1
|
Xie L, Liu M, Zeng H, Zheng Z, Ye Y, Liu F. Effects of purple cabbage anthocyanin extract on the gluten characteristics and the gluten network evolution of high-gluten dough. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7629-7638. [PMID: 38779957 DOI: 10.1002/jsfa.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Anthocyanins are polyphenolic pigments that have hypoglycemic, antioxidation, anti-aging, and other effects. Research has shown that polyphenols can optimize the processing of dough and improve the texture and nutritional characteristics of dough products. The formation of gluten networks is decisive for the quality of flour products. The effects of purple cabbage anthocyanin (PCA) extract on the structure, microscopic morphology, and network formation of gluten protein were studied, and the types of cross-linking between PCA and gluten protein are discussed. RESULTS The results show that PCA extract increased the free sulfhydryl (SH) group content and the free amino group of gluten proteins, stimulated an increase in the β-sheet ratio and the decrease of α-helix ratio, and increased the gluten index significantly (P < 0.05). The PCA extract also induced gluten protein aggregation, increased the height of protein molecular chains, and stimulated the formation of gluten networks. When PCA extract concentrations were 4 g kg-1 and 8 g kg-1, the gluten network was more homogeneous, continuous, and dense. CONCLUSION Appropriate anthocyanins have a positive effect on the properties of gluten and promote the formation of gluten networks. Excessive anthocyanins destroy gluten protein interaction and harm gluten cross-linking. This study may provide a useful source of data for the production of functional flour products rich in anthocyanins. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Xie
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Minglong Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Huawei Zeng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yongkang Ye
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Fengru Liu
- Key Laboratory for Agricultural Products Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
2
|
Liang S, Gao Y, Granato D, Ye JH, Zhou W, Yin JF, Xu YQ. Pruned tea biomass plays a significant role in functional food production: A review on characterization and comprehensive utilization of abandon-plucked fresh tea leaves. Compr Rev Food Sci Food Saf 2024; 23:e13406. [PMID: 39030800 DOI: 10.1111/1541-4337.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/18/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Tea is the second largest nonalcoholic beverage in the world due to its characteristic flavor and well-known functional properties in vitro and in vivo. Global tea production reaches 6.397 million tons in 2022 and continues to rise. Fresh tea leaves are mainly harvested in spring, whereas thousands of tons are discarded in summer and autumn. Herein, pruned tea biomass refers to abandon-plucked leaves being pruned in the non-plucking period, especially in summer and autumn. At present, no relevant concluding remarks have been made on this undervalued biomass. This review summarizes the seasonal differences of intrinsic metabolites and pays special attention to the most critical bioactive and flavor compounds, including polyphenols, theanine, and caffeine. Additionally, meaningful and profound methods to transform abandon-plucked fresh tea leaves into high-value products are reviewed. In summer and autumn, tea plants accumulate much more phenols than in spring, especially epigallocatechin gallate (galloyl catechin), anthocyanins (catechin derivatives), and proanthocyanidins (polymerized catechins). Vigorous carbon metabolism induced by high light intensity and temperature in summer and autumn also accumulates carbohydrates, such as soluble sugars and cellulose. The characteristics of abandon-plucked tea leaves make them not ideal raw materials for tea, but suitable for novel tea products like beverages and food ingredients using traditional or hybrid technologies such as enzymatic transformation, microbial fermentation, formula screening, and extraction, with the abundant polyphenols in summer and autumn tea serving as prominent flavor and bioactive contributors.
Collapse
Affiliation(s)
- Shuang Liang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Gao
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Jian-Hui Ye
- Zhejiang University Tea Research Institute, Hangzhou, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Jun-Feng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
3
|
Niu J, Shang M, Li X, Sang S, Chen L, Long J, Jiao A, Ji H, Jin Z, Qiu C. Health benefits, mechanisms of interaction with food components, and delivery of tea polyphenols: a review. Crit Rev Food Sci Nutr 2023:1-13. [PMID: 37665600 DOI: 10.1080/10408398.2023.2253542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Tea polyphenols (TPs) are the most important active component of tea and have become a research focus among natural products, thanks to their antioxidant, lipid-lowering, liver-protecting, anti-tumor, and other biological activities. Polyphenols can interact with other food components, such as protein, polysaccharides, lipids, and metal ions to further improve the texture, flavor, and sensory quality of food, and are widely used in food fields, such as food preservatives, antibacterial agents and food packaging. However, the instability of TPs under conditions such as light or heat and their low bioavailability in the gastrointestinal environment also hinder their application in food. In this review, we summarized the health benefits of TPs. In order to better use TPs in food, we analyzed the form and mechanism of interaction between TPs and main food components, such as polysaccharides and proteins. Moreover, we reviewed research into optimizing the applications of TPs in food by bio-based delivery systems, such as liposomes, nanoemulsions, and nanoparticles, so as to improve the stability and bioactivity of TPs in food application. As an effective active ingredient, TPs have great potential to be applied in functional food to produce benefits for human health.
Collapse
Affiliation(s)
- Jingxian Niu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Mengshan Shang
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Food Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Long Chen
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Hangyan Ji
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Resources, International Joint Laboratory on Food Safety, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Obadi M, Li Y, Xu B. Recent advances in extending the shelf life of fresh wet noodles: Influencing factors and preservation technologies. J Food Sci 2023; 88:3626-3648. [PMID: 37548645 DOI: 10.1111/1750-3841.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023]
Abstract
Fresh wet noodles (FWNs) are popular among people and have attracted increasing attention because of their characteristics of freshness, chewiness, good taste, and better maintenance of noodle flavor. However, due to the high moisture content and abundance of nutrients in FWN, they are prone to spoilage, which shortens their shelf life and reduces their quality, greatly restricting their large-scale production. Therefore, seeking effective preservation methods to prolong the shelf life is a major breakthrough for the industrialization of FWN. The present review provides a comprehensive overview of the main factors that contribute to the spoilage and degradation of FWN. These factors encompass microorganisms, moisture content, nutritional composition, enzymes, and storage temperature. Moreover, the recent developments in novel shelf-life extension technology applied to FWN, such as chemical preservatives, natural preservatives, physical treatment technologies, and composite preservation technology, are presented and discussed. From the literature reviewed, the application of technologies, such as adding preservatives, modified atmosphere packaging, microwave, cold plasma, ozone, and other technologies, has a certain effect on improving the shelf life of FWN, but the single preservation technology still has some deficiencies. In order to further improve the preservation efficiency, using two or more preservation methods is an important direction for future research on the preservation technology of FWN.
Collapse
Affiliation(s)
- Mohammed Obadi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuntong Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Hunan Provincial Key Laboratory of Research, Resource Mining and High-valued Utilization on Edible & Medicinal Plant, Jishou University, Jishou, China
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Wang Z, Li Y, Qian C, Feng B, Xiong G, Jiang J, Chen Q. Processing quality and aroma characteristics of fresh noodles intermingled with large-leaf yellow tea powder. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Zhang G, Cao Y, Mei S, Guo Y, Gong S, Chu Q, Chen P. Another perspective to explain green tea cream: utilizing engineered catechin-caffeine complex. Food Res Int 2022; 158:111542. [DOI: 10.1016/j.foodres.2022.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/03/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
|
7
|
He WJ, Chen N, Yu ZL, Sun Q, He Q, Zeng WC. Effect of Structure Complexity of Catechins on the Properties of Glutenin: the Rule, Action Mechanism and Application. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Guo Q, Cai JH, Ren CW, Li YT, Farooq MA, Xu B. A new strategy for the shelf life extension of fresh noodles by accurately targeting specific microbial species. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
He W, Chen N, Yu Z, Sun Q, He Q, Zeng W. Effect of tea polyphenols on the quality of Chinese steamed bun and the action mechanism. J Food Sci 2022; 87:1500-1513. [DOI: 10.1111/1750-3841.16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Wen‐Jing He
- Antioxidant Polyphenols Team Department of Food Engineering, Sichuan University Chengdu P. R. China
| | - Nan Chen
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu P. R. China
| | - Zhi‐Long Yu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences McGill University Saint‐Anne‐de‐Bellevue Quebec Canada
| | - Qun Sun
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu P. R. China
| | - Qiang He
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu P. R. China
| | - Wei‐Cai Zeng
- Antioxidant Polyphenols Team Department of Food Engineering, Sichuan University Chengdu P. R. China
- The Key Laboratory of Food Science and Technology of Sichuan Province of Education Sichuan University Chengdu P. R. China
| |
Collapse
|
10
|
Comparison of interaction mechanism between chlorogenic acid/luteolin and glutenin/gliadin by multi-spectroscopic and thermodynamic methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Fu T, Niu L, Wu L, Xiao J. The improved rehydration property, flavor characteristics and nutritional quality of freeze-dried instant rice supplemented with tea powder products. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Li H, Zhai F, Li J, Zhu X, Guo Y, Zhao B, Xu B. Physicochemical properties and structure of modified potato starch granules and their complex with tea polyphenols. Int J Biol Macromol 2020; 166:521-528. [PMID: 33129907 DOI: 10.1016/j.ijbiomac.2020.10.209] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
The physicochemical, rheological properties and structure of potato starch and starch-tea polyphenols (TPs) complex modified by enzyme and alcohol was investigated in this study. Cavities on the modified starch granules and morphology change could be investigated by SEM, while significant birefringence observed in complete granules by polarizing light microscope, but disappeared in crashed starch. TPs inhibited the aggregation of amylose and retrogradation of starch-TPs complex, resulting in the decrease of gel strength, and the increase of viscosity and gelatinization stability of starch granules. Fourier transform infrared (FT-IR) spectra showed that intramolecular hydrogen bond could be formed between TPs with modified starch, and the hydrogen bond force formed by starch and TPs was stronger than that between starch molecules. X-ray diffraction (XRD) analysis revealed that three modification methods did not change the crystalline structure of starch, but new diffraction peaks appeared in the four starch-TPs complex, suggesting that the hydrogen bond was incurred by interaction between TPs and amylose to form V-type crystalline. These results demonstrated that the complex formed by TPs and native/modified potato starch could be used in food industrial applications due to the inhibition of starch retrogradation.
Collapse
Affiliation(s)
- Hua Li
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China.
| | - Fengyan Zhai
- Department of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Jianfeng Li
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Xuanxuan Zhu
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Yanyan Guo
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- Engineering Technology Research Center for Grain & Oil Food, State Administration of Grain, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Baocheng Xu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
13
|
Fu T, Niu L, Li Y, Li D, Xiao J. Effects of tea products on in vitro starch digestibility and eating quality of cooked rice using domestic cooking method. Food Funct 2020; 11:9881-9891. [PMID: 33094308 DOI: 10.1039/d0fo02499f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cooked rice (CR) is a staple diet for many people, but exhibits the high glycemic index that makes it difficult to control the blood glucose.
Collapse
Affiliation(s)
- Tiantian Fu
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang 330045
- P.R. China
| | - Liya Niu
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang 330045
- P.R. China
| | - Yun Li
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang 330045
- P.R. China
| | - Dongming Li
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang 330045
- P.R. China
| | - Jianhui Xiao
- School of Food Science and Engineering
- Jiangxi Agricultural University
- Nanchang 330045
- P.R. China
- Key Laboratory of Crop Physiology
| |
Collapse
|