1
|
Promsut K, Sangtanoo P, Srimongkol P, Saisavoey T, Puthong S, Buakeaw A, Reamtong O, Nutho B, Karnchanatat A. A novel peptide derived from Zingiber cassumunar rhizomes exhibits anticancer activity against the colon adenocarcinoma cells (Caco-2) via the induction of intrinsic apoptosis signaling. PLoS One 2024; 19:e0304701. [PMID: 38870120 PMCID: PMC11175412 DOI: 10.1371/journal.pone.0304701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
This paper presents the initial exploration of the free radical scavenging capabilities of peptides derived from protein hydrolysates (PPH) obtained from Zingiber cassumunar rhizomes (Phlai). To replicate the conditions of gastrointestinal digestion, a combination of pepsin and pancreatin proteolysis was employed to generate these hydrolysates. Subsequently, the hydrolysate underwent fractionation using molecular weight cut-off membranes at 10, 5, 3, and 0.65 kDa. The fraction with a molecular weight less than 0.65 kDa exhibited the highest levels ABTS, DPPH, FRAP, and NO radical scavenging activity. Following this, RP-HPLC was used to further separate the fraction with a molecular weight less than 0.65 kDa into three sub-fractions. Among these, the F5 sub-fraction displayed the most prominent radical-scavenging properties. De novo peptide sequencing via quadrupole-time-of-flight-electron spin induction-mass spectrometry identified a pair of novel peptides: Asp-Gly-Ile-Phe-Val-Leu-Asn-Tyr (DGIFVLNY or DY-8) and Ile-Pro-Thr-Asp-Glu-Lys (IPTDEK or IK-6). Database analysis confirmed various properties, including biological activity, toxicity, hydrophilicity, solubility, and potential allergy concerns. Furthermore, when tested on the human adenocarcinoma colon (Caco-2) cell line, two synthetic peptides demonstrated cellular antioxidant activity in a concentration-dependent manner. These peptides were also assessed using the FITC Annexin V apoptosis detection kit with PI, confirming the induction of apoptosis. Notably, the DY-8 peptide induced apoptosis, upregulated mRNA levels of caspase-3, -8, and -9, and downregulated Bcl-2, as confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Western blot analysis indicated increased pro-apoptotic Bax expression and decreased anti-apoptotic Bcl-2 expression in Caco-2 cells exposed to the DY-8 peptide. Molecular docking analysis revealed that the DY-8 peptide exhibited binding affinity with Bcl-2, Bcl-xL, and Mcl-1, suggesting potential utility in combating colon cancer as functional food ingredients.
Collapse
Affiliation(s)
- Kitjasit Promsut
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Papassara Sangtanoo
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Piroonporn Srimongkol
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Tanatorn Saisavoey
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Songchan Puthong
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Anumart Buakeaw
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, Thailand
| | - Aphichart Karnchanatat
- Center of Excellence in Bioconversion and Bioseparation for Platform Chemical Production, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
2
|
Kanwate BW, Karkal SS, Kudre TG. Impact of antioxidant potential of rohu ( Labeo rohita) swim bladder gelatin hydrolysate on oxidative stability, textural and sensory properties of fish sausage enriched with polyunsaturated fatty acids. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1083-1093. [PMID: 38562593 PMCID: PMC10981647 DOI: 10.1007/s13197-023-05901-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024]
Abstract
The impact of rohu swim bladder gelatin hydrolysate (SBGH) at different levels on textural, sensory, oxidative, and microbial properties of polyunsaturated fatty acids enriched rohu fish cooked sausages (PUFA-RFS) were investigated in the current study. SBGH addition enhanced the lightness values of PUFA-RFS compared to both control sausages (without SBGH and with butylated hydroxyanisole (BHA) (P > 0.05). PUFA-RFS added with 3% SBGH exhibited higher hardness, cohesiveness, and gumminess throughout the storage duration at both 4 °C and -20 °C temperatures when compared to other sausages counterparts. PUFA-RFS added with SBGH displayed lower PV, TBARS, and total microbial counts than the control sausages. Furthermore, PV, TBARS, and total microbial count values of sausage decreased with an increase in SBGH level, indicating retardation in lipid oxidation and microbial growth by SBGH in a dose-depended manner. Nevertheless, sausage added with 3% SBGH had higher overall acceptability than other sausage counterparts. Therefore, SBGH could retard lipid oxidation and improves textural properties of PUFA-enriched fish sausage.
Collapse
Affiliation(s)
- Balaji Wamanrao Kanwate
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sandesh Suresh Karkal
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
| | - Tanaji G. Kudre
- Meat and Marine Sciences Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
3
|
de la Fuente B, Aspevik T, Barba FJ, Kousoulaki K, Berrada H. Mineral Bioaccessibility and Antioxidant Capacity of Protein Hydrolysates from Salmon ( Salmo salar) and Mackerel ( Scomber scombrus) Backbones and Heads. Mar Drugs 2023; 21:md21050294. [PMID: 37233488 DOI: 10.3390/md21050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Information on the bioaccessibility of minerals is essential to consider a food ingredient as a potential mineral fortifier. In this study, the mineral bioaccessibility of protein hydrolysates from salmon (Salmo salar) and mackerel (Scomber scombrus) backbones and heads was evaluated. For this purpose, the hydrolysates were submitted to simulated gastrointestinal digestion (INFOGEST method), and the mineral content was analyzed before and after the digestive process. Ca, Mg, P, Fe, Zn, and Se were then determined using an inductively coupled plasma spectrometer mass detector (ICP-MS). The highest bioaccessibility of minerals was found in salmon and mackerel head hydrolysates for Fe (≥100%), followed by Se in salmon backbone hydrolysates (95%). The antioxidant capacity of all protein hydrolysate samples, which was measured by Trolox Equivalent Antioxidant Capacity (TEAC), increased (10-46%) after in vitro digestion. The heavy metals As, Hg, Cd, and Pb were determined (ICP-MS) in the raw hydrolysates to confirm the harmlessness of these products. Except for Cd in mackerel hydrolysates, all toxic elements were below the legislation levels for fish commodities. These results suggest the possibility of using protein hydrolysates from salmon and mackerel backbones and heads for food mineral fortification, as well as the need to verify their safety.
Collapse
Affiliation(s)
- Beatriz de la Fuente
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés, 46100 València, Spain
| | - Tone Aspevik
- Department of Nutrition and Feed Technology, Nofima, 5141 Fyllingsdalen, Norway
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés, 46100 València, Spain
| | - Katerina Kousoulaki
- Department of Nutrition and Feed Technology, Nofima, 5141 Fyllingsdalen, Norway
| | - Houda Berrada
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda Vicent Andrés Estellés, 46100 València, Spain
| |
Collapse
|
4
|
Soriano-Romaní L, Nieto JA, García-Benlloch S. Immunomodulatory role of edible bone collagen peptides on macrophage and lymphocyte cell cultures. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2098936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Juan Antonio Nieto
- AINIA, Parque Tecnológico de Valencia, Paterna (Valencia), Spain
- Research Group in Bioactivity and Immunological Nutrition (BIOINUT), International University of Valencia, Valencia, Spain
| | | |
Collapse
|
5
|
Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022; 11:1823. [PMID: 35804638 PMCID: PMC9265340 DOI: 10.3390/foods11131823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Bioactive peptides (BPs) derived from animal and plant proteins are important food functional ingredients with many promising health-promoting properties. In the food industry, enzymatic hydrolysis is the most common technique employed for the liberation of BPs from proteins in which conventional heat treatment is used as pre-treatment to enhance hydrolytic action. In recent years, application of non-thermal food processing technologies such as ultrasound (US), high-pressure processing (HPP), and pulsed electric field (PEF) as pre-treatment methods has gained considerable research attention owing to the enhancement in yield and bioactivity of resulting peptides. This review provides an overview of bioactivities of peptides obtained from animal and plant proteins and an insight into the impact of US, HPP, and PEF as non-thermal treatment prior to enzymolysis on the generation of food-derived BPs and resulting bioactivities. US, HPP, and PEF were reported to improve antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, and antidiabetic properties of the food-derived BPs. The primary modes of action are due to conformational changes of food proteins caused by US, HPP, and PEF, improving the susceptibility of proteins to protease cleavage and subsequent proteolysis. However, the use of other non-thermal techniques such as cold plasma, radiofrequency electric field, dense phase carbon dioxide, and oscillating magnetic fields has not been examined in the generation of BPs from food proteins.
Collapse
Affiliation(s)
- Gbemisola J. Fadimu
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Thao T. Le
- Department of Food and Microbiology, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tuyen Truong
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| |
Collapse
|
6
|
Can Karaca A, Nickerson M, Caggia C, Randazzo CL, Balange AK, Carrillo C, Gallego M, Sharifi-Rad J, Kamiloglu S, Capanoglu E. Nutritional and Functional Properties of Novel Protein Sources. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Michael Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Cinzia L. Randazzo
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Catania, Italy
- ProBioEtna srl, Spin off of Univesity of Catania, Catania, Italy
| | - Amjad K. Balange
- Technology, ICAR-Central Institute of Fisheries EducationDepartment of Post-Harvest, Mumbai, India
| | - Celia Carrillo
- Bromatología, Facultad de Ciencias, Universidad de BurgosÁrea de Nutrición y , Burgos, Spain
| | - Marta Gallego
- Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia, Spain
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Senem Kamiloglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa, Turkey
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, Bursa, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
7
|
Remme JF, Tveit GM, Bondø M, Slizyte R, Ólafsdóttir A, Jónsdóttir R, Geirsdóttir M, Carvajal AK. Valorisation of Frozen Cod ( Gadus morhua) Heads, Captured by Trawl and Longline by the Oceanic Fleet, by Enzymatic Hydrolysis. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2022. [DOI: 10.1080/10498850.2022.2060055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Guro Møen Tveit
- Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Morten Bondø
- Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Rasa Slizyte
- Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | | | | | | | | |
Collapse
|
8
|
Encapsulation of Salmon Peptides in Marine Liposomes: Physico-Chemical Properties, Antiradical Activities and Biocompatibility Assays. Mar Drugs 2022; 20:md20040249. [PMID: 35447922 PMCID: PMC9029219 DOI: 10.3390/md20040249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Salmon byproducts (Salmo salar) generated by the food chain represent a source of long-chain polyunsaturated fatty acids (eicosapentaenoic acid (EPA): 20:5n-3; docosahexaenoic acid (DHA): 22:6n-3) and peptides that can be used as supplements in food for nutraceutical or health applications, such as in the prevention of certain pathologies (e.g., Alzheimer’s and cardiovascular diseases). The extraction of polar lipids naturally rich in PUFAs by enzymatic processes without organic solvent (controlled by pH-Stat method), coupled with the production of 1 kDa salmon peptides by membrane filtration, allowed the formulation of nanocarriers. The physicochemical properties of the nanoliposomes (size ranging from 120 to 140 nm, PDI of 0.27, zeta potential between −32 and −46 mV and encapsulation efficiency) were measured, and the bioactivity of salmon hydrolysate peptides was assessed (antioxidant and antiradical activity: ABTS, ORAC, DPPH; iron metal chelation). Salmon peptides exhibited good angiotensin-conversion-enzyme (ACE) inhibition activity, with an IC50 value of 413.43 ± 13.12 µg/mL. Cytotoxicity, metabolic activity and proliferation experiments demonstrated the harmlessness of the nanostructures in these experimental conditions.
Collapse
|
9
|
Soliman AM, Teoh SL, Das S. Fish Gelatin: Current Nutritional, Medicinal, Tissue Repair Applications and Carrier of Drug Delivery. Curr Pharm Des 2022; 28:1019-1030. [PMID: 35088658 DOI: 10.2174/1381612828666220128103725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
Gelatin is obtained via partial denaturation of collagen and is extensively used in various industries. The majority of gelatin utilized globally is derived from a mammalian source. Several health and religious concerns associated with porcine/bovine gelatin were reported. Therefore, gelatin from a marine source is widely being investigated for its efficiency and utilization in a variety of applications as a potential substitute for porcine/bovine gelatin. Although fish gelatin is less durable and possesses lower melting and gelling temperatures compared to mammal-derived gelatin, various modifications are being reported to promote its rheological and functional properties to be efficiently employed. The present review describes in detail the current innovative applications of fish gelatin involving the food industry, drug delivery and possible therapeutic applications. Gelatin bioactive molecules may be utilized as carriers for drug delivery. Due to its versatility, gelatin can be used in different carrier systems, such as microparticles, nanoparticles, fibers and hydrogels. The present review also provides a perspective on the other potential pharmaceutical applications of fish gelatin, such as tissue regeneration, antioxidant supplementation, antihypertensive and anticancer treatments.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
| |
Collapse
|
10
|
Abachi S, Pilon G, Marette A, Bazinet L, Beaulieu L. Immunomodulatory effects of fish peptides on cardiometabolic syndrome associated risk factors: A review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2014861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Soheila Abachi
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Quebec Heart and Lung Institute, Quebec, Quebec, Canada
| | - Laurent Bazinet
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, Quebec, Canada
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Quebec, Quebec, Canada
| |
Collapse
|
11
|
Hydrolyzed collagen from defatted sea bass skin and its conjugate with epigallocatechin gallate: In vitro antioxidant, anti-inflammatory, wound-healing and anti-obesity activities. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Bio/multi-functional peptides derived from fish gelatin hydrolysates: Technological and functional properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Magtaan JK, Fitzpatrick B, Murphy R. Elucidating the Biological Activity of Fish-Derived Collagen and Gelatine Hydrolysates using Animal Cell Culture - A Review. Curr Pharm Des 2021; 27:1365-1381. [PMID: 33302859 DOI: 10.2174/1381612826666201210112119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
A large percentage of a fish's weight is generally discarded during fish processing. Reducing the waste products of marine origin is a subject of great interest within the scientific community. Pelagic byproducts, such as the structural protein collagen, which can be generated during the processing of fish, have been proposed as an alternative to terrestrial, mammalian sources due to advantages including high availability and low risk of zoonotic disease transmission. Gelatine has multiple possible applications, ranging from nutraceutical applications to cosmetics and has the advantage of being generally regarded as safe. In this multidisciplinary review, the chemistry of gelatine and its parent protein collagen, the chemical reactions to generate their hydrolysates, and studies on their biological activities using animal cell culture are discussed.
Collapse
Affiliation(s)
- Jordan Kevin Magtaan
- School of Health & Human Performance, Dublin City University, Glasnevin, Dublin 9, Ireland
| | | | - Ronan Murphy
- School of Health & Human Performance, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
14
|
Impact of food-derived bioactive peptides on gut function and health. Food Res Int 2021; 147:110485. [PMID: 34399481 DOI: 10.1016/j.foodres.2021.110485] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract (GIT) is the largest interface between our body and the environment. It is an organ system extending from the mouth to the anus and functions for food intake, digestion, transport and absorption of nutrients, meanwhile providing protection from environmental factors, like toxins, antigens, and pathogens. Diet is one of the leading factors modulating the function of the GIT. Bioactive peptides presenting naturally in food or derived from food proteins during digestion or processing have been revealed multifunctional in diverse biological processes, including maintaining gut health and function. This review summarizes the available evidence regarding the effects of food-derived bioactive peptides on gut function and health. Findings and insights from studies based on in vitro and animal models are discussed. The gastrointestinal mucosa maintains a delicate balance between immune tolerance to nutrients and harmful components, which is crucial for the digestive system's normal functions. Dietary bioactive peptides positively impact gastrointestinal homeostasis by modulating the barrier function, immune responses, and gut microbiota. However, there is limited clinical evidence on the safety and efficacy of bioactive peptides, much less on the applications of dietary peptides for the treatment or prevention of diseases related to the GIT. Further study is warranted to establish the applications of bioactive peptides in regulating gut health and function.
Collapse
|
15
|
Chotphruethipong L, Binlateh T, Hutamekalin P, Sukketsiri W, Aluko RE, Benjakul S. In vitro antioxidant and wound-healing activities of hydrolyzed collagen from defatted Asian sea bass skin as influenced by different enzyme types and hydrolysis processes. RSC Adv 2021; 11:18144-18151. [PMID: 35480907 PMCID: PMC9033432 DOI: 10.1039/d1ra03131g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 01/06/2023] Open
Abstract
Hydrolyzed collagen (HC) from defatted Asian sea bass skin was prepared by different enzymatic hydrolysis processes. For one-enzyme hydrolysis, papain (0.3 unit per g dry matter, DM) at 40 °C for 90 min or Alcalase (0.2 or 0.3 unit per g DM) at 50 °C for 90 min were used. The two-enzyme hydrolysis was accomplished with papain at 0.3 unit per g DM (P0.3), followed by Alcalase hydrolysis at 0.2 or 0.3 units per g DM (A0.2 or A0.3, respectively). HC prepared using the P0.3 + A0.3 process showed higher peptide yield, recovery and imino acid content in addition to stronger ABTS, DPPH radical scavenging activities and ferric reducing antioxidant power than other hydrolysis processes. HC obtained from the P0.3 + A0.3 process (at 125-500 μg mL-1) induced MRC-5 fibroblast proliferation and augmented migration and lamellipodia formation in the cells. Peptides with average molecular weight of 750 Da exhibited the highest ABTS radical scavenging activity while the 4652 Da fraction had the lowest. Thus, HC can be considered as a suitable ingredient to formulate functional products for skin nourishment and wound healing.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Thunwa Binlateh
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba Winnipeg Manitoba R3T 2N2 Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
16
|
Toninello P, Montanari A, Bassetto F, Vindigni V, Paoli A. Nutritional Support for Bariatric Surgery Patients: The Skin beyond the Fat. Nutrients 2021; 13:1565. [PMID: 34066564 PMCID: PMC8148584 DOI: 10.3390/nu13051565] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
Body contouring surgery after the massive weight loss due to bariatric surgery deals with different kinds of complications. The aim of this review is to analyze the role that some nutrients may play in tissue healing after surgery, thus helping plastic surgeons to improve the aesthetic and health outcomes in massive weight loss patients under a multidisciplinary approach. As a matter of fact, preoperative nutritional deficiencies have been shown for vitamins and minerals in a large percentage of post-bariatric patients. Preoperative deficiencies mainly concern iron, zinc, selenium, and vitamins (both fat-soluble and water-soluble), but also total protein. During the postoperative period, these problems may increase because of the patients' very low intake of vitamins and minerals after bariatric surgery (below 50% of the recommended dietary allowance) and the patients' low compliance with the suggested multivitamin supplementation (approximately 60%). In the postoperative period, more attention should be given to nutritional aspects in regard to the length of absorptive area and the percentage of weight loss.
Collapse
Affiliation(s)
- Paolo Toninello
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy; (P.T.); (A.M.); (F.B.); (V.V.)
| | - Alvise Montanari
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy; (P.T.); (A.M.); (F.B.); (V.V.)
| | - Franco Bassetto
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy; (P.T.); (A.M.); (F.B.); (V.V.)
| | - Vincenzo Vindigni
- Plastic and Reconstructive Surgery Unit, Department of Neurosciences, University of Padua, 35122 Padua, Italy; (P.T.); (A.M.); (F.B.); (V.V.)
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35122 Padua, Italy
| |
Collapse
|
17
|
Yu Y, Hu Q, Liu J, Su A, Xu H, Li X, Huang Q, Zhou J, Mariga AM, Yang W. Isolation, purification and identification of immunologically active peptides from Hericium erinaceus. Food Chem Toxicol 2021; 151:112111. [PMID: 33716052 DOI: 10.1016/j.fct.2021.112111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/18/2021] [Accepted: 03/07/2021] [Indexed: 12/21/2022]
Abstract
Biologically active peptides released by proteins are important in regulating immunity. The purpose of this study was to isolate and purify an immunologically active peptide from Hericium erinaceus (H. erinaceus) and to explore its effect on cytokine secretion and differentiation of macrophages. An active peptide with an amino acid sequence, Lys-Ser-Pro-Leu-Tyr (KSPLY) was obtained from H. erinaceus protein by ultrafiltration combined with multistage chromatography separation and identification technology. Subsequently, it was confirmed that the synthetic peptide KSPLY had a good immunomodulatory activity at a concentration of 100 μmol/L and could promote the secretion of NO, IL-1β, IL-6 and TNF-α by macrophages. The effects of KSPLY on M1 macrophages and M2 macrophages were also studied. Results showed that KSPLY inhibited the secretion of NO and IL-6 by M1 macrophages and promoted the tendency of M2 macrophages to transform to M1 macrophages. Therefore, it can be concluded that KSPLY is an effective immunomodulatory peptide that may be beneficial in cancer treatment and human health improvement.
Collapse
Affiliation(s)
- Yihan Yu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Jianhui Liu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Hui Xu
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
| | - Qingrong Huang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ, 08901, United States
| | - Jinlan Zhou
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science, Meru University of Science Technology, P.O. Box, 972-60400, Meru, Kenya
| | - Wenjian Yang
- Key Laboratory of Grains and Oils Quality Control and Processing, Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
18
|
Coppola D, Lauritano C, Palma Esposito F, Riccio G, Rizzo C, de Pascale D. Fish Waste: From Problem to Valuable Resource. Mar Drugs 2021; 19:116. [PMID: 33669858 PMCID: PMC7923225 DOI: 10.3390/md19020116] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Carmen Rizzo
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (D.C.); (C.L.); (F.P.E.); (G.R.); (C.R.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
19
|
Chotphruethipong L, Sukketsiri W, Aluko RE, Sae-leaw T, Benjakul S. Effect of hydrolyzed collagen from defatted Asian sea bass ( Lates calcarifer) skin on fibroblast proliferation, migration and antioxidant activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:541-551. [PMID: 33568847 PMCID: PMC7847840 DOI: 10.1007/s13197-020-04566-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 01/11/2023]
Abstract
Hydrolyzed collagen from the defatted Asian sea bass (Lates calcarifer) (Asbs-HC) had high hydrophobic amino acids and imino acids. When fibroblast cell was treated with Asbs-HC, there was no cytotoxicity at any concentrations (25-1000 µg/mL). Asbs-HC at 1000 µg/mL exhibited the highest cell proliferation and cell migration (p < 0.05), indicating wound healing ability. Antioxidative activities of Asbs-HC at different concentrations were determined. ABTS radical scavenging activity (ABTS-RSA) and oxygen radical absorbance capacity (ORAC) increased when Asbs-HC levels augmented up to 1 mg/mL (p < 0.05). Decreased activities in scavenging DPPH radical and chelating metal were found at higher levels of Asbs-HC (0.5 and 1 mg/mL) (p < 0.05). Molecular weight (MW) of peptides in Asbs-HC ranged from 406 to 16,120 Da. Peptide containing MW of 406 Da rendered the highest scavenging activity towards ABTS radical. Thus, Asbs-HC could be applied as antioxidant, skin nourishment and wound healing agents for food/drink fortification.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | - Wanida Sukketsiri
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, 15, Hat Yai, Songkhla 90110 Thailand
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2 Canada
| | - Thanasak Sae-leaw
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110 Thailand
| |
Collapse
|
20
|
Ucak I, Afreen M, Montesano D, Carrillo C, Tomasevic I, Simal-Gandara J, Barba FJ. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar Drugs 2021; 19:71. [PMID: 33572713 PMCID: PMC7912481 DOI: 10.3390/md19020071] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022] Open
Abstract
In fish processing, a great amount of side streams, including skin, bones, heads and viscera, is wasted or downgraded as feed on a daily basis. These side streams are rich sources of bioactive nitrogenous compounds and protein, which can be converted into peptides through enzymatic hydrolysis as well as bacterial fermentation. Peptides are short or long chains of amino acids differing in structure and molecular weight. They can be considered as biologically active as they can contribute to physiological functions in organisms with applications in the food and pharmaceutical industries. In the food industry, such bioactive peptides can be used as preservatives or antioxidants to prevent food spoilage. Furthermore, peptides contain several functional qualities that can be exploited as tools in modifying food ingredient solubility, water-holding and fat-binding capacity and gel formation. In the pharmaceutical industry, peptides can be used as antioxidants, but also as antihypertensive, anticoagulant and immunomodulatory compounds, amongst other functions. On the basis of their properties, peptides can thus be used in the development of functional foods and nutraceuticals. This review focuses on the bioactive peptides derived from seafood side streams and discusses their technological properties, biological activities and applications.
Collapse
Affiliation(s)
- Ilknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Maliha Afreen
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, 51000 Nigde, Turkey;
| | - Domenico Montesano
- Department of Pharmaceutical Sciences, Section of Food Sciences and Nutrition, University of Perugia, Via S. Costanzo 1, 06126 Perugia, Italy;
| | - Celia Carrillo
- Nutrition and Food Science, Faculty of Science, Universidad de Burgos, 09001 Burgos, Spain;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, 46100 Burjassot, Spain
| |
Collapse
|
21
|
Quintal-Bojórquez N, Segura-Campos MR. Bioactive Peptides as Therapeutic Adjuvants for Cancer. Nutr Cancer 2020; 73:1309-1321. [DOI: 10.1080/01635581.2020.1813316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Shaik MI, Sarbon NM. A Review on Purification and Characterization of Anti-proliferative Peptides Derived from Fish Protein Hydrolysate. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1812634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Norizah Mhd Sarbon
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| |
Collapse
|
23
|
Wang J, Zhang B, Lu W, Liu J, Zhang W, Wang Y, Ma M, Cao X, Guo Y. Cell Proliferation Stimulation Ability and Osteogenic Activity of Low Molecular Weight Peptides Derived from Bovine Gelatin Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7630-7640. [PMID: 32633950 DOI: 10.1021/acs.jafc.0c02717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been recognized that collagen peptides of MW 878 Da (CP1) promote osteoblast proliferation and mineralization. The objective of this study is to identify the peptides responsible for proliferation of osteoblast growth, enhancement of ALP (alkaline phosphatase) activity in osteoblasts and promotion of osteoblast mineralization. To this end, the CP1 were fractioned by a series of chromatography procedures, and 51 peptides from the fraction possessing the most powerful cell proliferation ability were identified by LC-MS-MS. The peptides, GPAGPSGPAGK and GPPGSPGPR, were validated on a simultaneous basis as possessing enhanced bioactivity-inducing properties. In particular, the ALP activity of the cells treated with these two peptides was almost twice that of the control cells. Hydrogen bonds were formed, and the hydrophobic interactions with the EGFR (epidermal growth factor receptor) might be responsible for the osteoblast proliferation activity. On this basis, the two peptides might be potential lead compounds against osteoporosis and osteoarthritis.
Collapse
Affiliation(s)
- Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Bing Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junli Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weijie Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, China
| | - Yihu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaofeng Cao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
24
|
Jakubczyk A, Karaś M, Rybczyńska-Tkaczyk K, Zielińska E, Zieliński D. Current Trends of Bioactive Peptides-New Sources and Therapeutic Effect. Foods 2020; 9:E846. [PMID: 32610520 PMCID: PMC7404774 DOI: 10.3390/foods9070846] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Generally, bioactive peptides are natural compounds of food or part of protein that are inactive in the precursor molecule. However, they may be active after hydrolysis and can be transported to the active site. Biologically active peptides can also be synthesized chemically and characterized. Peptides have many properties, including antihypertensive, antioxidant, antimicrobial, anticoagulant, and chelating effects. They are also responsible for the taste of food or for the inhibition of enzymes involved in the development of diseases. The scientific literature has described many peptides with bioactive properties obtained from different sources. Information about the structure, origin, and properties of peptides can also be found in many databases. This review will describe peptides inhibiting the development of current diseases, peptides with antimicrobial properties, and new alternative sources of peptides based on the current knowledge and documentation of their bioactivity. All these issues are part of modern research on peptides and their use in current health or technological problems in food production.
Collapse
Affiliation(s)
- Anna Jakubczyk
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Monika Karaś
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences in Lublin, 20-069 Lublin, Poland;
| | - Ewelina Zielińska
- Department of Analysis and Evaluation of Food Quality, University of Life Sciences in Lublin, 20-704 Lublin, Poland;
| | - Damian Zieliński
- Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| |
Collapse
|
25
|
Al Khawli F, Martí-Quijal FJ, Ferrer E, Ruiz MJ, Berrada H, Gavahian M, Barba FJ, de la Fuente B. Aquaculture and its by-products as a source of nutrients and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 92:1-33. [PMID: 32402442 DOI: 10.1016/bs.afnr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Underutilized marine resources (e.g., algae, fish, and shellfish processing by-products), as sustainable alternatives to livestock protein and interesting sources of bioactive compounds, have attracted the attention of the researchers. Aquatic products processing industries are growing globally and producing huge amounts of by-products that often discarded as waste. However, recent studies pointed out that marine waste contains several valuable components including high-quality proteins, lipids, minerals, vitamins, enzymes, and bioactive compounds that can be used against cancer and some cardiovascular disorders. Besides, previously conducted studies on algae have shown the presence of some unique biologically active compounds and valuable proteins. Hence, this chapter points out recent advances in this area of research and discusses the importance of aquaculture and fish processing by-products as alternative sources of proteins and bioactive compounds.
Collapse
Affiliation(s)
- Fadila Al Khawli
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Francisco J Martí-Quijal
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain.
| | - Emilia Ferrer
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - María-José Ruiz
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Houda Berrada
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC.
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| | - Beatriz de la Fuente
- Nutrition, Food Science and Toxicology Department, Faculty of Pharmacy, Universitat de València, Burjassot, València, Spain
| |
Collapse
|
26
|
Aquaculture and by-products: Challenges and opportunities in the use of alternative protein sources and bioactive compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 92:127-185. [PMID: 32402443 DOI: 10.1016/bs.afnr.2019.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a growing concern about chronic diseases such as obesity, diabetes, hypertension, hypercholesterolemia, cancer and cardiovascular diseases resulting from profound changes in the western lifestyle. Aquaculture by-products are generated in large quantities and they can be profitably recycled through their bioactive compounds used for health or food supplements. Improving waste utilization in the field of aquaculture is essential for a sustainable industry to prevent or minimize the environmental impact. In this sense fish by-products are a great source of protein and omega-3 polyunsaturated fatty acids which are particularly studied on Atlantic salmon or rainbow trout. Fish protein hydrolysate (FPH) obtained from chemical, enzymatical and microbial hydrolysis of processing by-products are being used as a source of amino acids and peptides with high digestibility, fast absorption and important biological activities. Omega-3 polyunsaturated fatty acids, eicosapentaenoic (EPA) and docosahexaenoic (DHA) from fish discards have been reported to decrease postprandial triacylglycerol levels, reduction of blood pressure, platelet aggregation and the inflammatory response. Crustacean by-products can also be used to produce chitosan with antioxidant and antimicrobial activity for food and pharmaceutical industries and carotenoids with important biological activity. Seaweeds are rich in bioactive compounds such as alginate, carrageenan, agar, carotenoids and polyphenols with different biological activities such as antioxidant, anticancer, antidiabetic, antimicrobial or anti-inflammatory activity. Finally, regarding harvest microalgae, during the past decades, they were mainly used in the healthy food market, with >75% of the annual microalgal biomass production, used for the manufacture of powders, tablets, capsules or pills. We will report and discuss the present and future role of aquaculture by-products as sources of biomolecules for the design and development of functional foods/beverages. This chapter will focus on the main bioactive compounds from aquaculture by-products as functional compounds in food and their applications in biomedicine for the prevention and treatment of diseases.
Collapse
|
27
|
Benjakul S, Sae‐leaw T, Simpson BK. Byproducts from Fish Harvesting and Processing. BYPRODUCTS FROM AGRICULTURE AND FISHERIES 2019:179-217. [DOI: 10.1002/9781119383956.ch9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Immunomodulatory effects of collagen hydrolysates from yak (Bos grunniens) bone on cyclophosphamide-induced immunosuppression in BALB/c mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103420] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
29
|
Zhang Z, Hu X, Lin L, Ding G, Yu F. Immunomodulatory Activity of Low Molecular-Weight Peptides from Nibea japonica in RAW264.7 Cells via NF-κB Pathway. Mar Drugs 2019; 17:E404. [PMID: 31288466 PMCID: PMC6669675 DOI: 10.3390/md17070404] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/28/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022] Open
Abstract
In this study, a low molecular-weight (Mw) peptide named NJP (<1 kDa), was purified from a protein hydrolysate of Nibea japonica by ultrafiltration, and its immunomodulatory effect on RAW264.7 cells was evaluated. The lactate dehydrogenase (LDH) and MTT assays were performed to explore the cytotoxicity of NJP. The results showed that NJP promoted cell proliferation and had no significant toxic effects on RAW264.7 cells. Moreover, the cells formed multiple pseudopodia indicating that they were in activated state. Further tests showed that NJP significantly promoted phagocytic capacity, and the secretion of proinflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). It also increased the synthesis of nitric oxide (NO) by upregulating inducible nitric oxide synthase (iNOS) protein level. Flow cytometry revealed that NJP promoted cell cycle progression and increased the percentage of cells in G0/G1 phase. NJP promoted IκBα degradation, p65 and nuclear factor (NF)-κB activation and translocation by up-regulating IKKα/β protein expression. In conclusion, these results indicated that NJP exerts immunomodulatory effects on RAW264.7 cells through the NF-κB signaling pathway. Therefore, NJP can be incorporated in the production of functional foods or nutraceuticals.
Collapse
Affiliation(s)
- Zhuangwei Zhang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xuyang Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lin Lin
- ZhouShan Academy of Agriculture and Forestry Sciences, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Fangmiao Yu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
30
|
Chotphruethipong L, Aluko RE, Benjakul S. Hydrolyzed collagen from porcine lipase-defatted seabass skin: Antioxidant, fibroblast cell proliferation, and collagen production activities. J Food Biochem 2019; 43:e12825. [PMID: 31353514 DOI: 10.1111/jfbc.12825] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/24/2019] [Accepted: 02/18/2019] [Indexed: 12/30/2022]
Abstract
Defatting of seabass skins using porcine pancreas lipase (PPL) at 25 or 50 units/g dry matter) for 1-3 hr at 30ºC was investigated. Treatment of seabass skin with PPL (25 unit/g dry matter) for 3 hr removed 83.81% lipids when compared to 57.27% using isopropanol. Hydrolysis of PPL-treated skin by papain (0.3 unit/g dry matter) (PPL-papain-3 process) at 40ºC for 90 min provided hydrolyzed collagen (HC) with higher yield, α-amino group content, ferric-reducing antioxidant power, and metal chelating activity than other treatments (p < 0.05). There was no difference in fishy odor between HC from PPL-papain-2 and PPL-papain-3 processes (p > 0.05). All the HC (50-250 µg/ml) samples stimulated L929 fibroblast cell proliferation and also induced collagen production in a dose-dependent manner. Also, all HC contained peptides with molecular weight of 406-11,860 Da. Gly and imino acids were dominant amino acids in HC prepared with PPL-papain-3 process. PRACTICAL APPLICATIONS: Seabass skin is a potential raw material for the production of hydrolyzed collagen (HC). However, seabass skin contains a large amount of lipids, including polyunsaturated fatty acids. These unsaturated lipids are oxidized during processing, particularly during hydrolysis at high temperature. This leads to the development of undesirable odor, especially fishy odor. Therefore, seabass skin defatting is an important step for improving the quality of the resulting HC. The use of lipase is an alternative method that can be used to remove lipids in skins without using solvents. HC from defatted skins will contain bioactive peptides and therefore, can be used as a food supplement or for skin nourishment.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Hat Yai, Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Soottawat Benjakul
- Faculty of Agro-Industry, Department of Food Technology, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
31
|
Physiochemical and functional properties of gelatin obtained from tuna, frog and chicken skins. Food Chem 2019; 287:273-279. [PMID: 30857699 DOI: 10.1016/j.foodchem.2019.02.088] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 11/24/2022]
Abstract
Growing demand for gelatin has increased interest in using alternative raw materials. In this study, different animal skins; namely frog, tuna and chicken skins; were utilized in gelatin extraction by previously optimized extraction procedures. Quality characteristics and functional properties of the resultant gelatins were comparatively investigated. Frog skin gelatin had the highest protein content with 77.8% while the highest hydroxyproline content was found in chicken skin gelatin with 6.4%. Frog skin gelatin showed a significantly higher melting point (42.7 °C) compared to tuna and chicken gelatins. Bloom value was also significantly higher in frog skin gelatin compared to that of chicken and tuna skin gelatins. Results showed that processing waste like skins of different animals may present opportunities in gelatin production as high quality alternatives. This study may help the industry by providing one hand comparable data over potentially significant sources.
Collapse
|
32
|
Wu J, Liao W, Zhang J, Chen W. Microwave-assisted reaction of gelatin with tannic acid: non-thermal effect on the crosslinking process. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1550394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jiacheng Wu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Wei Liao
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Jinwei Zhang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
| | - Wuyong Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Huang CY, Tsai YH, Hong YH, Hsieh SL, Huang RH. Characterization and Antioxidant and Angiotensin I-Converting Enzyme (ACE)-Inhibitory Activities of Gelatin Hydrolysates Prepared from Extrusion-Pretreated Milkfish ( Chanos chanos) Scale. Mar Drugs 2018; 16:E346. [PMID: 30248998 PMCID: PMC6213483 DOI: 10.3390/md16100346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/09/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
Fish gelatin hydrolysates have been shown to possess various biological activities due to their unique Gly-Pro-Y and Gly-X-Hyp sequences. In the current study, fish gelatin was extracted from non-extruded milkfish scale (FSG1) or extrusion-pretreated milkfish scale (FSG2); extracted gelatins were hydrolyzed with different combinations of Flavourzyme and Alcalase to give four different hydrolysates, namely: FSGH1 (FSG1 hydrolyzed with Flavourzyme), FSGH2 (FSG1 hydrolyzed with Alcalase + Flavourzyme), FSGH3 (FSG2 hydrolyzed with Flavourzyme), and FSGH4 (FSG2 hydrolyzed with Alcalase + Flavourzyme). The extrusion-pretreatment process enhanced the extraction yield of gelatin from fish scale. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) analyses showed the extracts FSG1 and FSG2 possessed characteristics of gelatin. Moreover, the physicochemical characteristics of FSGH1⁻FSGH4 were examined by analyses of their degree of hydrolysis, amino acid composition, UV spectrum, FTIR spectrum, molecular weight, and RP-HPLC profile. Additional biological functional analyses showed that all of the studied gelatin hydrolysates FSGH1⁻FSGH4 possessed antioxidant activity dose-dependently as revealed by DPPH scavenging, ABTS scavenging, and reducing power analyses. In addition, FSGH2 and FSGH4 showed higher angiotensin-I-converting enzyme (ACE)-inhibitory activity as compared to FSGH1 and FSGH3. Taken together, FSGH2 and FSGH4 showed high antioxidant activity and potent anti-ACE activity. Due to the potential antioxidant and antihypertensive properties of FSGH2 and FSGH4, further research is needed to explore their possible use as natural supplementary raw materials in food and nutraceutical products.
Collapse
Affiliation(s)
- Chun-Yung Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Yung-Hsiang Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University (Yanchao Campus), No. 8, Yida Rd., Jiaosu Village, Yanchao District, Kaohsiung City 82445, Taiwan.
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd., Nanzih District, Kaohsiung City 81157, Taiwan.
| | - Ren-Han Huang
- Department of Nursing, Mackay Medical College, No.46, Sec. 3, Zhongzheng Rd., Sanzhi District, New Taipei City 25245, Taiwan.
| |
Collapse
|
34
|
Olatunde OO, Benjakul S. Natural Preservatives for Extending the Shelf-Life of Seafood: A Revisit. Compr Rev Food Sci Food Saf 2018; 17:1595-1612. [PMID: 33350137 DOI: 10.1111/1541-4337.12390] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/30/2022]
Abstract
Consumer demand for minimally processed seafood that retains its sensory and nutritional properties after handling and storage is increasing. Nevertheless, quality loss in seafood occurs immediately after death, during processing and storage, and is associated with enzymatic, microbiological, and chemical reactions. To maintain the quality, several synthetic additives (preservatives) are promising for preventing the changes in texture and color, development of unpleasant flavor and rancid odor, and loss of nutrients of seafood during storage at low temperature. However, the use of these preservatives has been linked to potential health hazards. In this regard, natural preservatives with excellent antioxidant and antimicrobial properties have been extensively searched and implemented as safe alternatives in seafood processing, with the sole purpose of extending shelf-life. Natural preservatives commonly used include plants extracts, chitosan and chitooligosaccharide, bacteriocins, bioactive peptides, and essential oils, among others. This review provides updated information about the production, mode of action, applications, and limitations of these natural preservatives in seafood preservation.
Collapse
Affiliation(s)
| | - Soottawat Benjakul
- Dept. of Food Technology, Faculty of Agro-Industry, Prince of Songkla Univ., Songkhla, 90112, Thailand
| |
Collapse
|
35
|
Sae-leaw T, Benjakul S. Antioxidant activities of hydrolysed collagen from salmon scale ossein prepared with the aid of ultrasound. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Thanasak Sae-leaw
- Department of Food Technology; Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Soottawat Benjakul
- Department of Food Technology; Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| |
Collapse
|
36
|
Xing L, Liu R, Tang C, Pereira J, Zhou G, Zhang W. The antioxidant activity and transcellular pathway ofAsp-Leu-Glu-Gluin a Caco-2 cell monolayer. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lujuan Xing
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Rui Liu
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Changbo Tang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Jailson Pereira
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MOA; Jiangsu Synergetic Innovation Center of Meat Processing and Quality Control; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
37
|
Chalamaiah M, Yu W, Wu J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem 2018; 245:205-222. [DOI: 10.1016/j.foodchem.2017.10.087] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/25/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
|
38
|
Fu Y, Therkildsen M, Aluko RE, Lametsch R. Exploration of collagen recovered from animal by-products as a precursor of bioactive peptides: Successes and challenges. Crit Rev Food Sci Nutr 2018; 59:2011-2027. [DOI: 10.1080/10408398.2018.1436038] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yu Fu
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Rotimi E. Aluko
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Winnipeg, Canada
| | - René Lametsch
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
39
|
Zhang M, Mu TH. Contribution of different molecular weight fractions to anticancer effect of sweet potato protein hydrolysates by six proteases on HT-29 colon cancer cells. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13625] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture; No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing 100193 China
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Products Processing, Ministry of Agriculture; No. 2 Yuan Ming Yuan West Road, Haidian District, P.O. Box 5109 Beijing 100193 China
| |
Collapse
|
40
|
Mao X, He S, Zhang T, Guo X, Ge Y, Ma C, Zhang X. Isolation and characterization of antiproliferative peptides from Chinese three-striped box turtle (Cuora trifasciata
). Biotechnol Appl Biochem 2017; 64:827-835. [DOI: 10.1002/bab.1548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/02/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Xinliang Mao
- College of Food Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
- Infinitus (China) Company Ltd.; Guangzhou People's Republic of China
| | - Shengjie He
- College of Food Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
| | - Ting Zhang
- Infinitus (China) Company Ltd.; Guangzhou People's Republic of China
| | - Xiaolei Guo
- Infinitus (China) Company Ltd.; Guangzhou People's Republic of China
| | - Yazhong Ge
- Infinitus (China) Company Ltd.; Guangzhou People's Republic of China
| | - Chungwah Ma
- Infinitus (China) Company Ltd.; Guangzhou People's Republic of China
| | - Xuewu Zhang
- College of Food Science and Engineering; South China University of Technology; Guangzhou People's Republic of China
| |
Collapse
|
41
|
O'Sullivan SM, Lafarga T, Hayes M, O'Brien NM. Bioactivity of bovine lung hydrolysates prepared using papain, pepsin, and Alcalase. J Food Biochem 2017. [DOI: 10.1111/jfbc.12406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Tomas Lafarga
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Processed Fruits and Vegetables; Parc Científic i Tecnològic Agroalimentari de Lleida, Edifici Fruitcentre; Lleida 25003, Spain
- Department of Food BioSciences, The Irish Agricultural and Food Development Authority; Teagasc; Dublin Ireland
| | - Maria Hayes
- Department of Food BioSciences, The Irish Agricultural and Food Development Authority; Teagasc; Dublin Ireland
| | - Nora M. O'Brien
- School of Food and Nutritional Sciences; University College Cork; Cork Ireland
| |
Collapse
|
42
|
Sae-Leaw T, Benjakul S. Lipase from liver of seabass (Lates calcarifer): Characteristics and the use for defatting of fish skin. Food Chem 2017; 240:9-15. [PMID: 28946358 DOI: 10.1016/j.foodchem.2017.07.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/26/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Lipase from liver of seabass (Lates calcarifer), with a molecular weight of 60kDa, was purified to homogeneity using ammonium sulfate precipitation and a series of chromatographies, including diethylaminoethyl sepharose (DEAE) and Sephadex G-75 size exclusion columns. The optimal pH and temperature were 8.0 and 50°C, respectively. Purified lipase had Michaelis-Menten constant (Km) and catalytic constant (kcat) of 0.30mM and 2.16s-1, respectively, when p-nitrophenyl palmitate (p-NPP) was used as the substrate. When seabass skin was treated with crude lipase from seabass liver at various levels (0.15 and 0.30units/g dry skin) for 1-3h at 30°C, the skin treated with lipase at 0.30 units/g dry skin for 3h had the highest lipid removal (84.57%) with lower lipid distribution in skin. Efficacy in defatting was higher than when isopropanol was used. Thus, lipase from liver of seabass could be used to remove fat in fish skin.
Collapse
Affiliation(s)
- Thanasak Sae-Leaw
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
43
|
Sae-Leaw T, Karnjanapratum S, O'Callaghan YC, O'Keeffe MB, FitzGerald RJ, O'Brien NM, Benjakul S. Purification and identification of antioxidant peptides from gelatin hydrolysate of seabass skin. J Food Biochem 2016. [DOI: 10.1111/jfbc.12350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Thanasak Sae-Leaw
- Department of Food Technology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | - Supatra Karnjanapratum
- Department of Food Technology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| | | | | | | | - Nora M. O'Brien
- School of Food and Nutritional Sciences; University College Cork; Cork Ireland
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry; Prince of Songkla University; Hat Yai Songkhla 90112 Thailand
| |
Collapse
|