1
|
Qin W, Ketnawa S. Exploring the Bioaccessibility of Roasted Japanese Green Tea: Impact of Simulated Gastrointestinal Digestion. Foods 2025; 14:311. [PMID: 39856977 PMCID: PMC11764797 DOI: 10.3390/foods14020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
In this study, the effects were explored of digestive enzymes and pH on the bioaccessibility of polyphenols, flavonoids, and antioxidant activities in Hojicha (roasted green tea, RT) infusions during simulated in vitro digestion. Roasting modifies its polyphenolic profile and reduces bitterness, making it a popular variation of green tea. In this study, RT was used for assessing how the roasting-induced changes influenced the tea's bioaccessibility and stability under digestive conditions. A two-step gastrointestinal digestion model was applied to mimic real digestion. Total polyphenol content (TPC), total flavonoid content (TFC), and antioxidant activity (DPPH, ABTS, FRAP, and MIC) were measured at different digestion stages. Gastric conditions led to a 2.07-fold reduction in TPC and a 4.27-fold reduction in TFC. Digestive enzymes enhanced bioactive compound stability, with TPC and TFC bioaccessibility reaching 56% and 25% in the simulated digestion with digestive enzymes (MD) group, compared to 52% and 20% in the without digestive enzymes (WOE) group. Antioxidant activities were also better preserved, with antioxidant activity retention at 31% in the MD samples versus 19% in the WOE. These findings emphasize the key role of digestive enzymes in maintaining the antioxidant potential of roasted green tea during digestion, providing insight into future research on roasting methods and tea functionality for product development.
Collapse
Affiliation(s)
- Wei Qin
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo 271-8510, Japan;
| | - Sunantha Ketnawa
- Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo 271-8510, Japan;
- Food Science and Technology Program, School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
2
|
Chen N, Yao P, Farid MS, Zhang T, Luo Y, Zhao C. Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier. Food Res Int 2025; 199:115383. [PMID: 39658174 DOI: 10.1016/j.foodres.2024.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe. Tea can be classified into various categories, including green, white, yellow, oolong, black, and dark teas, based on the specific processing methods employed. In recent times, there has been a notable surge in scientific investigation into the various types of tea. The recent surge in research on tea can be attributed to the plethora of bioactive compounds it contains, including polyphenols, polysaccharides, pigments, and theanine. The processing of different teas affects the active ingredients to varying degrees, resulting in a range of chemical reactions and the formation of different types and quantities of ingredients. The bioactive compounds present in tea are of great importance for the maintenance of the integrity of the intestinal barrier, operating through a variety of mechanisms. This literature review synthesizes scientific studies on the impact of the primary bioactive compounds and different processing methods of tea on the intestinal barrier function. This review places particular emphasis on the exploration of the barrier repair and regulatory effects of these compounds, including the mitigation of damage to different barriers following intestinal diseases. Specifically, the active ingredients in tea can alleviate damage to physical barriers and chemical barriers by regulating barrier protein expression. At the same time, they can also maintain the stability of immune and biological barriers by regulating the expression of inflammatory factors and the metabolism of intestinal flora. This investigation can establish a strong theoretical foundation for the future development of innovative tea products.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Huang W, Liu Q, Ning J. Effect of tea stems on the quality formation of large-leaf yellow tea: Sensomics and flavoromics approaches. Food Chem X 2024; 24:101794. [PMID: 39290754 PMCID: PMC11406333 DOI: 10.1016/j.fochx.2024.101794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
In this study, the stems (ST) and leaves (LT) isolated from Large-leaf yellow tea (LYT) were used for sensory evaluation and quantitative analysis of flavor metabolites by sensomics and flavoromics. The results showed that the flavors of ST and LT in LYT were significantly different, and ST had stronger roasty and nutty aroma and sweet taste, which was mainly due to the accumulation of higher theanine and soluble monosaccharides in ST, and provided more substrates for the production of more pyrazine by the Maillard reaction; whereas LT contributed to the mellow and thick taste quality of LYT, and the abundance of catechins and caffeine were the main reason. The metabolic patterns of flavor metabolites indicated that the flavor differences between ST and LT were mainly due to biological metabolism in tea plants. This study provides the selection of raw materials for LYT in the future and product development of tea stems.
Collapse
Affiliation(s)
- Wenjing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Qiuyan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei 230036, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Feng X, Wang H, Zhu Y, Ma J, Ke Y, Wang K, Liu Z, Ni L, Lin CC, Zhang Y, Liu Y. New Insights into the Umami and Sweet Taste of Oolong Tea: Formation of Enhancer N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (Alapyridaine) in Roasting Via Maillard Reaction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8760-8773. [PMID: 38536213 DOI: 10.1021/acs.jafc.3c09011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Roasting is pivotal for enhancing the flavor of Wuyi rock tea (WRT). A study investigated a novel compound that enhances the umami taste of WRT. Metabolomics of Shuixian tea (SXT) and Rougui tea (RGT) under light roasting (LR), medium roasting (MR), and heavy roasting (HR) revealed significant differences in nonvolatiles compounds. Compared LR reducing sugars and amino acids notably decreased in MR and HR, with l-alanine declining by 69%. Taste-guided fractionation identified fraction II-B as having high umami and sweet intensities. A surprising taste enhancer, N-(1-carboxyethyl)-6-(hydroxymethyl) pyridinium-3-ol (alapyridaine), was discovered and identified. It formed via the Maillard reaction, positively correlated with roasting in SXT and RGT. Alapyridaine levels were highest in SXT among the five oolong teas. Roasting tea with glucose increased alapyridaine levels, while EGCG inhibited its formation. HR-WRT exhibited enhanced umami and sweet taste, highlighting alapyridaine's impact on WRT's flavor profile. The formation of alapyridaine during the roasting process provides new insights into the umami and sweet perception of oolong tea.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiwen Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingke Ma
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Ke
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kequn Wang
- Wuyi Mountain Yuanshui Yuantea Tea Culture Co., Ltd., Wuyi Mountain 354300, Fujian, China
| | - Zhibin Liu
- Institute of Food Science &Technology, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Li Ni
- Institute of Food Science &Technology, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan, China
| | - Yin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Su W, Ni L, Chen Y, Wang D, Lin CC, Liu Y, Liu Z. Multidimensional exploration of the bitterness amelioration effect of roasting on Wuyi Rock tea. Food Chem 2024; 437:137954. [PMID: 37952394 DOI: 10.1016/j.foodchem.2023.137954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The influence of roasting on tea bitterness remains unclear. With Wuyi Rock tea (WRT) as an example, this study investigated the impact of roasting on WRT's bitterness, utilizing an integrated approach involving sensory evaluation, bitter compound profiling, and cell-based calcium imaging. Sensory analysis revealed that roasting effectively reduced the perceived bitterness of WRT. This reduction was supported by decreases in various bitter compounds, including 19 flavanols, 11 flavonols, 12 phenolic acids, 2 purine alkaloids, and 9 bitter amino acids, which diminished by 16%, 26%, 19%, 2%, and 70%, respectively. Furthermore, we established two heterogeneous bitter receptor expression systems: TAS2R39/Gα15-HEK293T and TAS2R14/Gα15-HEK293T cell lines. These systems quantitatively confirmed the reduction in bitterness, demonstrating 51% and 62% decreases in intracellular calcium mobilization within the transfected cells, respectively. These findings provide compelling evidence for the bitterness-ameliorating effect of roasting, expanding our knowledge of the role of roasting in shaping the flavor of tea.
Collapse
Affiliation(s)
- Weiying Su
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yizhe Chen
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Daoliang Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chih-Cheng Lin
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan, Province of China, China
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhibin Liu
- Institute of Food Science & Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
6
|
Zhang J, Feng W, Xiong Z, Dong S, Sheng C, Wu Y, Deng G, Deng WW, Ning J. Investigation of the effect of over-fired drying on the taste and aroma of Lu'an Guapian tea using metabolomics and sensory histology techniques. Food Chem 2024; 437:137851. [PMID: 37897824 DOI: 10.1016/j.foodchem.2023.137851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Lu'an Guapian (LAGP) tea, a representative Chinese roasted green tea, undergoes significant changes in taste and aroma during over-fired drying. However, limited studies have been conducted on these effects. This study employed metabolomics and sensory histology techniques to analyze non-volatile and volatile compounds the second drying and pulley liquefied gas drying (PLD) samples. The results revealed that after PLD, the samples exhibited lower umami, bitterness, and astringency; whereas floral, sweet, roasted, cooked corn-like, and cooked chestnut-like aromas became stronger. Among them, the content of (-)-epigallocatechin gallate, glutamic acid, and theogallin, which were closely related to taste, decreased by 4.5 %, 12.3 %, and 10.4 %, respectively. Eight key aroma components were identified as the main contributors to the sample aroma changes: (E)-β-ionone, dimethyl sulfide, (E,E)-2,4-heptadienal, geraniol, linalool, benzeneacetaldehyde, 2-ethyl-3,5-dimethylpyrazine, and hexanal. This study provides a theoretical basis for enhancing the quality of LAGP teas.
Collapse
Affiliation(s)
- Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Shuai Dong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Guojian Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
7
|
Wang X, He C, Cui L, Liu Z, Liang J. Effects of Different Expansion Temperatures on the Non-Volatile Qualities of Tea Stems. Foods 2024; 13:398. [PMID: 38338533 PMCID: PMC10855559 DOI: 10.3390/foods13030398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Tea stems are a type of tea by-product, and a considerable amount of them is discarded during picking, with their value often being overlooked. To enhance the utilization of tea stems, we investigated the effects of different expansion temperatures on the non-volatile compounds of tea stems. The results showed that the contents of EC, EGC, EGCG, tea polyphenols, and amino acids all decreased with the expansion temperature, while the contents of GA and C increased. The best effect was observed at 220 °C for 20 s. Additionally, as the temperature increased, the umami and aftertaste of astringency values of tea stems decreased, and the value of bitterness increased. Meanwhile, the value of sweetness decreased first and then increased. EGC was identified as the key differential compound of tea stems at different temperatures. In this investigation, determining the optimum expansion temperature was deemed advantageous for enhancing the flavor quality of tea stems, consequently elevating the utilization efficacy of tea stems and tea by-products.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changxu He
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Leyin Cui
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jin Liang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Peng Y, Du Z, Wang X, Wu R, Zheng C, Han W, Liu L, Gao F, Liu G, Liu B, Hao Z, Yu X. From heat to flavor: Unlocking new chemical signatures to discriminate Wuyi rock tea under light and moderate roasting. Food Chem 2024; 431:137148. [PMID: 37598651 DOI: 10.1016/j.foodchem.2023.137148] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Roasting is crucial for the distinct flavor of Wuyi rock tea (WRT). This study applied untargeted metabolomics to investigate the effects of roasting on 139 WRT samples roasted at light fire (LF) or moderate fire (MF) intensities. Compared to LF, MF roasting led to a decrease in the cis/trans flavanol ratio by 56% and theanine by 85%, while increasing the levels of N-ethyl-2-pyrrolidione-substituted flavanols (EPSFs), flavonol aglycones and flavone C-glycosides. Two new roast markers, 3-p-coumaroyl 1,5-lactone and 4-p-coumaroyl 1,5-lactone, were identified in WRT and their formation increased with roasting temperature. MF roasting facilitated the formation of diverse heterocycles (e.g., pyrazines) and aldehydes (e.g., (Z)-4-heptenal and (E,E)-2.4-decadienal) that contributed to the augmented roasted and fatty odors in WRT. Additionally, the Maillard product furfuryl methyl ether was solely detected in MF samples. These findings provide novel insights into roast markers in WRT with implications for improving quality control measures during tea roasting.
Collapse
Affiliation(s)
- Yifei Peng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenghua Du
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaxia Wang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zheng
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenbo Han
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Gao
- Fujian Farming Technology Extension Center, Fuzhou 350003, China
| | - Guoying Liu
- Wuyishan Institute of Agricultural Sciences, Wuyishan 354300, China
| | | | - Zhilong Hao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaomin Yu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
9
|
Li C, Lin J, Hu Q, Sun Y, Wu L. An integrated metabolomic and transcriptomic analysis reveals the dynamic changes of key metabolites and flavor formation over Tieguanyin oolong tea production. Food Chem X 2023; 20:100952. [PMID: 37920364 PMCID: PMC10618703 DOI: 10.1016/j.fochx.2023.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
To interpret the formation characteristic flavor during oolong tea manufacturing process, the dynamic changes of key flavor components in samples from various processing steps of Tieguanyin oolong tea production were investigated using widely-targeted metabolomic and the transcriptomic approaches. As a result, a total of 1078 metabolites were determined, of which 62 compounds were identified as biomarkers significantly changed over the manufacturing process. Quantitative determination of the total 50,343 transcripts showed 7480 of them were co-expressed different genes. Glutamic acid served as a critical metabolism hub and a signaling molecule for diverse stress responses. Additionally, the targeted quantification results showed that the contents of catechins and xanthine alkaloids in dried tea were dramatically decreased by 20.19% and 7.15% respectively than those in fresh leaves, which potentially contributed to the alleviation of astringent or bitter palates, promoting the characteristic mellow and rich flavor of Tieguanyin oolong tea.
Collapse
Affiliation(s)
- Chenxue Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Jiaqi Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Qingcai Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Yun Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, People’s Republic of China
| |
Collapse
|
10
|
He S, Deng X, Han Y, Gong Z, Wang J, Tao X, Tong H, Chen Y. Metabolites and metagenomic analysis reveals the quality of Pu-erh "tea head". Food Chem 2023; 429:136992. [PMID: 37516054 DOI: 10.1016/j.foodchem.2023.136992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Tea head, a derivative product of Pu-erh tea, are tight tea lumps formed during pile-fermentation. The aim of this study was to reveal the differences of quality-related metabolites and microbial communities between ripened Pu-erh tea (PE-21) and tea heads (CT-21). Compared with PE-21, CT-21 showed a more mellow and smooth taste with slight bitterness and astringency, and can withstand multiple infusions. Metabolites analysis indicated CT-21 had more abundant water-soluble substances (47.39%) and showed significant differences with PE-21 in the main compositions of amino acids, catechins and saccharides which contributed to the viscosity of tea liquor, mellow taste and the tight tea lumps formation. Microbial communities and COG annotation analysis revealed CT-21 had lower abundance of Bacteria (84.05%), and higher abundance of Eukaryota (15.10%), carbohydrate transport and metabolism (8.28%) and glycoside hydrolases (37.36%) compared with PE-21. The different microbial communities may cause metabolites changes, forming distinct flavor of Pu-erh.
Collapse
Affiliation(s)
- Shiqiang He
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhengli Gong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Jian Wang
- Ice Island Mountain Tea Company, Mengku Town, Shuangjiang Autonomous County, Yunnan Province, China
| | - Xiaoqi Tao
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
11
|
Cai M, Huang L, Dong S, Diao N, Ye W, Peng Z, Fang X. Enhancing the Flavor Profile of Summer Green Tea via Fermentation with Aspergillus niger RAF106. Foods 2023; 12:3420. [PMID: 37761129 PMCID: PMC10529516 DOI: 10.3390/foods12183420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Summer green tea (SGT) has a low cost and high annual yield, but its utilization rate is limited due to suboptimal quality. The aim of this study is to enhance the flavor of SGT using fermentation with A. niger RAF106 while examining changes in its metabolites during this process. The results revealed an elevation in the content of alcohol, alkanes, and nitroxides in tea leaves following the process of fermentation. The predominant volatile compounds identified in tea leaves after undergoing a 6-day fermentation period were linalool, (Z)-α, α, 5-trimethyl-5-vinyltetrahydrofuran-2-methanol, (E)-linalool oxide (furan type), linalool oxide (pyran type), and theapyrrole. These compounds exhibited significant increases of 31.48%, 230.43%, 225.12%, 70.71%, and 521.62%, respectively, compared to the non-fermented control group (CK). The content of non-ester catechins, soluble sugars, and total flavonoids reached their peak on the 4th day of fermentation, exhibiting significant increases of 114.8%, 95.59%, and 54.70%, respectively. The content of gallic acid and free amino acids reached their peak on the 6th day of fermentation, exhibiting significant increases of 3775% and 18.18%, respectively. However, the content of ester catechin decreased by 81.23%, while caffeine decreased by 7.46%. The content of lactic acid, acetic acid, and citric acid in tea after fermentation was 421.03%, 203.13%, and 544.39% higher than before fermentation, respectively. The present study offers a fresh approach for the advancement of SGT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; (M.C.); (L.H.); (S.D.); (N.D.); (W.Y.); (Z.P.)
| |
Collapse
|
12
|
Chen Y, Yang J, Meng Q, Tong H. Non-volatile metabolites profiling analysis reveals the tea flavor of "Zijuan" in different tea plantations. Food Chem 2023; 412:135534. [PMID: 36732104 DOI: 10.1016/j.foodchem.2023.135534] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Characteristic metabolites including tea polyphenols, amino acids, catechins, caffeine, sugars and anthocyanins were fully analyzed by high performance liquid chromatography (HPLC), gas chromatography tandem mass spectrometry (GC-MS) and ultra-high performance liquid chromatography (UHPLC)-ESI-tandem mass spectrometry (MS/MS), and showed significant differences among Zijuan tea from different plantations in Yunnan province (YN-ZJ), Qijiang (QJ-ZJ) and Ersheng (ES-ZJ) district, China, indicating that Zijuan is significantly influenced by growth conditions. Monosaccharides were the most abundant soluble sugars in YN-ZJ and ES-ZJ, while disaccharides was abundant in QJ-ZJ. d-galactose, d-mannose, d-sorbitol, inositol, d-glucose, d-galacturonic acid and raffinose involved in galactose metabolism were significantly changed (P < 0.05). Delphinidin, cyanidin, pelargonidin and their glycoside derivatives were the major anthocyanins, and showed significant differences among Zijuan samples. Flavonoids and procyanidins abundant in Zijuan provided more substrates for anthocyanins accumulation. This study presented comprehensive chemical profiling and characterized metabolites of Zijuan in different tea plantations.
Collapse
Affiliation(s)
- Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China.
| | - Juan Yang
- Tea Research Institute, Chongqing Academy of Agricultural Sciences, Yongchuan, Chongqing 402160, China
| | - Qing Meng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Huarong Tong
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Zhang S, Jiang X, Li C, Qiu L, Chen Y, Yu Z, Ni D. Effect of Fermentation Humidity on Quality of Congou Black Tea. Foods 2023; 12:foods12081726. [PMID: 37107521 PMCID: PMC10138149 DOI: 10.3390/foods12081726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated the effect of different fermentation humidities (55%, 65%, 75%, 85% and 95%) on congou black tea quality and bioactivity. Fermentation humidity mainly affected the tea's appearance, aroma and taste quality. The tea fermented at low humidity (75% or below) showed a decrease in tightness, evenness and moistening degree, as well as a heavy grassy and greenish scent, plus a green, astringent and bitter taste. The tea fermented at a high humidity (85% or above) presented a sweet and pure aroma, as well as a mellow taste, plus an increase of sweetness and umami. With increasing fermentation humidity, the tea exhibited a drop in the content of flavones, tea polyphenols, catechins (EGCG, ECG) and theaflavins (TF, TF-3-G), contrasted by a rise in the content of soluble sugars, thearubigins and theabrownins, contributing to the development of a sweet and mellow taste. Additionally, the tea showed a gradual increase in the total amount of volatile compounds and in the content of alcohols, alkanes, alkenes, aldehydes, ketones and acids. Moreover, the tea fermented at a low humidity had stronger antioxidant activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and a higher inhibiting capability on the activities of α-amylase and α-glucosidase. Overall results indicated the desirable fermentation humidity of congou black tea should be 85% or above.
Collapse
Affiliation(s)
- Sirui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinfeng Jiang
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang 330202, China
| | - Li Qiu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| | - Zhi Yu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan 430070, China
| |
Collapse
|
14
|
Song F, Xiang H, Li Z, Li J, Li L, Fang Song C. Monitoring the baking quality of Tieguanyin via electronic nose combined with GC-MS. Food Res Int 2023; 165:112513. [PMID: 36869452 DOI: 10.1016/j.foodres.2023.112513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
Roasting is extremely important for Tieguanyin oolong tea production because it strongly affects its chemical composition and sensory quality. In addition, there were significant differences in the preference for roasted tea among different people. However, the effect of roasting degree on the aroma characteristics and flavor quality of Tieguanyin tea is still unclear. To further study this, an electronic nose combined with gas chromatography-mass spectrometry (GC-MS) was used to monitor the baking process of Tieguanyin. The physicochemical indexes, sensory quality, and odor characteristics of the tea leaves subjected to different roasting conditions were measured. The increase in the roasting degree caused a decrease in the amount of taste substances such as tea polyphenols, catechins, and amino acids and a sharp increase in the phenol to ammonia ratio. Sensory evaluation results showed that moderate roasting could help improve the quality of the tea leaves. The results obtained using the electronic nose and GC-MS showed that there were substantial differences in the volatile substances, and 103 flavor compounds were highly correlated with the aroma characteristics of roasted tea with different roasting degrees. In addition, the electronic nose combined with various classification models could better distinguish tea leaves with different roasting degrees. Among them, the accuracy of the RF training set and prediction set reached>98.44%. The results of this study will aid in comprehensively monitoring the effects of the baking process on the flavor, chemical composition, and aroma of Tieguanyin as well as in distinguishing Tieguanyin tea leaves with different qualities.
Collapse
Affiliation(s)
- Feihu Song
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Xiang
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhenfeng Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jing Li
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, PR China.
| | - Chun Fang Song
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology, School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
15
|
Liu F, Tu Z, Chen L, Lin J, Zhu H, Ye Y. Analysis of metabolites in green tea during the roasting process using non-targeted metabolomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:213-220. [PMID: 35871448 DOI: 10.1002/jsfa.12133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Roasting plays an important role in the formation of flavor of roasted green tea; however, the changes in chemicals during this process have not been systematically studied until now. To reveal the dynamic changes in chemicals in green tea during roasting, non-targeted metabolomics, coupled with chemometrics, was employed. RESULTS A total of 101 non-volatile metabolites were identified in tea samples, and 29 metabolites were identified as characteristic metabolites of roasting. A significant increase in catechins and their derivatives, organic acids, and flavonoid glycosides was observed, while the content of some amino acids and their derivatives decreased over 50% during roasting. The content of theanine glucoside increased dramatically (by 21.23-fold at the roasting stage), and Maillard-derived compounds also increased to varying degrees. CONCLUSION Glycosylation, oxidative polymerization, and pyrolysis were important reactions responsible for the formation and transformation of flavor compounds in roasted green tea during roasting. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fei Liu
- Tea Research Institute of Sichuan Academy of Agricultural Science, Chengdu, China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu, China
| | - Zheng Tu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Chen
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiazheng Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Hongkai Zhu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Yang Ye
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
16
|
Zhang C, Zhou C, Xu K, Tian C, Zhang M, Lu L, Zhu C, Lai Z, Guo Y. A Comprehensive Investigation of Macro-Composition and Volatile Compounds in Spring-Picked and Autumn-Picked White Tea. Foods 2022; 11:foods11223628. [PMID: 36429222 PMCID: PMC9688969 DOI: 10.3390/foods11223628] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The flavour of white tea can be influenced by the season in which the fresh leaves are picked. In this study, the sensory evaluation results indicated that spring-picked white tea (SPWT) was stronger than autumn-picked white tea (APWT) in terms of the taste of umami, smoothness, astringency, and thickness as well as the aromas of flower and fresh. To explore key factors of sensory differences, a combination of biochemical composition determination, widely targeted volatilomics (WTV) analysis, multivariate statistical analysis, and odour activity value (OAV) analysis was employed. The phytochemical analysis showed that the free amino acid, tea polyphenol, and caffeine contents of SPWTs were significantly higher than those of APWTs, which may explain the higher umami, smoothness, thickness, and astringency scores of SPWTs than those of APWTs. The sabinene, (2E, 4E)-2, 4-octadienal, (-)-cis-rose oxide, caramel furanone, trans-rose oxide, and rose oxide contents were significantly higher in SPWTs than in APWTs, which may result in stronger flowery, fresh, and sweet aromas in SPWTs than in APWTs. Among these, (2E,4E)-2,4-octadienal and (-)-cis-rose oxide can be identified as key volatiles. This study provides an objective and accurate basis for classifying SPWTs and APWTs at the metabolite level.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengcong Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Lu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chen Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
17
|
Gao J, Wang Z, Chen D, Peng J, Xie D, Lin Z, Lin Z, Dai W. Metabolomic characterization of the chemical compositions of Dracocephalum rupestre Hance. Food Res Int 2022; 161:111871. [DOI: 10.1016/j.foodres.2022.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
|
18
|
Evaluation of the effects of solar withering on nonvolatile compounds in white tea through metabolomics and transcriptomics. Food Res Int 2022; 162:112088. [DOI: 10.1016/j.foodres.2022.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022]
|
19
|
Exploring the Quality and Application Potential of the Remaining Tea Stems after the Postharvest Tea Leaves: The Example of Lu'an Guapian Tea ( Camellia sinensis L.). Foods 2022; 11:foods11152357. [PMID: 35954125 PMCID: PMC9368606 DOI: 10.3390/foods11152357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/25/2022] [Accepted: 08/01/2022] [Indexed: 12/02/2022] Open
Abstract
Lu’an Guapian tea is produced through the processing of only leaves, with the stems and buds discarded, but stems constitute a large proportion of the tea harvest. To test the usability of tea stems, we compared the physicochemical properties of tea leaves and stems from the same growth period as well as the taste of their infusions. The leaves contained higher concentrations of polyphenols and caffeine and had a stronger taste. The tea stems contained higher concentrations of free amino acids and soluble sugars and were richer in umami and sweet flavors. In addition, more tender tea stems had higher concentrations of polyphenols, caffeine, and free amino acids, and their infusions had more refreshing and sweeter tastes. Furthermore, crude fiber content increased as stem tenderness decreased. In summary, tea stems are rich in phytochemical components and flavor, and these properties increased with tenderness. This provides a theoretical basis for the high-value utilization of tea stems.
Collapse
|
20
|
Wu Q, Tong W, Zhao H, Ge R, Li R, Huang J, Li F, Wang Y, Mallano AI, Deng W, Wang W, Wan X, Zhang Z, Xia E. Comparative transcriptomic analysis unveils the deep phylogeny and secondary metabolite evolution of 116 Camellia plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:406-421. [PMID: 35510493 DOI: 10.1111/tpj.15799] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Camellia plants include more than 200 species of great diversity and immense economic, ornamental, and cultural values. We sequenced the transcriptomes of 116 Camellia plants from almost all sections of the genus Camellia. We constructed a pan-transcriptome of Camellia plants with 89 394 gene families and then resolved the phylogeny of genus Camellia based on 405 high-quality low-copy core genes. Most of the inferred relationships are well supported by multiple nuclear gene trees and morphological traits. We provide strong evidence that Camellia plants shared a recent whole genome duplication event, followed by large expansions of transcription factor families associated with stress resistance and secondary metabolism. Secondary metabolites, particularly those associated with tea quality such as catechins and caffeine, were preferentially heavily accumulated in the Camellia plants from section Thea. We thoroughly examined the expression patterns of hundreds of genes associated with tea quality, and found that some of them exhibited significantly high expression and correlations with secondary metabolite accumulations in Thea species. We also released a web-accessible database for efficient retrieval of Camellia transcriptomes. The reported transcriptome sequences and obtained novel findings will facilitate the efficient conservation and utilization of Camellia germplasm towards a breeding program for cultivated tea, camellia, and oil-tea plants.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Wei Tong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Huijuan Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruoheng Ge
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ruopei Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jin Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Fangdong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Yanli Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Ali Inayat Mallano
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Wenjie Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
21
|
Dynamic Variation of Amino Acid Contents and Identification of Sterols in Xinyang Mao Jian Green Tea. Molecules 2022; 27:molecules27113562. [PMID: 35684499 PMCID: PMC9182030 DOI: 10.3390/molecules27113562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
As important biomolecules in Camellia sinensis L., amino acids (AAs) are considered to contribute to the overall green tea sensory quality and undergo dynamic changes during growth. However, limited by analytical capacity, detailed AAs composition in different growth stages remains unclear. To address this question, we analyzed the dynamic changes of 23 AAs during leaf growth in Xinyang Mao Jian (XYMJ) green tea. Using amino acid analyzer, we demonstrated that most AAs are abundant on Pure Brightness Day and Grain Rain Day. After Grain Rain, 23 AAs decreased significantly. Further analysis shows that theanine has a high level on the day before Spring Equinox and Grain Rain, accounting for 44–61% of the total free AAs content in tea leaves. Glu, Pro, and Asp are the second most abundant AAs. Additionally, spinasterol and 22,23-dihydrospinasterol are first purified and identified in ethanol extract of XYMJ by silica gel column chromatography method. This study reveals the relationship between plucking days and the dynamic changes of AAs during the growth stage and proves the rationality of the traditional plucking days of XYMJ green tea.
Collapse
|
22
|
Wu Y, Han Z, Wen M, Ho CT, Jiang Z, Wang Y, Xu N, Xie Z, Zhang J, Zhang L, Wan X. Screening of α-glucosidase inhibitors in large-leaf yellow tea by offline bioassay coupled with liquid chromatography tandem mass spectrometry. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Jiang Z, Han Z, Wen M, Ho CT, Wu Y, Wang Y, Xu N, Xie Z, Zhang J, Zhang L, Wan X. Comprehensive comparison on the chemical metabolites and taste evaluation of tea after roasting using untargeted and pseudotargeted metabolomics. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
24
|
Ye JH, Ye Y, Yin JF, Jin J, Liang YR, Liu RY, Tang P, Xu YQ. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Wei Y, Yin X, Wu H, Zhao M, Huang J, Zhang J, Li T, Ning J. Improving the flavor of summer green tea (Camellia sinensis L.) using the yellowing process. Food Chem 2022; 388:132982. [PMID: 35447593 DOI: 10.1016/j.foodchem.2022.132982] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/13/2022] [Accepted: 04/12/2022] [Indexed: 11/04/2022]
Abstract
Summer green tea (SGT) has poor flavor due to its high levels of bitterness and astringency. The present study aimed to improve the flavor of SGT using the yellowing process. The results showed that after the yellowing process, the sweetness and overall acceptability increased, and the content of gallated catechins and flavonol glycosides decreased by 30.2% and 27.4%, respectively, as did the bitterness and astringency of SGT. Yellowing caused a decrease in the concentration of some aroma compounds, such as (z)-3-hexen-1-ol, 1-hexanol, pentanal, heptanal and 1-octanol, which caused grassy, floral and fruity aromas. In contrast, the concentrations of 1-octen-3-ol, benzene acetaldehyde and β-ionone increased, which have mushroom and sweet aromas. Meanwhile, the sweetness and umami of SGT were enhanced by the addition of selected aroma compounds (1-octen-3-ol, benzene acetaldehyde and β-ionone), demonstrating that the yellowing process improves the flavor of SGT through odor-taste interactions.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Xuchao Yin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Huiting Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mengjie Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
26
|
Jiang Z, Zhang H, Han Z, Zhai X, Qin C, Wen M, Lai G, Ho CT, Zhang L, Wan X. Study on In Vitro Preparation and Taste Properties of N-Ethyl-2-Pyrrolidinone-Substituted Flavan-3-Ols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3832-3841. [PMID: 35289174 DOI: 10.1021/acs.jafc.2c00798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) were prepared by an in vitro model reaction, and the taste thresholds of EPSFs and their dose-over-threshold factors in large-leaf yellow tea (LYT) were investigated. The effects of initial reactant ratios, reaction temperatures and time, pH values, and water addition on the yield of EPSFs were explored. The contents of EPSFs during roasting were determined by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). When the initial ratio of (-)-epigallocatechin gallate (EGCG) to theanine was 1:2 and roasted under 120 °C for 120 min, the contents of EPSFs were the highest. The bitterness and astringency thresholds of four EPSF isomers were measured by the half-tongue method, of which EPSF2 and EPSF3 had higher thresholds than EGCG. In LYT, four EPSFs had lower bitterness and astringency dose-over-threshold factors than EGCG. This study suggested that the reduction of bitterness and astringency of tea after roasting may be mainly due to the formation of EPSFs.
Collapse
Affiliation(s)
- Zongde Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chunyin Qin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901-8554, United States
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
27
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Tongsai S, Jangchud K, Jangchud A, Tepsongkroh B, Boonbumrung S, Prinyawiwatkul W. Relationship between sensory and chemical properties of Assam green teas under different pan‐firing and rolling time conditions. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Saynamphung Tongsai
- Department of Product Development Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | - Kamolwan Jangchud
- Department of Product Development Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | - Anuvat Jangchud
- Department of Product Development Faculty of Agro‐Industry Kasetsart University Bangkok 10900 Thailand
| | - Benjarat Tepsongkroh
- Department of Food science and Technology Faculty of Science and Technology Thammasat University Pathum Thani 12120 Thailand
| | - Sumitra Boonbumrung
- Institute of Food Research and Product Development Kasetsart University Bangkok 10900 Thailand
| | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences Louisiana State University Agricultural Center Baton Rouge LA 70803 USA
| |
Collapse
|
29
|
Sun L, Fan K, Wang L, Ma D, Wang Y, Kong X, Li H, Ren Y, Ding Z. Correlation among Metabolic Changes in Tea Plant Camellia sinensis (L.) Shoots, Green Tea Quality and the Application of Cow Manure to Tea Plantation Soils. Molecules 2021; 26:molecules26206180. [PMID: 34684759 PMCID: PMC8538533 DOI: 10.3390/molecules26206180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Traditionally, the supplement of organic manure in tea plantations has been a common approach to improving soil fertility and promoting terroir compounds, as manifested by the coordinated increase in yield and quality for the resulting teas. However, information regarding the effect of organic manure in the metabolome of tea plants is still inadequate. The metabolite profiles of tea shoots applied with cow manure, urea or no fertilizer were studied using gas chromatography–mass spectrometry (GC–MS). In total, 73 metabolites were detected, and the modulated metabolites included mainly amino acids, organic acids and fatty acids. In particular, glutamine, quinic acid and proline accumulated more in tea shoots in soils treated with cow manure, but octadecanoic acid, hexadecanoic acid and eicosanoic acid were drastically reduced. Pearson correlation analysis indicated that organic acids and amino acids in tea shoots were the two major metabolite groups among the three treatments. The analysis of metabolic pathways demonstrated that the cow manure treatment significantly changed the enrichment of pathways related to amino acids, sugars and fatty acids. Sensory evaluation showed that the quality of green teas was higher when the plants used to make the tea were grown in soil treated with cow manure rather than urea during spring and late summer. The results indicated that the application of cow manure in soils changed the metabolic characteristics of tea shoots and improved the qualities of the resulting teas.
Collapse
Affiliation(s)
- Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
| | - Linlin Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
| | - Dexin Ma
- College of Communication, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
| | - Xiaojun Kong
- Rizhao Tea Technology Promotion Center, Rizhao 276826, China;
| | - Hongyan Li
- Haiyang Fruit Industry Technology Promotion Station, Haiyang 265100, China;
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
- Correspondence: (Y.R.); (Z.D.)
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China; (L.S.); (K.F.); (L.W.); (Y.W.)
- College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, Perth, WA 6150, Australia
- Correspondence: (Y.R.); (Z.D.)
| |
Collapse
|
30
|
Oh H, Kim MK. The roles of sucrose on the retronasal thresholds of tea catechins and polyphenols in water‐based system. J SENS STUD 2021. [DOI: 10.1111/joss.12653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Hyeona Oh
- Department of Food Science and Human Nutrition and Fermented Food Research Center Jeonbuk National University Jeonju‐si Republic of Korea
| | - Mina K. Kim
- Department of Food Science and Human Nutrition and Fermented Food Research Center Jeonbuk National University Jeonju‐si Republic of Korea
| |
Collapse
|
31
|
Liu X, Liu Y, Li P, Yang J, Wang F, Kim E, Wu Y, He P, Li B, Tu Y. Chemical characterization of Wuyi rock tea with different roasting degrees and their discrimination based on volatile profiles. RSC Adv 2021; 11:12074-12085. [PMID: 35423741 PMCID: PMC8696517 DOI: 10.1039/d0ra09703a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Wuyi rock tea is a typical and famous oolong tea in China and roasting is an important manufacturing procedure for its flavor formation. This work aimed to explore the effect of roasting on non-volatiles and volatiles of 12 Wuyi rock tea samples at three roasting levels (low, moderate and sufficient), made from four tea cultivars (Shuixian, Qizhong, Dahongpao, Rougui). Results show that different roasting had not caused significant difference on contents of soluble solids, total polyphenols, flavonoids, soluble sugar, thearubigins and theabrownins, while it slightly regulated caffeine, proteins and theaflavins, and remarkably reduced catechins and free amino acids. The ratio of polyphenol content/amino acid content, a negative-correlated indicator of fresh and brisk taste, significantly increased with the increase of roasting degree. High-level roasting not only decreased the fresh and brisk taste of the tea infusion, but also reduced the amount of bioactive ingredients including catechins and theanine. A total of 315 volatiles were detected and analyzed with OPLS-DA and HCA methods, in which 99 volatiles were found with variable importance in the projection (VIP) values greater than 1.00. Tea samples at different roasting degrees were successfully separated by this model of roasting-level discrimination. 'Naphthalene, 1,2,3,4-tetrahydro-1,6,8-trimethyl-', '1,1,5-trimethyl-1,2-dihydronaphthalene', 'p-Xylene', 'alpha.-methyl-.alpha.-[4-methyl-3-pentenyl]oxiranemethanol', 'hydrazinecarboxylic acid, phenylmethyl ester', and '3-buten-2-one, 4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-' might be key characteristic markers for the roasting process of Wuyi rock tea.
Collapse
Affiliation(s)
- Xiaobo Liu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China .,College of Tea Science, Guizhou University Guiyang 550025 China
| | - Yawen Liu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Pan Li
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Jiangfan Yang
- College of Tea and Food Science, Wuyi University Wuyishan 354300 China
| | - Fang Wang
- College of Tea and Food Science, Wuyi University Wuyishan 354300 China
| | - Eunhye Kim
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Yuanyuan Wu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Puming He
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Bo Li
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| | - Youying Tu
- Department of Tea Science, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
32
|
Abstract
Herbal Teas prepared from leaves, roots, fruits, and flowers of different herbs contain
many useful nutrients that may be a good replacement for medicating certain diseases. These herbal
teas are very rich in poly-phenols, therefore are significant for their antioxidant, anti-inflammation,
anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Medical
chronic conditions, such as cardiovascular diseases, cancer, Alzheimer’s disease, Parkinson’s disease,
constipation, diabetes, and bed wetting in children can be easily cured by the use of these herbal
teas in regular and moderate amounts. This review focuses on the diverse constituents of herbal teas
due to which these can be an attractive alternative towards promoting human health.
Collapse
Affiliation(s)
- Tabinda Sattar
- Department of Chemistry, ICS, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
33
|
Effect of the roasting degree on flavor quality of large-leaf yellow tea. Food Chem 2021; 347:129016. [PMID: 33486364 DOI: 10.1016/j.foodchem.2021.129016] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 11/20/2022]
Abstract
Roasting is crucial for producing large-leaf yellow tea (LYT) as it substantially affects chemical composition and sensory quality. However, the effect of roasting degree on LYT flavor quality is not clear. To investigate the effect of roasting degree on LYT flavor, the odor profiles and sensory evaluations of LYTs produced with small fire, medium fire and old fire roasting (OF) were determined. The OF was essential for the formation of LYT flavor with strong roasted, nutty, woody odors and weak fatty, fruity odors, and retaining high levels of GCG, total volatiles and heterocyclic compounds. Furthermore, the characteristic crispy-rice-like odor was only found in LYT with OF treatment and burnt flavor was missing. 2,3-Diethyl-5-methylpyrazine, trans-β-ionone with odor activity value above 1600 and 39 respectively offered roasted, floral odors, respectively in LYT. The current results provide a scientific basis for understanding the reactions that occur during the conventional production of LYT.
Collapse
|
34
|
Samanta S. Potential Bioactive Components and Health Promotional Benefits of Tea (Camellia sinensis). J Am Coll Nutr 2020; 41:65-93. [DOI: 10.1080/07315724.2020.1827082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, India
| |
Collapse
|
35
|
Sun Y, Wang Y, Huang J, Ren G, Ning J, Deng W, Li L, Zhang Z. Quality assessment of instant green tea using portable NIR spectrometer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118576. [PMID: 32535491 DOI: 10.1016/j.saa.2020.118576] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Caffeine and catechin are two main components of instant green tea, and are essential components of tea quality. This paper mainly focuses on the feasibility of rapidly determining instant green tea components by using a portable near infrared (NIR) spectrometer. The two main components (caffeine and catechin) were studied. In addition, the instrument performance levels of portable and benchtop NIR spectrometers were studied and compared. Quantitative models developed using portable and benchtop spectrometers for measuring caffeine, total catechins, and four individual catechins were established and compared. After preprocessing using standard normal variate (SNV), the Rp values of the caffeine, total catechins, (-)-epigallocatechin, (-)-epigallocatechin 3-gallate, (-)-epicatechin, and (-)-epicatechin gallate in the partial least squares models for a portable NIR spectrometer were 0.974, 0.962, 0.669, 0.945, 0.942 and 0.905, respectively. For a benchtop NIR spectrometer, Rp values were 0.993, 0.958, 0.883, 0.955, 0.966 and 0.936, respectively. Passing-Bablok regression method results indicated no significant differences between the two instruments. A genetic algorithm (GA) and the successive projections algorithm (SPA) were used to screen the wavelength of the NIR spectrum and establish the model. The GA obtained more robust modeling results. This study concludes that the developed portable spectroscopy system combined with appropriate variable selection methods can be effectively used for rapid determination of caffeine, total catechins, and four individual catechins in instant green tea.
Collapse
Affiliation(s)
- Yemei Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jing Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Guangxin Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Luqing Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
36
|
Deka H, Barman T, Sarmah PP, Devi A, Tamuly P, Paul RK, Karak T. Quality characteristics of infusion and health consequences: a comparative study between orthodox and CTC green teas. RSC Adv 2020; 10:32833-32842. [PMID: 35516505 PMCID: PMC9056637 DOI: 10.1039/d0ra06254e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 08/13/2020] [Indexed: 11/21/2022] Open
Abstract
The present study compares the effects of two green tea processing techniques, viz. orthodox and CTC (curl, tear and crush) on the quality parameters and sensory profiles under the geographical and climatic conditions of Assam, India. The results showed that CTC green tea infusions had 13.3, 7.5, 7.1, 9.8, 5.4, 17.3, 17.1 and 18.6% more total polyphenol, total catechin, (-)-epigallocatechin-3-gallate (EGCG), (-)-epicatechin-3-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epicatechin (EC), water extract and theanine level, respectively than the infusions prepared from orthodox green tea. The sensory evaluation preferred the orthodox over CTC processing mode. Risk assessment with daily consumption of five cups (10 g) of green tea reveals that the EGCG level is free from the risk of hepatotoxicity and caffeine will not inflict any health hazard.
Collapse
Affiliation(s)
- Himangshu Deka
- Biochemistry Department, Tocklai Tea Research Institute Jorhat 785008 Assam India
| | - Tupu Barman
- Analytical Services Department, Tocklai Tea Research Institute Jorhat 785008 Assam India
| | - Podma Pollov Sarmah
- Biochemistry Department, Tocklai Tea Research Institute Jorhat 785008 Assam India
| | - Arundhuti Devi
- Resource Management and Environment Section, Institute of Advanced Study in Science and Technology Guwahati 781035 Assam India +91-9401081308
| | - Pradip Tamuly
- Biochemistry Department, Tocklai Tea Research Institute Jorhat 785008 Assam India
| | - Ranjit Kumar Paul
- ICAR-Indian Agricultural Statistics Research Institute New Delhi 110012 India
| | - Tanmoy Karak
- Upper Assam Advisory Centre, Tea Research Association Dikom 786101 Assam India +91-9435861567
| |
Collapse
|
37
|
Ren G, Liu Y, Ning J, Zhang Z. Hyperspectral imaging for discrimination of Keemun black tea quality categories: Multivariate calibration analysis and data fusion. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Guangxin Ren
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei 230036 China
| | - Ying Liu
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei 230036 China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei 230036 China
| | - Zhengzhu Zhang
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University Hefei 230036 China
| |
Collapse
|
38
|
Wei Y, Fang S, Jin G, Ni T, Hou Z, Li T, Deng W, Ning J. Effects of two yellowing process on colour, taste and nonvolatile compounds of bud yellow tea. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Shimao Fang
- Guizhou Tea Research Institute Guizhou Academy of Agricultural Sciences Guiyang Guizhou 550006 China
| | - Ge Jin
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Tiancheng Ni
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Zhiwei Hou
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Wei‐Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
- School of Tea and Food Science and Technology Anhui Agricultural University 130 Changjiang West Road Hefei 230036 China
| |
Collapse
|
39
|
Ren G, Fan Q, He X, Li W, Tang X. Applicability of multifunctional preprocessing device for simultaneous estimation of spreading of green tea, withering of black tea and shaking of oolong tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:560-569. [PMID: 31588555 DOI: 10.1002/jsfa.10046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/23/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Preprocessing technologies of fresh tea leaves have a great influence on tea quality. A multifunctional preprocessing device for tea raw materials has been designed and utilized as a novel item of equipment to synchronously meet the process needs of spreading of green tea, withering of black tea and shaking of oolong tea. RESULTS The preprocessing parameters of fresh tea leaves for spreading of green tea, withering of black tea and shaking of oolong tea were optimized by orthogonal experiments. Sensory assessment combined with statistical tools was employed as an analytical method to evaluate the pretreatment effect of processing different sorts of tea. The range analysis and variance analysis of tea sensory evaluation combined with chemical components (total polyphenols, free amino acids and soluble sugar) showed that A3 B2 C3 (70%, 25 °C, 8 h), A1 B3 C1 (60%, 28 °C, 18 h) and A1 B1 C3 (5 min, 20 °C, discontinuous leaf turning c) were considered to be the optimum schemes for the best pretreatment conditions of the above three major processing types of tea, respectively. The verification experiment of the proposed schemes was performed with satisfactory performance. CONCLUSION This study demonstrated that a multifunctional preprocessing device for fresh tea leaves can be successfully applied to simultaneously estimate spreading of green tea, withering of black tea and shaking of oolong tea. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangxin Ren
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Qiye Fan
- Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, China
| | - Xuejun He
- State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou, China
| | - Wencui Li
- Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, China
| | - Xiaolin Tang
- Hangzhou Tea Research Institute, All China Federation of Supply and Marketing Cooperatives, Hangzhou, China
| |
Collapse
|
40
|
Zhang L, Ho CT, Zhou J, Santos JS, Armstrong L, Granato D. Chemistry and Biological Activities of Processed Camellia sinensis Teas: A Comprehensive Review. Compr Rev Food Sci Food Saf 2019; 18:1474-1495. [PMID: 33336903 DOI: 10.1111/1541-4337.12479] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/05/2019] [Accepted: 06/25/2019] [Indexed: 01/20/2023]
Abstract
Tea is a typical processed beverage from the fresh leaves of Camellia sinensis [Camellia sinensis (L.) O. Kuntze] or Camellia assamica [Camellia sinensis var. assamica (Mast.) Kitamura] through different manufacturing techniques. The secondary metabolites of fresh tea leaves are mainly flavan-3-ols, phenolic acids, purine alkaloids, condensed tannins, hydrolysable tannins, saponins, flavonols, and their glycoside forms. During the processing, tea leaves go through several steps, such as withering, rolling, fermentation, postfermentation, and roasting (drying) to produce different types of tea. After processing, theaflavins, thearubigins, and flavan-3-ols derivatives emerge as the newly formed compounds with a corresponding decrease in concentrations of catechins. Each type of tea has its own critical process and presents unique chemical composition and flavor. The components among different teas also cause significant changes in their biological activities both in vitro and in vivo. In the present review, the progress of tea chemistry and the effects of individual unit operation on components were comprehensively described. The health benefits of tea were also reviewed based on the human epidemiological and clinical studies. Although there have been multiple studies about the tea chemistry and biological activities, most of existing results are related to tea polyphenols, especially (-)-epigallocatechin gallate. Other compounds, including the novel compounds, as well as isomers of amino acids and catechins, have not been explored in depth.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Chi-Tang Ho
- Dept. of Food Science, Rutgers Univ., New Brunswick, 08901-8554, NJ, U.S.A
| | - Jie Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural Univ., 230036, Hefei, People's Republic of China
| | - Jânio Sousa Santos
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Lorene Armstrong
- Graduation Program in Chemistry, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil
| | - Daniel Granato
- Graduation Program in Food Science and Technology, State Univ. of Ponta Grossa, 84030-900, Ponta Grossa, Brazil.,Innovative Food System Unit, Natural Resources Inst. Finland (LUKE), FI-02150, Espoo, Finland
| |
Collapse
|
41
|
Su H, Wu W, Wan X, Ning J. Discriminating geographical origins of green tea based on amino acid, polyphenol, and caffeine content through high-performance liquid chromatography: Taking Lu'an guapian tea as an example. Food Sci Nutr 2019; 7:2167-2175. [PMID: 31289665 PMCID: PMC6593377 DOI: 10.1002/fsn3.1062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 11/20/2022] Open
Abstract
Seventy-three Lu'an guapian tea (LAGP) samples were collected from 11 growing locations in the city of Lu'an, Anhui Province, China. Through high-performance liquid chromatography, 18 amino acids, along with gallic acid, caffeine, and five catechins, were quantitatively detected. Hierarchical cluster, correlation and principal component analysis, and a support vector machine were used for geographical discrimination. The findings suggested that the differences in tea quality between the inner and outer mountain regions are related to isoleucine, leucine, phenylalanine, and valine contents, with a correlation coefficient of more than 0.85. Principal component analysis combining with support vector machine was a feasible method. The identification rates for the inner and outer mountains were 97.96% in the training set and 95.83% in the prediction set. Furthermore, the identification rates for the three counties were 91.84% and 95.83% in the training and prediction sets, respectively.
Collapse
Affiliation(s)
- Huan Su
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Weiquan Wu
- Anhui Lu’an Guapian Tea Industry Co., LtdLu’anChina
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and UtilizationAnhui Agricultural UniversityHefeiChina
| |
Collapse
|