1
|
Sadaqat B, Dar MA, Sha C, Abomohra A, Shao W, Yong YC. Thermophilic β-mannanases from bacteria: production, resources, structural features and bioengineering strategies. World J Microbiol Biotechnol 2024; 40:130. [PMID: 38460032 DOI: 10.1007/s11274-024-03912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/29/2024] [Indexed: 03/11/2024]
Abstract
β-mannanases are pivotal enzymes that cleave the mannan backbone to release short chain mannooligosaccharides, which have tremendous biotechnological applications including food/feed, prebiotics and biofuel production. Due to the high temperature conditions in many industrial applications, thermophilic mannanases seem to have great potential to overcome the thermal impediments. Thus, structural analysis of thermostable β-mannanases is extremely important, as it could open up new avenues for genetic engineering, and protein engineering of these enzymes with enhanced properties and catalytic efficiencies. Under this scope, the present review provides a state-of-the-art discussion on the thermophilic β-mannanases from bacterial origin, their production, engineering and structural characterization. It covers broad insights into various molecular biology techniques such as gene mutagenesis, heterologous gene expression, and protein engineering, that are employed to improve the catalytic efficiency and thermostability of bacterial mannanases for potential industrial applications. Further, the bottlenecks associated with mannanase production and process optimization are also discussed. Finally, future research related to bioengineering of mannanases with novel protein expression systems for commercial applications are also elaborated.
Collapse
Affiliation(s)
- Beenish Sadaqat
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
- Department of Biochemistry and Structural Biology, Lund University, Box 124, 22100, Lund, Sweden
| | - Mudasir A Dar
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Chong Sha
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China
| | - Abdelfatah Abomohra
- Aquatic Ecophysiology and Phycology, Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Weilan Shao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu province, People's Republic of China.
| |
Collapse
|
2
|
The Purification and Biochemical Characterization of a Weissella cibaria F1 Derived β-Mannanase for Its Use in the Preparation of Konjac Oligo-Glucomannan with Immunomodulatory Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mannanase with a molecular weight of 33.1 kDa was purified from Weissella cibaria F1. The F1 mannanase contained 289 amino acid residues and shared 70.0% similarity with mannanase from Bacillus subtilis (P55278 (MANB_BACIU)). The optimum reaction conditions of F1 mannanase were 50 °C and pH 6.5. After incubation at pH 4.5–8.0 and 30–60 °C for 2 h, the enzyme activity remained above 60%. The effects of metal ions on mannanase enzyme activity were measured, and Mn2+, Mg2+, and Cu2+ increased enzyme activity. The Km (16.96 ± 0.01 μmol·mL−1) and Vmax (1119.05 ± 0.14 μmol·min−1) values showed that the enzyme exhibited high affinity for locust bean gum. Mannanase was used to hydrolyze konjac glucomannan to produce konjac oligo-glucomannan (KOGM). KOGM increased the proliferation and phagocytosis of RAW264.7 macrophages and enhanced nitric oxide, and cytokine production in macrophages, which showed potent immunostimulatory activity. In this study, the advantages of mannanase derived from lactic acid bacteria were utilized to expand the application of KOGM in the medical field, which is helpful to explore the broad prospects of KOGM in functional food or medicine.
Collapse
|
3
|
Ji H, Cao H, Zhao L, Na R, Ping W, Ge J, Zhao D. The response surface optimization of β-mannanase produced by Weissella cibaria F1 and its potential in juice clarification. Prep Biochem Biotechnol 2022; 52:1151-1159. [PMID: 35175890 DOI: 10.1080/10826068.2022.2033993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A β-mannanase-producing lactic acid bacteria (LAB) was identified as Weissella cibaria F1 according to physiological and biochemical properties, morphological observations, partial sequence of 16S rRNA gene and API 50 CHL test. In order to improve the yield of β-mannanase, the response surface methodology (RSM) was originally used to optimize the fermentation conditions. The optimization results showed that when the konjac powder, glucose, and initial pH were 9.46 g/L, 14.47 g/L and 5.67, respectively, the β-mannanase activity increased to 38.81 ± 0.33 U/mL, which was 1.33 times compared to initial yield (29.28 ± 0.26 U/mL). This result was also supported by larger clearance on the konjac powder-MRS agar plate through Congo Red dyeing. The W. cibaria F1 β-mannanase could improve the clarity of five fruits juice, i.e., apple, orange, peach, persimmon and blue honeysuckle. Among these, peach juice was the most obvious, clarity increasing by 12.8%. These results collectively indicated that W. cibaria F1 β-mannanase had an applicable potential in food-level fields.
Collapse
Affiliation(s)
- Hairui Ji
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Huiying Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Li Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Ruiying Na
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Dan Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
4
|
Sun Y, Zhou X, Zhang W, Tian X, Ping W, Ge J. Enhanced β-mannanase production by Bacillus licheniformis by optimizing carbon source and feeding regimes. Prep Biochem Biotechnol 2021; 52:845-853. [PMID: 34826265 DOI: 10.1080/10826068.2021.2001753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacillus licheniformis HDYM-04 was isolated in flax retting water and showed β-mannanase activity. Carbon sources for β-mannanase production, as well as the fermentation conditions and feeding strategy, were optimized in shake flasks. When glucose or konjac powder was used as the carbon source, the β-mannanase activity was 288.13 ± 21.59 U/mL and 696.35 ± 23.47 U/mL at 24 h, respectively, which was approximately 4.4- to 10.68-fold higher than the values obtained with wheat powder. When 0.5% (w/v) glucose and 1% (w/v) konjac powder were added together, maximum enzyme activities of 789.07 ± 25.82 U/mL were obtained, an increase of 13.35% compared to the unoptimized cultures with only 1% (w/v) konjac powder. The enzyme activity decreased in the presence of 1% (w/v) konjac powder, but the highest enzyme activity was 1,533.26 ± 33.74 U/mL, a 1.2-fold increase compared with that in nonoptimized cultures; when 0.5% (w/v) glucose was used, the highest enzyme activity was 966.53 ± 27.84 U/mL, an increase in β-mannanase activity of 38.79% compared with control cultures. In this study, by optimizing fed-batch fermentation conditions, the yield of β-mannanase produced by HDYM-04 was increased, laying the foundation for the industrial application and further research of B. licheniformis HDYM-04.
Collapse
Affiliation(s)
- Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xiaohang Zhou
- College of Basic Medicine, Mudanjiang Medical University, MuDanJiang City, China
| | - Wen Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Xue Tian
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, China.,Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, China
| |
Collapse
|
5
|
Zhao D, Zhang X, Wang Y, Na J, Ping W, Ge J. Purification, biochemical and secondary structural characterisation of β-mannanase from Lactobacillus casei HDS-01 and juice clarification potential. Int J Biol Macromol 2020; 154:826-834. [DOI: 10.1016/j.ijbiomac.2020.03.157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
|
6
|
Tan JS, Abbasiliasi S, Ariff AB, Murugan P, Abu Bakar MH, Ng HS. Polymer impregnation in porous glass beads to induce bioseparation of β-mannanase from fermentation broth of Proteus vulgaris. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.20.02605-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Lee FH, Wan SY, Foo HL, Loh TC, Mohamad R, Abdul Rahim R, Idrus Z. Comparative Study of Extracellular Proteolytic, Cellulolytic, and Hemicellulolytic Enzyme Activities and Biotransformation of Palm Kernel Cake Biomass by Lactic Acid Bacteria Isolated from Malaysian Foods. Int J Mol Sci 2019; 20:E4979. [PMID: 31600952 PMCID: PMC6834149 DOI: 10.3390/ijms20204979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Biotransformation via solid state fermentation (SSF) mediated by microorganisms is a promising approach to produce useful products from agricultural biomass. Lactic acid bacteria (LAB) that are commonly found in fermented foods have been shown to exhibit extracellular proteolytic, β-glucosidase, β-mannosidase, and β-mannanase activities. Therefore, extracellular proteolytic, cellulolytic, and hemicellulolytic enzyme activities of seven Lactobacillus plantarum strains (a prominent species of LAB) isolated from Malaysian foods were compared in this study. The biotransformation of palm kernel cake (PKC) biomass mediated by selected L. plantarum strains was subsequently conducted. The results obtained in this study exhibited the studied L. plantarum strains produced versatile multi extracellular hydrolytic enzyme activities that were active from acidic to alkaline pH conditions. The highest total score of extracellular hydrolytic enzyme activities were recorded by L. plantarum RI11, L. plantarum RG11, and L. plantarum RG14. Therefore, they were selected for the subsequent biotransformation of PKC biomass via SSF. The hydrolytic enzyme activities of treated PKC extract were compared for each sampling interval. The scanning electron microscopy analyses revealed the formation of extracellular matrices around L. plantarum strains attached to the surface of PKC biomass during SSF, inferring that the investigated L. plantarum strains have the capability to grow on PKC biomass and perform synergistic secretions of various extracellular proteolytic, cellulolytic, and hemicellulolytic enzymes that were essential for the effective biodegradation of PKC. The substantial growth of selected L. plamtraum strains on PKC during SSF revealed the promising application of selected L. plantarum strains as a biotransformation agent for cellulosic biomass.
Collapse
Affiliation(s)
- Fu Haw Lee
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Suet Ying Wan
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Hooi Ling Foo
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Teck Chwen Loh
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Department of Animal Sciences, Faculty of Agriculture, Serdang 43400 UPM, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Raha Abdul Rahim
- Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Zulkifli Idrus
- Institute of Tropical Agriculture, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
- Department of Animal Sciences, Faculty of Agriculture, Serdang 43400 UPM, Selangor, Malaysia.
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| |
Collapse
|
8
|
Immobilization of Aspergillus quadrilineatus RSNK-1 multi-enzymatic system for fruit juice treatment and mannooligosaccharide generation. Food Chem 2019; 289:95-102. [DOI: 10.1016/j.foodchem.2019.03.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/15/2023]
|
9
|
Zhao D, Wang Y, Na J, Ping W, Ge J. The response surface optimization of β-mannanase produced by Lactobacillus casei HDS-01 and its potential in juice clarification. Prep Biochem Biotechnol 2019; 49:202-207. [PMID: 30734626 DOI: 10.1080/10826068.2019.1566151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lactic acid bacteria (LAB) is an ideal mannanase source due to the bio-safety guarantee. LAB can heterogeneously express β-mannanase or be directly used as β-mannanase-producing strains. This research originally optimized the fermentation condition for β-mannanase produced by Lactobacillus casei HDS-01. The applicable potential of the crude enzyme in juice clarification was investigated. Two-factorial design screened out three factors, i.e., fermentation time (p = 0.0001), glucose (p = 0.0013), and initial pH (p = 0.0167), which significantly affected L. casei HDS-01 β-mannanase activity. Under the predicted conditions resulting from the central composite design (CCD), i.e., fermentation time 18.23 hr, glucose 12.65 g L-1, initial pH 5.18, the model reached maximal β-mannanase activity of 81.40 U mL-1. This model was validated by conducting six repeated experiments and subsequent t-test (p = 0.6308). RSM optimization obtained a 1.33-fold increase in β-mannanase activity. This increase could also be qualitatively detected by larger clearance zone on konjac powder-MRS agar through Congo Red dyeing. The yield and clarity of crude β-mannanase-treated juices from orange, apple, and pear were significantly higher than controls without enzyme treatment. This study conferred a relatively high β-mannanase-producing LAB strain with a high bio-safety level and easy and economical use in juice clarification as well as other food-level fields.
Collapse
Affiliation(s)
- Dan Zhao
- a Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Heilongjiang University , Harbin , China.,b Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences , Heilongjiang University , Harbin , China
| | - Yao Wang
- a Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Heilongjiang University , Harbin , China.,b Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences , Heilongjiang University , Harbin , China
| | - Jin Na
- a Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Heilongjiang University , Harbin , China.,b Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences , Heilongjiang University , Harbin , China
| | - Wenxiang Ping
- a Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Heilongjiang University , Harbin , China.,b Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences , Heilongjiang University , Harbin , China
| | - Jingping Ge
- a Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education , Heilongjiang University , Harbin , China.,b Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences , Heilongjiang University , Harbin , China
| |
Collapse
|
10
|
Liu W, Tu T, Gu Y, Wang Y, Zheng F, Zheng J, Wang Y, Su X, Yao B, Luo H. Insight into the Thermophilic Mechanism of a Glycoside Hydrolase Family 5 β-Mannanase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:473-483. [PMID: 30518205 DOI: 10.1021/acs.jafc.8b04860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To study the molecular basis for thermophilic β-mannanase of glycoside hydrolase family 5, two β-mannanases, TlMan5A and PMan5A, from Talaromyces leycettanus JCM12802 and Penicillium sp. WN1 were used as models. The four residues, His112 and Phe113, located near the antiparallel β-sheet at the barrel bottom and Leu375 and Ala408 from loop 7 and loop 8 of PMan5A, were inferred to be key thermostability contributors through module substitution, truncation, and site-directed mutagenesis. The effects of these four residues on the thermal properties followed the order H112Y > A408P > L375H > F113Y and were strongly synergetic. These results were interpreted structurally using molecular dynamics (MD) simulations, which showed that improved hydrophobic interactions in the inner wall of the β-barrel and the rigidity of loop 8 were caused by the outside domain of the barrel bottom and proline, respectively. The TIM barrel bottom and four specific residues responsible for the thermostability of GH5 β-mannanases were elucidated.
Collapse
Affiliation(s)
- Weina Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yuan Gu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Jie Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture , Feed Research Institute, Chinese Academy of Agricultural Sciences , Beijing 100086 , People's Republic of China
| |
Collapse
|
11
|
Study on inactivation mechanisms of Listeria grayi
affected by pulse magnetic field via morphological structure, Ca2+
transmembrane transport and proteomic analysis. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Soleimani SS, Nadaroglu H, Kesmen Z. Lactobacillus brevis Lipase: Purification, Immobilization onto Magnetic Florosil NPs, Characterization and Application as a Detergent Additive. TENSIDE SURFACT DET 2017. [DOI: 10.3139/113.110495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
In this study, a thermo-tolerant and alkaline lipase enzyme was purified from Lactobacillus brevis and immobilized onto modified γ-Fe3O4 florisil nanoparticles (γ-Fe3O4 MF NFs) and the usability of free lipase (FL) and immobilized lipases (IML) as detergent additives was investigated. Lipase enzyme was purified by fractional precipitation using 20% ammonium sulfate, DEAE-Sephadex ion-exchange chromatographic column, and Sephacryl S200 gel filtration chromatographic techniques. Then, the enzyme was purified, which resulted in 135.2-fold purification. Its molecular mass was determined to be 57 kDa by SDS-PAGE. The covalent immobilization of purified lipase was done using γ-Fe3O4 MF NPs. γ-Fe3O4 MF NPs and IML were characterized by using SEM, TEM, FT-IR, and XRD. IML showed a good thermo-stability and its activities were calculated as 80% at 60°C. The free and IML enzymes were most stable at alkaline pHs in the range of 7.0–10.0. Also, IML is more stable towards metal ions compared to free lipase enzyme. Washing performances of some detergent formulations were investigated in the presence and absence of Lipase. Olive oil was removed by the detergent alone and by the detergent and IML at ratios of 45% and 72%, respectively. The study on removal of oil stain from cotton cloths indicated that the removal of oil was superior in the presence of IML and IML with detergent, when compared to the detergent alone.
Collapse
Affiliation(s)
- Seyedeh Sara Soleimani
- Ataturk University , Erzurum Vocational Collage, Food Technology Department, 25240 Erzurum , Turkey
| | - Hayrunnisa Nadaroglu
- Ataturk University , Erzurum Vocational Collage, Food Technology Department, 25240 Erzurum , Turkey
- Ataturk University , Faculty of Engineering, Nano-Science and Nano-Engineering Department, 25240 Erzurum , Turkey
| | - Zulal Kesmen
- Erciyes University , Engineering Faculty, Food Engineering Department, 38280 Kayseri , Turkey
| |
Collapse
|
13
|
Production, properties, and applications of endo-β-mannanases. Biotechnol Adv 2017; 35:1-19. [DOI: 10.1016/j.biotechadv.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/12/2016] [Accepted: 11/07/2016] [Indexed: 12/27/2022]
|
14
|
Nadaroglu H, Adiguzel G, Adiguzel A, Sonmez Z. A thermostable-endo-β-(1,4)-mannanase from Pediococcus acidilactici (M17): purification, characterization and its application in fruit juice clarification. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2735-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Sak-Ubol S, Namvijitr P, Pechsrichuang P, Haltrich D, Nguyen TH, Mathiesen G, Eijsink VGH, Yamabhai M. Secretory production of a beta-mannanase and a chitosanase using a Lactobacillus plantarum expression system. Microb Cell Fact 2016; 15:81. [PMID: 27176608 PMCID: PMC4866359 DOI: 10.1186/s12934-016-0481-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heterologous production of hydrolytic enzymes is important for green and white biotechnology since these enzymes serve as efficient biocatalysts for the conversion of a wide variety of raw materials into value-added products. Lactic acid bacteria are interesting cell factories for the expression of hydrolytic enzymes as many of them are generally recognized as safe and require only a simple cultivation process. We are studying a potentially food-grade expression system for secretion of hydrolytic enzymes into the culture medium, since this enables easy harvesting and purification, while allowing direct use of the enzymes in food applications. RESULTS We studied overexpression of a chitosanase (CsnA) and a β-mannanase (ManB), from Bacillus licheniformis and Bacillus subtilis, respectively, in Lactobacillus plantarum, using the pSIP system for inducible expression. The enzymes were over-expressed in three forms: without a signal peptide, with their natural signal peptide and with the well-known OmpA signal peptide from Escherichia coli. The total production levels and secretion efficiencies of CsnA and ManB were highest when using the native signal peptides, and both were reduced considerably when using the OmpA signal. At 20 h after induction with 12.5 ng/mL of inducing peptide in MRS media containing 20 g/L glucose, the yields and secretion efficiencies of the proteins with their native signal peptides were 50 kU/L and 84% for ManB, and 79 kU/L and 56% for CsnA, respectively. In addition, to avoid using antibiotics, the erythromycin resistance gene was replaced on the expression plasmid with the alanine racemase (alr) gene, which led to comparable levels of protein production and secretion efficiency in a suitable, alr-deficient L. plantarum host. CONCLUSIONS ManB and CsnA were efficiently produced and secreted in L. plantarum using pSIP-based expression vectors containing either an erythromycin resistance or the alr gene as selection marker.
Collapse
Affiliation(s)
- Suttipong Sak-Ubol
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
- />Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peenida Namvijitr
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Phornsiri Pechsrichuang
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Dietmar Haltrich
- />Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thu-Ha Nguyen
- />Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Geir Mathiesen
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Vincent G. H. Eijsink
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Montarop Yamabhai
- />Molecular Biotechnology Laboratory, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
16
|
Adiguzel G, Sonmez Z, Adiguzel A, Nadaroglu H. Purification and characterization of a thermostable endo-beta-1,4 mannanase from Weissella viridescens LB37 and its application in fruit juice clarification. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2584-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|