1
|
Li M, Li Z, Deng M, Liu D, Sun B, Liu J, Guo J, Guo Y. Overview of Bovine Mastitis: Application of Metabolomics in Screening Its Predictive and Diagnostic Biomarkers. Animals (Basel) 2024; 14:2264. [PMID: 39123790 PMCID: PMC11311089 DOI: 10.3390/ani14152264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Bovine mastitis is an inflammatory disease of the mammary glands, and its pathogenesis and diagnosis are complicated. Through qualitative and quantitative analysis of small-molecule metabolites, the metabolomics technique plays an important role in finding biomarkers and studying the metabolic mechanism of bovine mastitis. Therefore, this paper reviews the predictive and diagnostic biomarkers of bovine mastitis that have been identified using metabolomics techniques and that are present in samples such as milk, blood, urine, rumen fluid, feces, and mammary tissue. In addition, the metabolic pathways of mastitis-related biomarkers in milk and blood were analyzed; it was found that the tricarboxylic acid (TCA) cycle was the most significant (FDR = 0.0015767) pathway in milk fluid, and glyoxylate and dicarboxylate metabolism was the most significant (FDR = 0.0081994) pathway in blood. The purpose of this review is to provide useful information for the prediction and early diagnosis of bovine mastitis.
Collapse
Affiliation(s)
- Muyang Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Zhongjie Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| | - Jianying Liu
- Agro-Tech Center of Guangdong Province, Guangzhou 510500, China;
| | - Jianchao Guo
- Agro-Tech Center of Guangdong Province, Guangzhou 510500, China;
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (M.L.); (Z.L.); (M.D.); (D.L.); (B.S.)
| |
Collapse
|
2
|
Ruampatana J, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Kanjanavaikoon K, der Veken WV, Poonyachoti S, Feyera T, Settachaimongkon S, Nuntapaitoon M. Clostridium butyricum Probiotic Feed Additive: Modulation of Sow Milk Metabolomics and Mitigation of Pre-Weaning Piglet Diarrhea. Animals (Basel) 2024; 14:2098. [PMID: 39061560 PMCID: PMC11273528 DOI: 10.3390/ani14142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to investigate the impact of Clostridium butyricum probiotic feed additive on sow and piglet performances, together with alterations in the lipidomic and metabolomic profiles of sow milk. Sixty-four Landrace × Yorkshire crossbred sows and 794 piglets were included. Sows were divided into two groups; i.e., (i) conventional gestation diet (control; n = 35) and (ii) conventional diet added with 10 g/sow/day of probiotic C. butyricum spores (treatment; n = 29) from one week before the estimated farrowing day until weaning (29.6 ± 4.8 days). The sow and piglet performances and incidence of piglet diarrhea were recorded. Changes in gross chemical composition, fatty acid and non-volatile polar metabolite profiles of sow colostrum, transient milk and mature milk were evaluated. The results showed that relative backfat loss in the treatment group (-2.3%) was significantly lower than in control group (11.6%), especially in primiparous sows (p = 0.019). The application of C. butyricum probiotics in sows significantly reduced the incidence of diarrhea in piglets (p < 0.001) but no other effect on piglet performance was found. Lipidomic and metabolomic analyses revealed variations in sow colostrum and milk biomolecular profiles, with indicative compounds significantly altered by feeding with the C. butyricum probiotics. In conclusion, the use of C. butyricum probiotics in sows may improve sow body condition and reduce diarrhea incidence in piglets, with underlying changes in milk composition that warrant further investigation. These findings support the potential of C. butyricum as a beneficial feed additive in swine production.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, DK-8830 Tjele, Denmark
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Vo TTP, Buranakarl C, Chamsuwan S, Thammacharoen S, Ratchakom P, Nuntapaitoon M, Settachaimongkon S. Changes in the metabolomic profiles of mammary secretion in relation to dam litter size and parity number in Black Bengal goats. Vet World 2024; 17:1469-1481. [PMID: 39185046 PMCID: PMC11344123 DOI: 10.14202/vetworld.2024.1469-1481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/11/2024] [Indexed: 08/27/2024] Open
Abstract
Background and Aim The colostrum is essential for a kid's survival and development. The metabolomic profiles of mammary secretion in goats are limited. This study investigated the metabolomic profiles of mammary secretion in purebred Black Bengal goats and their relationships with litter size and parity number. Materials and Methods 500 MHz nuclear magnetic resonance was used to analyze the metabolomic profiles of 43 colostrum and milk samples collected on delivery day and day 7 after parturition, respectively. Results Fifty-one metabolites were distinguished between colostrum and milk based on heatmap visualization and hierarchical cluster analysis. In colostrum, most compounds were present in significantly greater amounts than in milk. Milk of goats with multiple litter sizes had higher levels of lactose while fat, protein, total solids, solid not fat, and most of the metabolites were lower. The parity number of dams shows no difference in the composition of all components between primiparous and multiparous goats. Conclusion The components in colostrum were significantly more concentrated than those in milk. The multiple litter sizes in dams led to a significant impact on the composition of lactose and other milk metabolites.
Collapse
Affiliation(s)
- Tien Thi Phuong Vo
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chollada Buranakarl
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sumonwan Chamsuwan
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sumpun Thammacharoen
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Panupat Ratchakom
- Department of Livestock Development, Chiang Rai Provincial Livestock Office, Chiang Rai, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Multi-Omics for Functional Products in Food, Cosmetics and Animals Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Zhu C, Zhao Y, Yang F, Zhang Q, Zhao X, Yang Z, Dao X, Laghi L. Microbiome and metabolome analyses of milk and feces from dairy cows with healthy, subclinical, and clinical mastitis. Front Microbiol 2024; 15:1374911. [PMID: 38912351 PMCID: PMC11191547 DOI: 10.3389/fmicb.2024.1374911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Mastitis is commonly recognized as a localized inflammatory udder disease induced by the infiltration of exogenous pathogens. In the present study, our objective was to discern fecal and milk variations in both microbiota composition and metabolite profiles among three distinct groups of cows: healthy cows, cows with subclinical mastitis and cows with clinical mastitis. The fecal microbial community of cows with clinical mastitis was significantly less rich and diverse than the one harbored by healthy cows. In parallel, mastitis caused a strong disturbance in milk microbiota. Metabolomic profiles showed that eleven and twenty-eight molecules exhibited significant differences among the three groups in feces and milk, respectively. Similarly, to microbiota profile, milk metabolome was affected by mastitis more extensively than fecal metabolome, with particular reference to amino acids and sugars. Pathway analysis revealed that amino acids metabolism and energy metabolism could be considered as the main pathways altered by mastitis. These findings underscore the notable distinctions of fecal and milk samples among groups, from microbiome and metabolomic points of view. This observation stands to enhance our comprehension of mastitis in dairy cows.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Yuxuan Zhao
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xiaofang Dao
- College of Food Science and Technology, Southwest Minzu University, Chengdu, China
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| |
Collapse
|
5
|
Miyata S, Fan L, Kambe J, Qasimi MI, Takemoto S, Ito M, Li C, Yamamoto Y, Nagaoka K. Influence of repeated mastitis on the milk production and metabolic status in the subsequent lactation period of dairy cattle. Heliyon 2024; 10:e29789. [PMID: 38699047 PMCID: PMC11064075 DOI: 10.1016/j.heliyon.2024.e29789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Recurrent mastitis poses a common challenge on dairy farms. While the impact of repeated mastitis within the same lactation has been investigated, the difference from one lactation to the next, particularly concerning the change of milk and blood metabolites, remains unclear. This study aimed to examine the difference in milk yield, milk composition, and metabolic status in the subsequent lactation between healthy and repeated mastitis in the previous lactation. The study population comprised 50 cows chosen from 400 cows, with 25 having no history of mastitis and 25 experiencing mastitis more than three times during the last lactation. Following dry-off and calving, all cows initiated a new lactation, during which no mastitis was diagnosed until the sample collection period. In the group exposed to repeated mastitis, a significant decrease in milk fat levels was observed in the subsequent lactation, while no change was observed in milk somatic cell count (SCC). Milk collected from cows that had experienced repeated mastitis in the previous lactation exhibited significant increases in the levels of free amino acids, namely valine, proline, and alanine. However, no difference in plasma levels of these amino acids was noted. These results indicate that individuals exposed to repeated mastitis have persistent milk quality changes even after dry-off. Biomarker analysis suggested that the milk valine and proline showed a moderate biomarker potential on Kappa coefficients to characterize cows that have experienced repeated mastitis. Furthermore, the results of biomarker combinations for valine and proline provided the highest specificity (100 %), positive likelihood ratio (infinity), and substantial biomarker potential on kappa coefficients (0.68). These findings significantly enhance our understanding of the pathobiology and etiology of recurrent mastitis and provide a biomarker to characterize cows that have experienced repeated mastitis in the past.
Collapse
Affiliation(s)
- Shiho Miyata
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Lijie Fan
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Jun Kambe
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Mohammad Ibrahim Qasimi
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Satoshi Takemoto
- Central Research Institute for Feed and Livestock, ZEN-NOH (National Federation of Agricultural Cooperative Associations), Ibaraki, 319-0205, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Shizuoka, 431-3192, Japan
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, 183-8509, Japan
| |
Collapse
|
6
|
Enany S, Tartor YH, Kishk RM, Gadallah AM, Ahmed E, Magdeldin S. Proteomics and metabolomics analyses of Streptococcus agalactiae isolates from human and animal sources. Sci Rep 2023; 13:20980. [PMID: 38017083 PMCID: PMC10684508 DOI: 10.1038/s41598-023-47976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023] Open
Abstract
Streptococcus agalactiae (S. agalactiae), group B Streptococcus (GBS), a major cause of infection in a wide variety of diseases, have been compared in different human and animal sources. We aimed to compare the bacterial proteome and metabolome profiles of human and animal S. agalactiae strains to delineate biological interactions relevant to infection. With the innovative advancement in mass spectrometry, a comparative result between both strains provided a solid impression of different responses to the host. For instance, stress-related proteins (Asp23/Gls24 family envelope stress response protein and heat shock protein 70), which play a role in the survival of GBS under extreme environmental conditions or during treatment, are highly expressed in human and animal strains. One human strain contains ꞵ-lactamase (serine hydrolase) and biofilm regulatory protein (lytR), which are important virulence regulators and potential targets for the design of novel antimicrobials. Another human strain contains the aminoglycosides-resistance bifunctional AAC/APH (A0A0U2QMQ5) protein, which confers resistance to almost all clinically used aminoglycosides. Fifteen different metabolites were annotated between the two groups. L-aspartic acid, ureidopropionic acid, adenosine monophosphate, L-tryptophan, and guanosine monophosphate were annotated at higher levels in human strains. Butyric acid, fumaric acid, isoleucine, leucine, and hippuric acid have been found in both human and animal strains. Certain metabolites were uniquely expressed in animal strains, with fold changes greater than 2. For example, putrescine modulates biofilm formation. Overall, this study provides biological insights into the substantial possible bacterial response reflected in its macromolecular production, either at the proteomic or metabolomic level.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.
- Biomedical Research Department, Armed Force College of Medicine, Cairo, Egypt.
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Rania M Kishk
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Ahmed M Gadallah
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman Ahmed
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Department of Basic Research, Children's Cancer Hospital Egypt 57357, Cairo, 11441, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
7
|
Timlin M, Fitzpatrick E, McCarthy K, Tobin JT, Murphy EG, Pierce KM, Murphy JP, Hennessy D, O'Donovan M, Harbourne N, Brodkorb A, O'Callaghan TF. Impact of varying levels of pasture allowance on the nutritional quality and functionality of milk throughout lactation. J Dairy Sci 2023; 106:6597-6622. [PMID: 37532625 DOI: 10.3168/jds.2022-22921] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/12/2023] [Indexed: 08/04/2023]
Abstract
The objective of this study was to examine the impact of increasing proportions of grazed pasture in the diet on the composition, quality, and functionality of bovine milk across a full lactation. Fifty-four spring-calving cows were randomly assigned to 1 of 3 groups (n = 18), blocked on the basis of mean calving date (February 15, 2020 ± 0.8 d), pre-experimental daily milk yield (24.70 ± 3.70 kg), milk solids yield (2.30 ± 0.27 kg), lactation number (3.10 ± 0.13), and economic breeding index (182 ± 19). Raw milk samples were obtained weekly from each group between March and November 2020. Group 1 (GRS) consumed perennial ryegrass and was supplemented with 5% concentrates (dry matter basis); group 2 was maintained indoors and consumed a total mixed ration (TMR) diet consisting of maize silage, grass silage, and concentrates; and group 3 consumed a partial mixed ration diet (PMR), rotating between perennial ryegrass during the day and indoor TMR feeding at night. Raw milk samples consisted of a pooled morning and evening milking and were analyzed for gross composition, free amino acids, fatty acid composition, heat coagulation time, color, fat globule size, and pH. The TMR milks had a significantly higher total solids, lactose, protein, and whey protein as a proportion of protein content compared with both GRS and PMR milks. The GRS milks demonstrated a significantly lower somatic cell count (SCC), but a significantly higher pH and b*-value than both TMR and PMR milks. The PMR milks exhibited significantly lower total solids and fat content, but also demonstrated significantly higher SCC and total free amino acid content compared with GRS and TMR. Partial least squares discriminant analysis of fatty acid profiles displayed a distinct separation between GRS and TMR samples, while PMR displayed an overlap between both GRS and TMR groupings. Variable importance in projection analysis identified conjugated linoleic acid cis-9,trans-11, C18:2n-6 cis, C18:3n-3, C11:0, and C18:2n-6 trans as the largest contributors to the variation between the diets. Milk fats derived from GRS diets exhibited the highest proportion of unsaturated fats and higher unsaturation, health-promoting, and desaturase indices. The lowest proportions of saturated fats and the lowest atherogenic index were also exhibited by GRS-derived milk fats. This work highlights the positive influence of grass-fed milk for human consumption through its more nutritionally beneficial fatty acid profile, despite the highest milk solid percentages derived from TMR feeding systems. Furthermore, this study demonstrates the proportional response of previously highlighted biomarkers of pasture feeding to the proportion of pasture in the cow's diet.
Collapse
Affiliation(s)
- Mark Timlin
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 V1W8; Food for Health Ireland, University College Dublin, Ireland D04 V1W8
| | - Ellen Fitzpatrick
- Teagasc, Environmental Research Centre, Johnstown Castle, Wexford, Ireland Y35 Y521
| | - Kieran McCarthy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - John T Tobin
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996
| | - Eoin G Murphy
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996; Food for Health Ireland, University College Dublin, Ireland D04 V1W8
| | - Karina M Pierce
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 V1W8; Food for Health Ireland, University College Dublin, Ireland D04 V1W8
| | - John P Murphy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - Deirdre Hennessy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302; School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland T23 N73K
| | - Michael O'Donovan
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland P61 P302
| | - Niamh Harbourne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland D04 V1W8
| | - André Brodkorb
- Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland P61 C996; Food for Health Ireland, University College Dublin, Ireland D04 V1W8.
| | - Tom F O'Callaghan
- Food for Health Ireland, University College Dublin, Ireland D04 V1W8; School of Food and Nutritional Sciences, University College Cork, Cork, Ireland T12 K8AF
| |
Collapse
|
8
|
Denchai S, Sasomsin S, Prakitchaiwattana C, Phuenpong T, Homyog K, Mekboonsonglarp W, Settachaimongkon S. Influence of Different Types, Utilization Times, and Volumes of Aging Barrels on the Metabolite Profile of Red Wine Revealed by 1H-NMR Metabolomics Approach. Molecules 2023; 28:6716. [PMID: 37764490 PMCID: PMC10534683 DOI: 10.3390/molecules28186716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
It is well recognized that the aging process is a critical step in winemaking because it induces substantial chemical changes linked to the organoleptic properties and stability of the finished wines. Therefore, this study aimed to investigate the influence of different types, utilization times, and volumes of aging barrels on the metabolite profile of red wines, produced from Thai-grown Shiraz grapes, using a non-targeted proton nuclear magnetic resonance (1H-NMR) metabolomics approach. As a result, 37 non-volatile polar metabolites including alcohols, amino acids, organic acids, carbohydrates and low-molecular-weight phenolics were identified. Chemometric analysis allowed the discrimination of wine metabolite profiles associated with different types of aging containers (oak barrels vs. stainless-steel tanks), as well as the utilization times (2, 6 and >10 years old) and volumes (225, 500 and 2000 L) of the wooden barrels employed. Significant variations in the concentration of formate, fumarate, pyruvate, succinate, citrate, gallate, acetate, tyrosine, phenylalanine, histidine, γ-aminobutyrate, methionine and choline were statistically suggested as indicators accountable for the discrimination of samples aged under different conditions. These feature biomarkers could be applied to manipulate the use of aging containers to achieve the desired wine maturation profiles.
Collapse
Affiliation(s)
- Suwanan Denchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suppached Sasomsin
- Innovation & Winemaking Division, Siam Winery Company Limited, Samut Sakhon 74000, Thailand;
| | | | - Thanitaporn Phuenpong
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Eltemur D, Robatscher P, Oberhuber M, Scampicchio M, Ceccon A. Applications of Solution NMR Spectroscopy in Quality Assessment and Authentication of Bovine Milk. Foods 2023; 12:3240. [PMID: 37685173 PMCID: PMC10486658 DOI: 10.3390/foods12173240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is emerging as a promising technique for the analysis of bovine milk, primarily due to its non-destructive nature, minimal sample preparation requirements, and comprehensive approach to untargeted milk analysis. These inherent strengths of NMR make it a formidable complementary tool to mass spectrometry-based techniques in milk metabolomic studies. This review aims to provide a comprehensive overview of the applications of NMR techniques in the quality assessment and authentication of bovine milk. It will focus on the experimental setup and data processing techniques that contribute to achieving accurate and highly reproducible results. The review will also highlight key studies that have utilized commonly used NMR methodologies in milk analysis, covering a wide range of application fields. These applications include determining milk animal species and feeding regimes, as well as assessing milk nutritional quality and authenticity. By providing an overview of the diverse applications of NMR in milk analysis, this review aims to demonstrate the versatility and significance of NMR spectroscopy as an invaluable tool for milk and dairy metabolomics research and hence, for assessing the quality and authenticity of bovine milk.
Collapse
Affiliation(s)
- Dilek Eltemur
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Unversità 5, 39100 Bolzano, Italy
| | - Peter Robatscher
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
| | - Michael Oberhuber
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
| | - Matteo Scampicchio
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Unversità 5, 39100 Bolzano, Italy
| | - Alberto Ceccon
- Laimburg Research Centre, Laimburg 6—Pfatten (Vadena), 39040 Auer, Italy (A.C.)
| |
Collapse
|
10
|
Franzoi M, Niero G, Meoni G, Tenori L, Luchinat C, Penasa M, Cassandro M, De Marchi M. Effectiveness of mid-infrared spectroscopy for the prediction of cow milk metabolites. J Dairy Sci 2023:S0022-0302(23)00332-6. [PMID: 37296050 DOI: 10.3168/jds.2023-23226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
Proton nuclear magnetic resonance (1H NMR) spectroscopy is acknowledged as one of the most powerful analytical methods with cross-cutting applications in dairy foods. To date, the use of 1H NMR spectroscopy for the collection of milk metabolic profile is hindered by costly and time-consuming sample preparation and analysis. The present study aimed at evaluating the accuracy of mid-infrared spectroscopy (MIRS) as a rapid method for the prediction of cow milk metabolites determined through 1H NMR spectroscopy. Bulk milk (n = 72) and individual milk samples (n = 482) were analyzed through one-dimensional 1H NMR spectroscopy and MIRS. Nuclear magnetic resonance spectroscopy identified 35 milk metabolites, which were quantified in terms of relative abundance, and MIRS prediction models were developed on the same 35 milk metabolites, using partial least squares regression analysis. The best MIRS prediction models were developed for galactose-1-phosphate, glycerophosphocholine, orotate, choline, galactose, lecithin, glutamate, and lactose, with coefficient of determination in external validation from 0.58 to 0.85, and ratio of performance to deviation in external validation from 1.50 to 2.64. The remaining 27 metabolites were poorly predicted. This study represents a first attempt to predict milk metabolome. Further research is needed to specifically address whether developed prediction models may find practical application in the dairy sector, with particular regard to the screening of dairy cows' metabolic status, the quality control of dairy foods, and the identification of processed milk or incorrectly stored milk.
Collapse
Affiliation(s)
- M Franzoi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - G Niero
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - G Meoni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - L Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - C Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - M Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - M Cassandro
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy; Italian Holstein, Brown Swiss and Jersey Association (ANAFIBJ), Via Bergamo 292, 26100 Cremona, Italy
| | - M De Marchi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
11
|
Det-Udom R, Settachaimongkon S, Chancharoonpong C, Suphamityotin P, Suriya A, Prakitchaiwattana C. Factors affecting bacterial community dynamics and volatile metabolite profiles of Thai traditional salt fermented fish. FOOD SCI TECHNOL INT 2023; 29:266-274. [PMID: 35060788 DOI: 10.1177/10820132221075435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bacterial diversity of the Thai traditional salt fermented fish with roasted rice bran (Pla-ra) was investigated using classical and molecular approaches. Bacterial population of Pla-ra ranged from 102-106 in solid-state (SSF) and 106-109 CFU/g in submerged (SMF) fermentation types. Halanaerobium spp. and Lentibacillus spp. were the main genera particularly detected when rRNA analysis was applied. Tetragenococcus halophillus were dominant during the final stage in sea salt-recipe samples while Bacillus spp. were found in those rock salt recipes. In contrast, cultural plating demonstrated that Bacillus spp., generally B. amyloliquefaciens, were the dominant genera. In addition, B. pumilus, B. autrophaeus, B.subtilis and B. velezensis shown some relations with rock salt-recipe samples. The main volatile metabolites in all samples were butanoic acid and its derivatives. Key factors affected bacterial profiles and volatile compounds of salt fermented fish were type of salt, addition of roasted rice bran, and fermenting conditions.
Collapse
Affiliation(s)
- Rachatida Det-Udom
- Department of Food Technology, Faculty of Science, 133942Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, 133942Chulalongkorn University, Patumwan, Bangkok 10330, Thailand
| | - Chuenjit Chancharoonpong
- Department of Food Technology and Nutrition, Faculty of Natural Resources and Agro-Industry, 54775Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Porrarath Suphamityotin
- Department of Food Science and Technology, Faculty of Science and Technology, 65140Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | - Atchariya Suriya
- Department of Food and Services, 364550Faculty of Technology, Udon Thani Rajabhat University, Udon Thani 41000, Thailand
| | - Cheunjit Prakitchaiwattana
- Department of Food Technology, Faculty of Science, 133942Chulalongkorn University, Patumwan, Bangkok 10330, Thailand.,The Development of Foods and Food Additive from Innovative Microbial Fermentation Research Group, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Zhu C, Zhang Q, Zhao X, Yang Z, Yang F, Yang Y, Tang J, Laghi L. Metabolomic Analysis of Multiple Biological Specimens (Feces, Serum, and Urine) by 1H-NMR Spectroscopy from Dairy Cows with Clinical Mastitis. Animals (Basel) 2023; 13:ani13040741. [PMID: 36830529 PMCID: PMC9952568 DOI: 10.3390/ani13040741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Due to huge economic losses to the dairy industry worldwide, mastitis can be considered as one of the most common diseases in dairy cows. This work aimed to study this disease by comparing multiple biological specimens (feces, serum, and urine) from individuals with or without clinical mastitis. This was performed by a single analytical platform, namely 1H-NMR, through a multi-matrix strategy. Thanks to the high reproducibility of 1H-NMR, we could characterize 120 molecules across dairy cow feces, serum, and urine. Among them, 23 molecules were in common across the three biofluids. By integrating the results of multi-matrix metabolomics, several pathways pertaining to energy metabolism and amino acid metabolism appeared to be affected by clinical mastitis. The present work wished to deepen the understanding of dairy cow mastitis in its clinical form. Simultaneous analysis of metabolome changes across several key biofluids could facilitate knowledge discovery and the reliable identification of potential biomarkers, which could be, in turn, used to shed light on the early diagnosis of dairy cow mastitis in its subclinical form.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Qian Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xin Zhao
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Zhibo Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Falong Yang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yang Yang
- Farming and Animal Husbandry Bureau of Ganzi County, Ganzi 626700, China
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
- Correspondence: (J.T.); (L.L.); Tel.: +86-028-85928243 (J.T.); +39-0547-338106 (L.L.)
| |
Collapse
|
13
|
Settachaimongkon S, Homyog K, Mekboonsonglarp W, Soonoue P, Lerdamnuaylarp T, Prayoonpeeraput P, Theil PK, Nuntapaitoon M. Dynamics of fatty acid and non-volatile polar metabolite profiles in colostrum and milk depending on the lactation stage and parity number of sows. Sci Rep 2023; 13:1989. [PMID: 36737492 PMCID: PMC9898266 DOI: 10.1038/s41598-023-28966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
The objective of this study was to investigate the impact of lactation stage and parity number on fatty acid and non-volatile polar metabolite profiles in sow colostrum and milk using a metabolomics approach. A total number of 63 colostrum, transient and mature milk were collected from primiparous and multiparous Landrace × Yorkshire crossbred sows. Macrochemical, fatty acid and non-volatile polar metabolite compositions of samples were analyzed using infrared spectrometry, gas chromatography coupled with mass-spectrometry and proton nuclear magnetic resonance spectroscopy, respectively. Univariate and multivariate statistical analysis demonstrated significant impacts of lactation stage and parity number on colostrum and milk compositions. Chemometric analysis revealed significant influences of sow parity on the distinction in fatty acid profiles of mature milk while the distinction in non-volatile polar metabolite profiles was more evident in colostrum. Alterations in the concentration of linoleic (C18:2n6), lignoceric (C24:0), behenic (C22:0), caprylic (C8:0) and myristoleic (C14:1) acid together with those of creatine, creatinine phosphate, glutamate and glycolate were statistically suggested to be mainly affected by sow parity number. Variations in the concentration of these compounds reflected the physiological function of sow mammary gland influenced. This information could be applied for feed and feeding strategies in lactating sows and improving lactating performances.
Collapse
Affiliation(s)
- Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kunaporn Homyog
- Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pitikorn Soonoue
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Theerawat Lerdamnuaylarp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Poonradit Prayoonpeeraput
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence for Swine Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Niero G, Meoni G, Tenori L, Luchinat C, Visentin G, Callegaro S, Visentin E, Cassandro M, De Marchi M, Penasa M. Grazing affects metabolic pattern of individual cow milk. J Dairy Sci 2022; 105:9702-9712. [DOI: 10.3168/jds.2022-22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022]
|
15
|
Taylor EN, Beckmann M, Hewinson G, Rooke D, Sinclair LA, Mur LAJ. Metabolomic changes in lactating multiparous naturally MAP-infected Holstein-Friesian dairy cows suggest changes in mitochondrial energy pathways. Res Vet Sci 2022; 152:354-363. [PMID: 36108548 DOI: 10.1016/j.rvsc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 12/01/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative organism of Johne's Disease, a chronic intestinal infection of ruminants. Infected cows begin shedding MAP within the asymptomatic, subclinical stage of infection before clinical signs, such as weight loss, diarrhoea and reduced milk yields develop within the clinical stages of disease. Herein, we examine the milk metabolomic profiles of naturally MAP-infected Holstein-Friesian cows. The study used biobanked milk samples which were collected 73.4 ± 3.79 (early lactation) and 143 ± 3.79 (mean ± SE) (mid-lactation) days post-calving from 5 MAP-infected and 5 control multiparous cows. The milk metabolome was assessed using flow infusion electrospray high-resolution mass spectrometry (FIE-HRMS) for sensitive, non-targeted metabolite fingerprinting. Metabolite fingerprinting assessments using partial least squares discriminate analyses (PLS-DA) indicated that lactation stage was a larger source of variation than MAP status. Examining each lactation stage separately for changes associated to MAP-infection status identified 45 metabolites, 33 in early lactation and 12 in mid-lactation, but only 6 metabolites were targeted in both stages of lactation. Pathway enrichment analysis suggested that MAP affected the malate-aspartate shuffle during early lactation. Pearson's correlation analysis indicated relationships between milk lactose concentrations in mid-lactation and 6 metabolites that were tentatively linked to MAP-infection status. The targeted metabolites were suggestive of wider changes in the bioenergetic metabolism that appear to be an acceleration of the effects of progressing lactation in healthy cows. Additionally, milk lactose concentrations suggest that MAP reduces the availability of lactose derivatives.
Collapse
Affiliation(s)
| | | | - G Hewinson
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion, UK
| | - D Rooke
- ProTEM Services Ltd, West Sussex, UK
| | - L A Sinclair
- Department of Agriculture and Environment, Harper Adams University, Newport, Shropshire, UK
| | - L A J Mur
- Aberystwyth University, Ceredigion, UK.
| |
Collapse
|
16
|
Vargas-Bello-Pérez E, Pedersen NC, Khushvakov J, Ye Y, Dhakal R, Hansen HH, Ahrné L, Khakimov B. Effect of Supplementing Dairy Goat Diets With Rapeseed Oil or Sunflower Oil on Performance, Milk Composition, Milk Fatty Acid Profile, and in vitro Fermentation Kinetics. Front Vet Sci 2022; 9:899314. [PMID: 35782564 PMCID: PMC9244143 DOI: 10.3389/fvets.2022.899314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to determine the effect of supplementing dairy goat diets with rapeseed oil and sunflower oil on performance, milk composition, milk fatty acid profile, and in vitro fermentation kinetics. Nine Danish Landrace goats with 42 ± 5 days in milk were allocated to three treatment groups for 42 days. Animals received a basal diet, formulated with 85:15 forage:concentrate ratio, and the basal diet was supplemented with either rapeseed oil or sunflower oil at 4% of dry matter. Goat milk was sampled on days 14, 21, and 42. Milk composition was similar between treatments. From day 14 to day 42, milk yield increased (1.03 vs. 1.34 kg/d), while milk fat (2.72 vs. 1.82 g/d) and total solids (11.2 vs. 9.14 %) were reduced. Compared to control and rapeseed oil, sunflower decreased (P < 0.05) C4:0 (1.56, and 1.67 vs. 1.36 g/100 g) and both oils decreased (P < 0.05) C18:3n3 (0.60 vs. 0.20 and 0.10 g/100g). Rapeseed oil increased (P < 0.05) C18:2 cis9, trans11 compared to control and sunflower oil (0.37 vs. 0.13 and 0.19 g/100 g). Untargeted milk foodomics revealed slightly elevated (P < 0.05) gluconic acid and decreased hippuric acid (P < 0.05) in the milk of oil-fed goats compared to control. In vitro dry matter degradation (63.2 ± 0.02 %) was not affected by dietary treatments, while individual volatile fatty acid proportions, total volatile fatty acids (35.7 ± 2.44 mmol/l), CO2 (18.6 ± 1.15 mol), and CH4 (11.6 ± 1.16 mol) were not affected by dietary treatments. Sunflower oil and rapeseed oil decreased (P < 0.05) total gas production at 24 and 48 h compared with control. Overall, the use of sunflower oil or rapeseed oil at 4% DM inclusion did not compromise animal performance and milk composition.
Collapse
Affiliation(s)
- Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
- *Correspondence: Einar Vargas-Bello-Pérez
| | - Nanna Camilla Pedersen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jaloliddin Khushvakov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Winterthur, Switzerland
| | - Yongxin Ye
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Rajan Dhakal
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Hanne H. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lilia Ahrné
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bekzod Khakimov
- Department of Food Science, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Bekzod Khakimov
| |
Collapse
|
17
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
18
|
QU Q, JIN L. Application of nuclear magnetic resonance in food analysis. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.43622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Bobbo T, Meoni G, Niero G, Tenori L, Luchinat C, Cassandro M, Penasa M. Nuclear magnetic resonance spectroscopy to investigate the association between milk metabolites and udder quarter health status in dairy cows. J Dairy Sci 2021; 105:535-548. [PMID: 34656344 DOI: 10.3168/jds.2021-20906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
Nuclear magnetic resonance spectroscopy was applied to investigate the association between milk metabolome and udder quarter health status in dairy cows. Mammary gland health status was defined by combining information provided by traditional somatic cell count (SCC) and differential SCC (DSCC), which expresses the percentage of neutrophils and lymphocytes over total SCC. Quarter milk samples were collected in triplicate (d 1 to 3) from 10 Simmental cows, 5 defined as cases and 5 defined as controls according to SCC levels at d 0. A total of 120 samples were collected and analyzed for bacteriology, milk composition, SCC, DSCC, and milk metabolome. Bacteriological analysis revealed the presence of mostly coagulase-negative staphylococci in quarter milk samples of cows defined as cases. Nuclear magnetic resonance spectra of all quarter samples were first analyzed using the unsupervised multivariate approach principal component analysis, which revealed a specific metabolomic fingerprint of each cow. Then, the supervised cross-validated orthogonal projections to latent structures discriminant analysis unquestionably showed that each cow could be very well identified according to its milk metabolomic fingerprint (accuracy = 95.8%). The comparison of 12 different models, built on bucketed 1-dimensional NOESY spectra (noesygppr1d, Bruker BioSpin) using different SCC and DSCC thresholds, corroborated the assumption of improved udder health status classification ability by joining information provided by both SCC and DSCC. Univariate analysis performed on the 34 quantitated metabolites revealed lower levels of riboflavin, galactose, galactose-1-phosphate, dimethylsulfone, carnitine, hippurate, orotate, lecithin, succinate, glucose, and lactose, and greater levels of lactate, phenylalanine, choline, acetate, O-acetylcarnitine, 2-oxoglutarate, and valine, in milk samples with high somatic cells. In the 5 cases, results of the udder quarter with the highest SCC compared with its symmetrical relative were in line with quarter-level findings. Our study suggests that increased SCC is associated with changes in milk metabolite fingerprint and highlights the potential use of different metabolites as novel indicators of udder health status and milk quality.
Collapse
Affiliation(s)
- T Bobbo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy
| | - G Meoni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - G Niero
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy.
| | - L Tenori
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - C Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff," University of Florence, 50019 Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| | - M Cassandro
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy; Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana, 26100 Cremona (CR), Italy
| | - M Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy
| |
Collapse
|
20
|
Hu H, Fang Z, Mu T, Wang Z, Ma Y, Ma Y. Application of Metabolomics in Diagnosis of Cow Mastitis: A Review. Front Vet Sci 2021; 8:747519. [PMID: 34692813 PMCID: PMC8531087 DOI: 10.3389/fvets.2021.747519] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cow mastitis, with high incidence rate and complex cause of disease, is one of the main diseases that affect the development of dairy industry in the world. Clinical mastitis and subclinical mastitis caused by Staphylococcus aureus, Escherichia coli, Streptococcus, and other pathogens have a huge potential safety hazard to food safety and the rapid development of animal husbandry. The economic loss caused by cow mastitis is billions of dollars every year in the world. In recent years, the omics technology has been widely used in animal husbandry with the continuous breakthrough of sequencing technology and the continuous reduction of sequencing cost. For dairy cow mastitis, the traditional diagnostic technique, such as histopathological screening, somatic cell count, milk pH test, milk conductivity test, enzyme activity test, and infrared thermography, are difficult to fully and comprehensively clarify its pathogenesis due to their own limitations. Metabolomics technology is an important part of system biology, which can simultaneously analyze all low molecular weight metabolites such as amino acids, lipids, carbohydrates under the action of complex factors including internal and external environment and in a specific physiological period accurately and efficiently, and then clarify the related metabolic pathways. Metabolomics, as the most downstream of gene expression, can amplify the small changes of gene and protein expression at the level of metabolites, which can more fully reflect the cell function. The application of metabolomics technology in cow mastitis can analyze the hetero metabolites, identify the related biomarkers, and reveal the physiological and pathological changes of cow mammary gland, so as to provide valuable reference for the prediction, diagnosis, and treatment of mastitis. The research progress of metabolomics technology in cow mastitis in recent years was reviewed, in order to provide guidance for the development of cow health and dairy industry safety in this manuscript.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanfen Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| |
Collapse
|
21
|
Zhu C, Tang K, Lu X, Tang J, Laghi L. An Untargeted Metabolomics Investigation of Milk from Dairy Cows with Clinical Mastitis by 1H-NMR. Foods 2021; 10:foods10081707. [PMID: 34441485 PMCID: PMC8394248 DOI: 10.3390/foods10081707] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 01/21/2023] Open
Abstract
Mastitis is one of the diseases with the highest incidence in dairy cows, causing huge economic losses to the dairy industry all over the world. The aim of the study was to characterize mastitic milk metabolome through untargeted nuclear magnetic resonance spectroscopy (1H-NMR). Taking advantage of the high reproducibility of 1H-NMR, we had the opportunity to provide quantitative information for all the metabolites identified. Fifty-four molecules were characterized, sorted mainly into the chemical groups, namely amino acids, peptides and analogues, carbohydrates and derivates, organic acids and derivates, nucleosides, nucleotides and analogues. Combined with serum metabolomic investigations, several pathways were addressed to explain the mechanisms of milk metabolome variation affected by clinical mastitis, such as tricarboxylic acid cycle (TCA cycle) and phenylalanine, tyrosine and tryptophan biosynthesis. These results provide a further understanding of milk metabolome altered by clinical mastitis, which can be used as a reference for the further milk metabolome investigations.
Collapse
Affiliation(s)
- Chenglin Zhu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Kaiwei Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Xuan Lu
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
| | - Junni Tang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China; (C.Z.); (K.T.); (X.L.)
- Correspondence: ; Tel.: +86-028-8592-8243
| | - Luca Laghi
- Department of Agro-Food Science and Technology, University of Bologna, 47521 Cesena, Italy;
| |
Collapse
|