1
|
Li L, Cao X, Huang J, Zhang T, Wu Q, Xiang P, Shen C, Zou L, Li J, Li Q. Effect of Pleurotus eryngii mycelial fermentation on the composition and antioxidant properties of tartary buckwheat. Heliyon 2024; 10:e25980. [PMID: 38404826 PMCID: PMC10884446 DOI: 10.1016/j.heliyon.2024.e25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/14/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
In this study, we investigated the effect of solid-state fermentation of Pleurotus eryngii on the composition and antioxidant activity of Tartary buckwheat (TB). Firstly, the solid-state fermentation of P. eryngii mycelium with buckwheat was carried out, and the fermentation process was explored. The results of the extraction process and method selection experiments showed that the percolation extraction method was superior to the other two methods. The results of extraction rate, active components and antioxidant activity measurements before and after fermentation of TB extract showed that the extraction rate increased about 1.7 times after fermentation. Total flavonoids, rutin and triterpene contents were increased after fermentation compared to control. Meanwhile, LC-MS results showed an increase in the content of the most important substances in the fermented TB extract and the incorporation of new components, such as oleanolic acid, ursolic acid, amino acids, and D-chiral inositol. The fermented TB extract showed stronger antioxidant activity, while the protein and amino acid contents increased by 1.93-fold and 1.94-fold, respectively. This research was the first to use P. eryngii to ferment TB and prepared a lyophilized powder that could be used directly using vacuum freeze-drying technology. Not only the use of solid-state fermentation technology advantages of edible fungi to achieve value-added buckwheat, but also to broaden the scope of TB applications. This study will provide ideas and directions for the development and application of edible mushroom fermentation technology and TB.
Collapse
Affiliation(s)
- Lijiao Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xiaonian Cao
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Jingwei Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Ting Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Qian Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Peng Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Caihong Shen
- Luzhou Laojiao Co. Ltd., Luzhou, 646000, China
- National Engineering Research Center of Solid-State Brewing, Luzhou, 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou, 646000, China
| |
Collapse
|
2
|
Zhang Y, Capanoglu E, Jiao L, Yin L, Liu X, Wang R, Xiao J, Lu B. Coarse cereals modulating chronic low-grade inflammation: review. Crit Rev Food Sci Nutr 2022; 63:9694-9715. [PMID: 35503432 DOI: 10.1080/10408398.2022.2070596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic low-grade inflammation (CLGI) is closely associated with various chronic diseases. Researchers have paid attention to the comprehensive application and development of food materials with potential anti-inflammatory activity. Owing to their abundant nutrients and biological activities, coarse cereals have emerged as an important component of human diet. Increasing evidence has revealed their potential protective effects against CLGI in chronic conditions. However, this property has not been systematically discussed and summarized. In the present work, numerous published reports were reviewed to systematically analyze and summarize the protective effects of coarse cereals and their main active ingredients against CLGI. Their current utilization state was investigated. The future prospects, such as the synergistic effects among the active compounds in coarse cereals and the biomarker signatures of CLGI, were also discussed. Coarse cereals show promise as food diet resources for preventing CLGI in diseased individuals. Their active ingredients, including β-glucan, resistant starch, arabinoxylan, phenolic acids, flavonoids, phytosterols and lignans, function against CLGI through multiple possible intracellular signaling pathways and immunomodulatory effects. Therefore, coarse cereals play a crucial role in the food industry due to their health effects on chronic diseases and are worthy of further development for possible application in modulating chronic inflammation.
Collapse
Affiliation(s)
- Yongzhu Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Linshu Jiao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liqing Yin
- Institute of Agricultural Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China
| | - Xianjin Liu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Baiyi Lu
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Biosystems Engineering and Food Science, Key Laboratory for Quality Evaluation and Health Benefit of Agro-Products of Ministry of Agriculture and Rural Affairs, Key Laboratory for Quality and Safety Risk Assessment of Agro-Products Storage and Preservation of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
De Villa R, Roasa J, Mine Y, Tsao R. Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products. Crit Rev Food Sci Nutr 2021:1-26. [PMID: 34955050 DOI: 10.1080/10408398.2021.2018989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cereal and legume grains and their processing by-products are rich sources of bioactives such as phenolics with considerable health potential, but these bioactives suffer from low bioaccessibility and bioavailability, resulting in limited use. Several studies have demonstrated that solid-state fermentation (SSF) with food-grade microorganisms is effective in releasing bound phenolic compounds in cereal and legume products. In this review, we discuss the effect of SSF on cereal and legume grains and their by-products by examining the role of specific microorganisms, their hydrolytic enzymes, fermentability of agri-food substrates, and the potential health benefits of SSF-enhanced bioactive compounds. SSF with fungi (Aspergillus spp. and Rhizopus spp.), bacteria (Bacillus subtilis and lactic acid bacteria (LAB) spp.) and yeast (Saccharomyces cerevisiae) significantly increased the bioactive phenolics and antioxidant capacities in cereal and legume grains and by-products, mainly through carbohydrate-cleaving enzymes. Increased bioactive phenolic and peptide contents of SSF-bioprocessed cereal and legume grains have been implicated for improved antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic, and angiotensin-converting-enzyme (ACE) inhibitory effects in fermented agri-food products, but these remain as preliminary results. Future research should focus on the microbial mechanisms, suitability of substrates, and the physiological health benefits of SSF-treated grains and by-products.
Collapse
Affiliation(s)
- Ray De Villa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Joy Roasa
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Yoshinori Mine
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research & Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Zou L, Wu D, Ren G, Hu Y, Peng L, Zhao J, Garcia-Perez P, Carpena M, Prieto MA, Cao H, Cheng KW, Wang M, Simal-Gandara J, John OD, Rengasamy KRR, Zhao G, Xiao J. Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat ( Fagopyrum tataricum). Crit Rev Food Sci Nutr 2021; 63:657-673. [PMID: 34278850 DOI: 10.1080/10408398.2021.1952161] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tartary buckwheat belongs to the family Polygonaceae, which is a traditionally edible and medicinal plant. Due to its various bioactive compounds, the consumption of Tartary buckwheat is correlated to a wide range of health benefits, and increasing attention has been paid to its potential as a functional food. This review summarizes the main bioactive compounds and important bioactivities and health benefits of Tartary buckwheat, emphasizing its protective effects on metabolic diseases and relevant molecular mechanisms. Tartary buckwheat contains a wide range of bioactive compounds, such as flavonoids, phenolic acids, triterpenoids, phenylpropanoid glycosides, bioactive polysaccharides, and bioactive proteins and peptides, as well as D-chiro-inositol and its derivatives. Consumption of Tartary buckwheat and Tartary buckwheat-enriched products is linked to multiple health benefits, e.g., antioxidant, anti-inflammatory, antihyperlipidemic, anticancer, antidiabetic, antiobesity, antihypertensive, and hepatoprotective activities. Especially, clinical studies indicate that Tartary buckwheat exhibits remarkable antidiabetic activities. Various tartary buckwheat -based foods presenting major health benefits as fat and blood glucose-lowering agents have been commercialized. Additionally, to address the safety concerns, i.e., allergic reactions, heavy metal and mycotoxin contaminations, the quality control standards for Tartary buckwheat and its products should be drafted and completed in the future.
Collapse
Affiliation(s)
- Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guixing Ren
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Pascual Garcia-Perez
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Maria Carpena
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Miguel A Prieto
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Hui Cao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Ka-Wing Cheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Mingfu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Oliver D John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Polokwane, Sovenga, South Africa
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Leonard W, Zhang P, Ying D, Adhikari B, Fang Z. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnol Adv 2021; 49:107763. [PMID: 33961978 DOI: 10.1016/j.biotechadv.2021.107763] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
Phenolics are a group of compounds derived from plants that have displayed potent biological activities and health-promoting effects. Fermentation is one of the most conventional but still prevalent bioprocessing methods in the food industry, with the potential to increase phenolic content and enhance its nutritive value. This review details the biotransformation of different classes of phenolics (hydroxycinnamic and hydroxybenzoic acids, flavonoids, tannins, stilbenoids, lignans, alkylresorcinols) by various microorganisms (lactic acid bacteria, yeast, filamentous fungi) throughout the fermentation process in plant-based foods. Several researchers have commenced the use of metabolic engineering, as in recombinant Saccharomyces cerevisiae yeast and Escherichia coli, to enhance the production of this transformation. The impact of phenolics on the metabolism of microorganisms and fermentation process, although complex, is reviewed for the first time. Moreover, this paper highlights the general effect of fermentation on the food's phenolic content, and its bioaccessibility, bioavailability and bioactivities including antioxidant capacity, anti-cancer, anti-diabetic, anti-inflammation, anti-obesity properties. Phenolics of different classes are converted into compounds that are often more bioactive than the parent compounds, and fermentation generally leads to a higher phenolic content and antioxidant activity in most studies. However, biotransformation of several phenolic classes is less studied due to its low concentration and apparent insignificance to the food system. Therefore, there is potential for application of metabolic engineering to further enhance the content of different phenolic classes and bioactivities in food.
Collapse
Affiliation(s)
- William Leonard
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Danyang Ying
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC 3030, Australia
| | - Benu Adhikari
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
| | - Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
6
|
Otang-Mbeng W, Sagbo IJ. Cytotoxic, Cellular Antioxidant, and Antiglucuronidase Properties of the Ethanol Leaf Extract from Bulbine asphodeloides. ScientificWorldJournal 2021; 2021:6622318. [PMID: 33935597 PMCID: PMC8060099 DOI: 10.1155/2021/6622318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 11/17/2022] Open
Abstract
Bulbine asphodeloides (L.) Spreng (Xanthorrhoeaceae family), popularly known in South Africa as "ibhucu" or "Balsamkopieva," is a perennial plant traditionally used to treat skin diseases, including sunburns, rough skin, dressing burns, itches, and aging. The present study reports the cytotoxic, cellular antioxidant, and antiglucuronidase properties of the ethanol leaf extract from B. asphodeloides. The cytotoxic effect of the plant extract on human dermal fibroblast (MRHF) cells was evaluated by the bis-Benzamide H 33342 trihydrochloride/propidium iodide (Hoechst 33342/PI) dual-staining method. A validated biological cell-based assay was used to determine the cellular antioxidant activity of the extract. The antiglucuronidase and metal chelating activities were evaluated using standard in vitro methods. Lipopolysaccharide- (LPS-) induced RAW 264.7 cell model was used to determine the anti-inflammatory effect of the plant extract, and the immune-modulatory activity was performed using RAW 264.7 cells. The extract demonstrated no cytotoxic effect towards the MRHF cells at all the tested concentrations. Furthermore, the extract also possessed significant cellular antioxidant and antiglucuronidase activities, but a weak effect of metal chelating activity in a dose-dependent manner. However, the extract showed no significant anti-inflammatory and immune-stimulatory activities. Overall, the results showed that B. asphodeloides may be a useful therapeutic agent for the treatment of skin diseases, therefore supporting its ethnomedicinal usage.
Collapse
Affiliation(s)
- Wilfred Otang-Mbeng
- School of Biology and Environmental Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| | - Idowu Jonas Sagbo
- School of Biology and Environmental Sciences, University of Mpumalanga, Private Bag X11283, Mbombela 1200, South Africa
| |
Collapse
|
7
|
Liu X, Fu Y, Ma Q, Yi J, Cai S. Anti-Diabetic Effects of Different Phenolic-Rich Fractions from Rhus Chinensis Mill. Fruits in vitro. EFOOD 2021. [DOI: 10.2991/efood.k.210222.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Solid-state fermentation of pearl millet with Aspergillus oryzae and Rhizopus azygosporus: effects on bioactive profile and DNA damage protection activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00277-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Metal Chelating, Inhibitory DNA Damage, and Anti-Inflammatory Activities of Phenolics from Rambutan ( Nephelium lappaceum) Peel and the Quantifications of Geraniin and Corilagin. Molecules 2018; 23:molecules23092263. [PMID: 30189625 PMCID: PMC6225213 DOI: 10.3390/molecules23092263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 12/16/2022] Open
Abstract
Whereas the preparation and biological properties of rambutan peel phenolics (RPP) were explored in our previous studies, the metal chelating, inhibitory DNA damage, and anti-inflammatory activities of RPP were evaluated and the important phenolics of RPP quantified in this study. Results showed that RPP had high Fe2+ and Cu2+-chelating activities with EC50 of 0.80 mg/mL and 0.13 mg/mL, respectively. RPP effectively decreased the production of hydroxyl radical with IC50 of 62.4 μg/mL. The protective effects of RPP against AAPH-induced DNA damage were also explored. RPP efficiently inhibited peroxyl radical-induced plasmid DNA strand breakage. The anti-inflammatory effects of RPP were determined using a lipopolysaccharide (LPS)-induced RAW 264.7 cell model. RPP significantly inhibited the production of nitric oxide (NO) and controlled the levels of inducible NO synthase mRNA in LPS-induced RAW 264.7 cells. The inhibitory activity increased in a dose-dependent manner. The above bioactivity of RPP was associated with its phenolic content and phenolic profiles. Furthermore, the contents of geraniin and corilagin in RPP were determined by an ultra-high performance liquid chromatography coupled with triple quadruple mass spectrometry (UPLC-QQQ-MS), showing 140.02 and 7.87 mg/g extract dry weight. Thus, RPP has potential applications as a novel nutraceutical and functional food in health promotion.
Collapse
|
10
|
Ma Q, Liu Q, Yuan L, Zhuang Y. Protective Effects of LSGYGP from Fish Skin Gelatin Hydrolysates on UVB-Induced MEFs by Regulation of Oxidative Stress and Matrix Metalloproteinase Activity. Nutrients 2018; 10:nu10040420. [PMID: 29597313 PMCID: PMC5946205 DOI: 10.3390/nu10040420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/13/2023] Open
Abstract
A previous study has shown that tilapia fish skin gelatin hydrolysates inhibited photoaging in vivo, and that, Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) identified in the hydrolysate had a high hydroxyl radical scavenging activity. In this study, activities of LSGYGP were further evaluated using ultraviolet B (UVB)-induced mouse embryonic fibroblasts (MEFs). UVB irradiation significantly increased the intercellular reactive oxygen species (ROS) production and matrix metalloproteinases (MMPs) activities and decreased the content of collagen in MEFs. LSGYGP reduced the intercellular ROS generation in UVB-induced MEFs. Meanwhile, the decrease of superoxide dismutase (SOD) activity and the increase of malondiaidehyde (MDA) content were inhibited by LSGYGP. LSGYGP reduced MMP-1 and MMP-9 activities in a dose-dependent manner. Molecular docking simulation indicated that LSGYGP inhibited MMPs activities by docking the active sites of MMP-1 and MMP-9. Furthermore, LSGYGP also affected the intercellular phosphorylation of UVB-induced the mitogen-activated protein kinase pathway. LSGYGP could protect collagen synthesis in MEFs under UVB irradiation by inhibiting oxidative stress and regulating MMPs activities.
Collapse
Affiliation(s)
- Qingyu Ma
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Qiuming Liu
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Ling Yuan
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| | - Yongliang Zhuang
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming 650500, Yunnan, China.
| |
Collapse
|
11
|
Zhang C, Ma Y, Zhao Y, Hong Y, Cai S, Pang M. Phenolic composition, antioxidant and pancreatic lipase inhibitory activities of Chinese sumac (Rhus chinensis
Mill.) fruits extracted by different solvents and interaction between myricetin-3-O
-rhamnoside and quercetin-3-O
-rhamnoside. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13680] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Chengting Zhang
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yanli Ma
- College of Food Science and Technology; Hebei Agricultural University; Baoding Hebei 071001 China
| | - Yingxin Zhao
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yaoqin Hong
- School of Molecular and Cellular Biology, University of Illinois; Urbana IL 61801 USA
| | - Shengbao Cai
- Yunnan Institute of Food Safety; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Mingjie Pang
- Medical Faculty; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
12
|
Huang S, Ma Y, Zhang C, Cai S, Pang M. Bioaccessibility and antioxidant activity of phenolics in native and fermented Prinsepia utilis Royle seed during a simulated gastrointestinal digestion in vitro. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|