1
|
Rivero W, Wang Q, Salvi D. Impact of plasma-activated water washing on the microbial inactivation, color, and electrolyte leakage of alfalfa sprouts, broccoli sprouts, and clover sprouts. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Miyahira RF, Antunes AEC. Bacteriological safety of sprouts: A brief review. Int J Food Microbiol 2021; 352:109266. [PMID: 34111728 DOI: 10.1016/j.ijfoodmicro.2021.109266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/01/2022]
Abstract
The germination process causes changes in the chemical composition of seeds that improves the nutritional value of sprouts, while decreasing their microbiological safety, since the germination conditions are ideal for bacterial growth as well. This review explores the bacteriological safety of sprouts and their involvement in foodborne illness outbreaks, worldwide. Additionally, approaches to improve the shelf-life and microbiological safety of sprouts are discussed. According to the literature, sprout consumption is associated with more than 60 outbreaks of foodborne illness worldwide, since 1988. Alfalfa sprouts were most commonly involved in outbreaks and the most commonly implicated pathogens were Salmonella and pathogenic Escherichia coli (especially, Shiga toxin producing E. coli). In the pre-harvest stage, the implementation of good agricultural practices is an important tool for producing high-quality seeds. In the post-harvest stage, several methods of seed decontamination are used commercially, or have been investigated by researchers. After germination, seedlings should be kept under refrigeration and, if possible, cooked before consumption. Finally, microbiological analyses should be performed at all stages to monitor the hygiene of the sprout production process.
Collapse
Affiliation(s)
- Roberta Fontanive Miyahira
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil; School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil.
| | | |
Collapse
|
3
|
Kruk M, Trząskowska M. Analysis of Biofilm Formation on the Surface of Organic Mung Bean Seeds, Sprouts and in the Germination Environment. Foods 2021; 10:foods10030542. [PMID: 33807767 PMCID: PMC7999400 DOI: 10.3390/foods10030542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth of the tested pathogenic bacteria was evaluated. Three strains of Salmonella and E. coli were used for the study. The colony forming units (CFU), the crystal violet (CV), the LIVE/DEAD and the gram fluorescent staining, the light and the scanning electron microscopy (SEM) methods were used. The tested microorganisms survive in a small number. During germination after disinfection D2 (20 min H2O at 60 °C, then 15 min in a disinfecting mixture consisting of H2O, H2O2 and CH₃COOH), the biofilms grew most after day 2, but with the DP2 method (D2 + L. plantarum 299v during germination) after the fourth day. Depending on the method used, the second or fourth day could be a time for the introduction of an additional growth-limiting factor. Moreover, despite the use of seed disinfection, their germination environment could be favourable for the development of bacteria and, consequently, the formation of biofilms. The appropriate combination of seed disinfection methods and growth inhibition methods at the germination stage will lead to the complete elimination of the development of unwanted microflora and their biofilms.
Collapse
Affiliation(s)
- Marcin Kruk
- Faculty of Human Nutrition, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Monika Trząskowska
- Food Hygiene and Quality Management, Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
4
|
Keshri J, Krouptiski Y, Abu-Fani L, Achmon Y, Bauer TS, Zarka O, Maler I, Pinto R, Sela Saldinger S. Dynamics of bacterial communities in alfalfa and mung bean sprouts during refrigerated conditions. Food Microbiol 2019; 84:103261. [PMID: 31421775 DOI: 10.1016/j.fm.2019.103261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 06/07/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023]
Abstract
Sprouts are considered a healthy ready-to-eat food and has gained popularity in recent years. The objective of the present study was to determine the dynamics of sprouts' microbiome during cold storage to the end of their shelf-life at home. The microbiological quality of fresh alfalfa (Medicago sativa) and mung bean (Vigna radiata) sprouts from two commercial brands was tested and the number of APC ranges from 5.0 to 8.7 log CFU/g in alfalfa and 6.7 to 9.3 log CFU/g in mung bean sprouts. In the case of alfalfa, but not mung beans, there were differences in the mean numbers of APC between the two brands. The number of coliform bacteria ranges from 4.3 to 7.7 log CFU/g in alfalfa and 4.1 to 8.1 log CFU/g in mung bean sprouts. Four independent batches of sprouts were used for DNA preparation and were sampled immediately after purchase and once a week during subsequent storage in refrigerator until the end of their shelf-life. Microbial population of the sprouts was determined using next generation sequencing of 16S rRNA amplicons. Alfalfa sprouts were dominated by Pseudomonas throughout the storage time with relative abundance of >60% at 3 weeks. Fresh mung bean sprouts were dominated by both Pseudomonas and Pantoea, but Pantoea became the dominant taxa after 2 weeks of storage, with >46% of relative abundance. The bacterial communities associated with sprouts were largely dependent on the sprout type, and less dependent on the brand. The species richness and diversity declined during storage and the development of spoilage. Among the 160 genera identified on sprouts, 23 were reported to contain known spoilage-associated species and 30 genera comprise potential human pathogenic species. This study provides new insight into the microbiome dynamics of alfalfa and mung bean sprouts during cold storage.
Collapse
Affiliation(s)
- Jitendra Keshri
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Yulia Krouptiski
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Lareen Abu-Fani
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Ygal Achmon
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel; Department of Biotechnology and Food Engineering, Guangdong Technion Israel Institute of Technology, Shantou, China
| | - Tal Stern Bauer
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel; Department of Biochemistry and Food Science, Hebrew University of Jerusalem, Israel
| | - Omri Zarka
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Ilana Maler
- The Laboratory of Food Microbiology, Kimron Veterinary Institute, P.O. Box 12, Bet Dagan, 50250, Israel
| | - Riky Pinto
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel
| | - Shlomo Sela Saldinger
- Department of Food Science, Institute for Postharvest and Food Sciences, The Volcani Center, Agriculture Research Organization, Rishon-LeZion, Israel.
| |
Collapse
|
5
|
Benincasa P, Falcinelli B, Lutts S, Stagnari F, Galieni A. Sprouted Grains: A Comprehensive Review. Nutrients 2019; 11:E421. [PMID: 30781547 PMCID: PMC6413227 DOI: 10.3390/nu11020421] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/02/2019] [Accepted: 02/13/2019] [Indexed: 11/27/2022] Open
Abstract
In the last decade, there has been an increase in the use of sprouted grains in human diet and a parallel increase in the scientific literature dealing with their nutritional traits and phytochemical contents. This review examines the physiological and biochemical changes during the germination process, and the effects on final sprout composition in terms of macro- and micro-nutrients and bioactive compounds. The main factors affecting sprout composition are taken into consideration: genotype, environmental conditions experimented by the mother plant, germination conditions. In particular, the review deepens the recent knowledge on the possible elicitation factors useful for increasing the phytochemical contents. Microbiological risks and post-harvest technologies are also evaluated, and a brief summary is given of some important in vivo studies matching with the use of grain sprouts in the diet. All the species belonging to Poaceae (Gramineae) family as well as pseudocereals species are included.
Collapse
Affiliation(s)
- Paolo Benincasa
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Beatrice Falcinelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute-Agronomy (ELI-A), Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | - Fabio Stagnari
- Faculty of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Carlo Lerici 1, 64023 Teramo, Italy.
| | - Angelica Galieni
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, Via Salaria 1, 63030 Monsampolo del Tronto, Italy.
| |
Collapse
|
6
|
Antimicrobial activity of safflower seed meal extract and its application as an antimicrobial agent for the inactivation of Listeria monocytogenes inoculated on fresh lettuce. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Nagar V, Pansare Godambe L, Shashidhar R. Radiation sensitivity of planktonic and biofilm-associatedShigellaspp. andAeromonasspp. on food and food-contact surfaces. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Vandan Nagar
- Food Technology Division; Bhabha Atomic Research Centre; Mumbai 400 085 India
| | | | | |
Collapse
|