1
|
Cui FJ, Yang YM, Sun L, Zan XY, Sun WJ, Zeb U. Grifola frondosa polysaccharides: A review on structure/activity, biosynthesis and engineering strategies. Int J Biol Macromol 2024; 257:128584. [PMID: 38056754 DOI: 10.1016/j.ijbiomac.2023.128584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/17/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Polysaccharides are the main polymers in edible fungi Grifola frondosa, playing a crucial role in the physiology and representing the healthy benefits for humans. Recent efforts have well elucidated the fine structures and biological functions of G. frondosa polysaccharides. The recently-rapid developments and increasing availability in fungal genomes also accelerated the better understanding of key genes and pathways involved in biosynthesis of G. frondosa polysaccharides. Herein, we provide a brief overview of G. frondosa polysaccharides and their activities, and comprehensively outline the complex process, genes and proteins corresponding to G. frondosa polysaccharide biosynthesis. The regulation strategies including strain improvement, process optimization and genetic engineering were also summarized for maximum production of G. frondosa polysaccharides. Some remaining unanswered questions in describing the fine synthesis machinery were also pointed out to open up new avenues for answering the structure-activity relationship and improving polysaccharide biosynthesis in G. frondosa. The review hopefully presents a reasonable full picture of activities, biosynthesis, and production regulation of polysaccharide in G. frondosa.
Collapse
Affiliation(s)
- Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| | - Yu-Meng Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China
| | - Umar Zeb
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
2
|
Tao TL, Cui FJ, Chen XX, Sun WJ, Huang DM, Zhang J, Yang Y, Wu D, Liu WM. Improved mycelia and polysaccharide production of Grifola frondosa by controlling morphology with microparticle Talc. Microb Cell Fact 2018; 17:1. [PMID: 29306327 PMCID: PMC5756420 DOI: 10.1186/s12934-017-0850-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022] Open
Abstract
Background Mushroom showed pellet, clump and/or filamentous mycelial morphologies during submerged fermentation. Addition of microparticles including Talc (magnesium silicate), aluminum oxide and titanium oxide could control mycelial morphologies to improve mycelia growth and secondary metabolites production. Here, effect of microparticle Talc (45 μm) addition on the mycelial morphology, fermentation performance, monosaccharide compositions of polysaccharides and enzymes activities associated with polysaccharide synthesis in G. frondosa was well investigated to find a clue of the relationship between polysaccharide biosynthesis and morphological changes. Results Addition of Talc decreased the diameter of the pellets and increased the percentage of S-fraction mycelia. Talc gave the maximum mycelial biomass of 19.25 g/L and exo-polysaccharide of 3.12 g/L at 6.0 g/L of Talc, and mycelial polysaccharide of 0.24 g/g at 3.0 g/L of Talc. Talc altered the monosaccharide compositions/percentages in G. frondosa mycelial polysaccharide with highest mannose percentage of 62.76 % and lowest glucose percentage of 15.22 % followed with the corresponding changes of polysaccharide-synthesis associated enzymes including lowest UDP-glucose pyrophosphorylase (UGP) activity of 91.18 mU/mg and highest UDP-glucose dehydrogenase (UGDG) and GDP-mannose pyrophosphorylase (GMPPB) activities of 81.45 mU/mg and 93.15 mU/mg. Conclusion Our findings revealed that the presence of Talc significantly changed the polysaccharide production and sugar compositions/percentages in mycelial and exo-polysaccharides by affecting mycelial morphology and polysaccharide-biosynthesis related enzymes activities of G. frondosa.
Collapse
Affiliation(s)
- Ting-Lei Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China. .,Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, 334221, People's Republic of China.
| | - Xiao-Xiao Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.,Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing, 334221, People's Republic of China
| | - Da-Ming Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jinsong Zhang
- National Engineering Research Center of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Yan Yang
- National Engineering Research Center of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Di Wu
- National Engineering Research Center of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, People's Republic of China
| | - Wei-Min Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| |
Collapse
|
3
|
Control of Grifola frondosa Morphology by Agitation and Aeration for Improving Mycelia and Exo-Polymer Production. Appl Biochem Biotechnol 2016; 179:459-73. [DOI: 10.1007/s12010-016-2006-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/28/2016] [Indexed: 01/12/2023]
|