bacillus sp. CYR1. Bioengineering (Basel) 2021; 8:bioengineering8110157. [PMID: 34821723 PMCID: PMC8614810 DOI: 10.3390/bioengineering8110157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/04/2022] Open
Abstract
Cheese whey (CW) can be an excellent carbon source for polyhydroxyalkanoates (PHA)-producing bacteria. Most studies have used CW, which contains high amounts of lactose, however, there are no reports using raw CW, which has a relatively low amount of lactose. Therefore, in the present study, PHA production was evaluated in a two-stage process using the CW that contains low amounts of lactose. In first stage, the carbon source existing in CW was converted into acetic acid using the bacteria, Acetobacter pasteurianus C1, which was isolated from food waste. In the second stage, acetic acid produced in the first stage was converted into PHA using the bacteria, Bacillus sp. CYR-1. Under the condition of without the pretreatment of CW, acetic acid produced from CW was diluted at different folds and used for the production of PHA. Strain CYR-1 incubated with 10-fold diluted CW containing 5.7 g/L of acetic acid showed the higher PHA production (240.6 mg/L), whereas strain CYR-1 incubated with four-fold diluted CW containing 12.3 g/L of acetic acid showed 126 mg/L of PHA. After removing the excess protein present in CW, PHA production was further enhanced by 3.26 times (411 mg/L) at a four-fold dilution containing 11.3 g/L of acetic acid. Based on Fourier transform infrared spectroscopy (FT-IR), and 1H and 13C nuclear magnetic resonance (NMR) analyses, it was confirmed that the PHA produced from the two-stage process is poly-β-hydroxybutyrate (PHB). All bands appearing in the FT-IR spectrum and the chemical shifts of NMR nearly matched with those of standard PHB. Based on these studies, we concluded that a two-stage process using Acetobacter pasteurianus C1 and Bacillus sp. CYR-1 would be applicable for the production of PHB using CW containing a low amount of lactose.
Collapse
Affiliation(s)
- Young-Cheol Chang
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
- Correspondence: ; Tel.: +81-143-46-5757
| | - Motakatla Venkateswar Reddy
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; or
| | - Kazuma Imura
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Rui Onodera
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| | - Natsumi Kamada
- Course of Biosystem, Department of Applied Sciences, Muroran Institute of Technology, Hokkaido 050-8585, Japan;
| | - Yuki Sano
- Course of Chemical and Biological Engineering, Division of Sustainable and Environmental Engineering, Muroran Institute of Technology, Hokkaido 050-8585, Japan; (K.I.); (R.O.); (Y.S.)
| |
Collapse
|
8
|
Gao L, Wu X, Zhu C, Jin Z, Wang W, Xia X. Metabolic engineering to improve the biomanufacturing efficiency of acetic acid bacteria: advances and prospects. Crit Rev Biotechnol 2020; 40:522-538. [DOI: 10.1080/07388551.2020.1743231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ling Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, PR China
| | - Xiaodan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Cailin Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Wu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
9
|
La China S, Zanichelli G, De Vero L, Gullo M. Oxidative fermentations and exopolysaccharides production by acetic acid bacteria: a mini review. Biotechnol Lett 2018; 40:1289-1302. [DOI: 10.1007/s10529-018-2591-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
|
10
|
Wu X, Yao H, Liu Q, Zheng Z, Cao L, Mu D, Wang H, Jiang S, Li X. Producing Acetic Acid of Acetobacter pasteurianus by Fermentation Characteristics and Metabolic Flux Analysis. Appl Biochem Biotechnol 2018; 186:217-232. [PMID: 29552715 DOI: 10.1007/s12010-018-2732-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/28/2018] [Indexed: 02/07/2023]
Abstract
The acetic acid bacterium Acetobacter pasteurianus plays an important role in acetic acid fermentation, which involves oxidation of ethanol to acetic acid through the ethanol respiratory chain under specific conditions. In order to obtain more suitable bacteria for the acetic acid industry, A. pasteurianus JST-S screened in this laboratory was compared with A. pasteurianus CICC 20001, a current industrial strain in China, to determine optimal fermentation parameters under different environmental stresses. The maximum total acid content of A. pasteurianus JST-S was 57.14 ± 1.09 g/L, whereas that of A. pasteurianus CICC 20001 reached 48.24 ± 1.15 g/L in a 15-L stir stank. Metabolic flux analysis was also performed to compare the reaction byproducts. Our findings revealed the potential value of the strain in improvement of industrial vinegar fermentation.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Hongli Yao
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
| | - Qing Liu
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Lili Cao
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Dongdong Mu
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
| | - Hualin Wang
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei City, 230009, Anhui Province, People's Republic of China.
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, 230009, Anhui Province, People's Republic of China.
| |
Collapse
|
11
|
Zheng Y, Chang Y, Xie S, Song J, Wang M. Impacts of bioprocess engineering on product formation by Acetobacter pasteurianus. Appl Microbiol Biotechnol 2018; 102:2535-2541. [DOI: 10.1007/s00253-018-8819-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 11/24/2022]
|
12
|
Wu X, Liu Q, Deng Y, Li J, Chen X, Gu Y, Lv X, Zheng Z, Jiang S, Li X. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. BIORESOURCE TECHNOLOGY 2017; 241:25-34. [PMID: 28550772 DOI: 10.1016/j.biortech.2017.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 05/28/2023]
Abstract
The replacement of the carbon source in the microbial production of itaconic acid (IA) with economic alternatives has attracted significant attention. In this study, an Aspergillus terreus CICC40205 mutant was used to increase the IA titer and decrease the citric acid titer in the wheat bran hydrolysate compared with the parental strain. The results showed that the IA titer was increased by 33.4%, whereas the citric acid titer was decreased by 75.8%, and were in accordance with those of the improved pathway of co-metabolism of glucose and xylose according to the metabolic flux analysis. Additionally, the maximum IA titer obtained in a 7-L stirred tank was 49.65gL-1±0.38gL-1. Overall, A. terreus CICC40205 showed a great potential for the industrial production of IA through the biotransformation of the wheat bran hydrolysate.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Qing Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yongdong Deng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Jinghong Li
- China Rural Technology Development Center, Beijing 100045, PR China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui Province 238000, PR China
| | - Yongzhong Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xijun Lv
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China.
| |
Collapse
|
13
|
Wu X, Yao H, Cao L, Zheng Z, Chen X, Zhang M, Wei Z, Cheng J, Jiang S, Pan L, Li X. Improving Acetic Acid Production by Over-Expressing PQQ-ADH in Acetobacter pasteurianus. Front Microbiol 2017; 8:1713. [PMID: 28932219 PMCID: PMC5592214 DOI: 10.3389/fmicb.2017.01713] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/24/2017] [Indexed: 11/24/2022] Open
Abstract
Pyrroquinoline quinone-dependent alcohol dehydrogenase (PQQ-ADH) is a key enzyme in the ethanol oxidase respiratory chain of acetic acid bacteria (AAB). To investigate the effect of PQQ-ADH on acetic acid production by Acetobacter pasteurianus JST-S, subunits I (adhA) and II (adhB) of PQQ-ADH were over-expressed, the fermentation parameters and the metabolic flux analysis were compared in the engineered strain and the original one. The acetic acid production was improved by the engineered strain (61.42 g L−1) while the residual ethanol content (4.18 g L−1) was decreased. Analysis of 2D maps indicated that 19 proteins were differently expressed between the two strains; of these, 17 were identified and analyzed by mass spectrometry and two-dimensional gel electrophoresis. With further investigation of metabolic flux analysis (MFA) of the pathway from ethanol and glucose, the results reveal that over-expression of PQQ-ADH is an effective way to improve the ethanol oxidation respiratory chain pathway and these can offer theoretical references for potential mechanism of metabolic regulation in AAB and researches with its acetic acid resistance.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Hongli Yao
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Lili Cao
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Xiaoju Chen
- School of Chemical Engineering and Life Sciences, Chaohu UniversityHefei, China
| | - Min Zhang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China
| | - Jieshun Cheng
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Lijun Pan
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of TechnologyHefei, China.,Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of TechnologyHefei, China
| |
Collapse
|
14
|
Sun X, Sun C, Zhang X, Zhang H, Ji J, Liu Y, Tang L. Aflatoxin B1 decontamination by UV-mutated live and immobilized Aspergillus niger. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol Adv 2015; 33:1260-71. [DOI: 10.1016/j.biotechadv.2014.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
16
|
Wu X, Wei Y, Xu Z, Liu L, Tan Z, Jia S. Evaluation of an Ethanol-Tolerant Acetobacter pasteurianus Mutant Generated by a New Atmospheric and Room Temperature Plasma (ARTP). ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-662-46318-5_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Zhang Z, Ma H, Yang Y, Dai L, Chen K. Protein profile of Acetobacter pasteurianus HSZ3-21. Curr Microbiol 2015; 70:724-9. [PMID: 25648427 DOI: 10.1007/s00284-015-0777-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/12/2014] [Indexed: 11/26/2022]
Abstract
Acetobacter pasteurianus plays an important role in the process of traditional vinegar production and is also essential for the fermentation of Zhenjiang aromatic vinegar. In this study, we utilized the proteomic approach to analyze the proteomic profile of A. pasteurianus HSZ3-21, and 258 proteins were successfully identified by MALDI-TOF-MS and database search. The hydropathy and GO analyse combined with COG results of the identified proteins revealed the molecular biological characteristics of A. pasteurianus proteins, that is, most proteins of A. pasteurianus were related to metabolic process, binding, catalytic or cellular response. Meanwhile, our results also showed that some proteins of A. pasteurianus may be responsible for acetic acid tolerance, thermotolerance, and stress response. Therefore, the identification of 258 proteins not only deciphers protein composition and functional classification of A. pasteurianus, but also provides useful information for improving quality of Zhenjiang aromatic vinegar.
Collapse
Affiliation(s)
- Zhiyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China,
| | | | | | | | | |
Collapse
|
18
|
Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World J Microbiol Biotechnol 2015; 31:255-63. [PMID: 25575804 DOI: 10.1007/s11274-015-1799-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative or gram-variable bacteria which possess an obligate aerobic property with oxygen as the terminal electron acceptor, meanwhile transform ethanol and sugar to corresponding aldehydes, ketones and organic acids. Since the first genus Acetobacter of AAB was established in 1898, 16 AAB genera have been recorded so far. As the main producer of a world-wide condiment, vinegar, AAB have evolved an elegant adaptive system that enables them to survive and produce a high concentration of acetic acid. Some researches and reviews focused on mechanisms of acid resistance in enteric bacteria and made the mechanisms thoroughly understood, while a few investigations did in AAB. As the related technologies with proteome, transcriptome and genome were rapidly developed and applied to AAB research, some plausible mechanisms conferring acetic acid resistance in some AAB strains have been published. In this review, the related mechanisms of AAB against acetic acid with acetic acid assimilation, transportation systems, cell morphology and membrane compositions, adaptation response, and fermentation conditions will be described. Finally, a framework for future research for anti-acid AAB will be provided.
Collapse
|
19
|
Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|