1
|
Hu F, Song YZ, Li JY, Thakur K, Zhang JG, Wei ZJ. Lycium barbarum pulp addition improves the dough properties and gluten protein structure. Food Chem X 2024; 23:101773. [PMID: 39280223 PMCID: PMC11399552 DOI: 10.1016/j.fochx.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
This study investigated the effects of Lycium barbarum pulp (LBP) on the properties of mixed dough and gluten protein. The results showed that appropriate addition of LBP (5 %) significantly improved the performance of the dough, promoted the aggregation of gluten protein, enhanced the water binding ability, and delayed the gelatinization of starch during cooking. Compared with the control group, the peak temperature (Tp) of the LBP sample gradually increased from 63.23 °C to 65.56 °C, the expansion force reduced by about 21.56 %, the absolute Zeta potential lowered by about 18.4 %, and the α -helix content and β -folding increased by 32.36 % and 10.23 %, respectively, indicating the more orderly and stable overall structure. However, LBP did not change the crystal configuration of starch and still showed typical type A line diffraction. Moreover, the addition of LBP increased the polyphenol content, which further improved the antioxidant properties and provided the possibility to improve the health potential of the flour.
Collapse
Affiliation(s)
- Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Yu-Zhu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jin-Yu Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
- School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China
| |
Collapse
|
2
|
The effect of chitosan oligosaccharides on the shelf-life and quality of fresh wet noodles. Carbohydr Polym 2023; 309:120704. [PMID: 36906365 DOI: 10.1016/j.carbpol.2023.120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
In this study, the effects of chitosan oligosaccharides (COS) on the microbial stability and quality properties of fresh wet noodles were evaluated. The addition of COS prolonged the shelf-life of fresh wet noodles at 4 °C by 3-6 days and effectively inhibited the growth of acidity value. However, the presence of COS increased the cooking loss of noodles significantly (P < 0.05) and decreased the hardness as well as tensile strength significantly (P < 0.05). The enthalpy of gelatinization (ΔH) was decreased by COS in the differential scanning calorimetry (DSC) analysis. Meanwhile, the addition of COS decreased the relative crystallinity of starch (from 24.93 % to 22.38 %) without changing the type of X-ray diffraction pattern, revealing that COS weakened the structural stability of starch. In addition, COS was observed to impair the development of compact gluten network by confocal laser scanning micrographs. Further, the free-sulfhydryl groups content and sodium dodecyl sulphate-extractable protein (SDS-EP) values of cooked noodles increased significant (P < 0.05), confirming the obstruction on the polymerization of gluten proteins during the hydrothermal process. Although COS adversely affected the quality of noodles, it was outstanding and feasible for the preservation of fresh wet noodles.
Collapse
|
3
|
Effect of Tartary Buckwheat Bran Substitution on the Quality, Bioactive Compounds Content, and In Vitro Starch Digestibility of Tartary Buckwheat Dried Noodles. Foods 2022; 11:foods11223696. [PMID: 36429287 PMCID: PMC9689101 DOI: 10.3390/foods11223696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the impact of partial replacement of Tartary buckwheat flour (TBF) with Tartary buckwheat bran flour (TBBF) on the quality, bioactive compounds content, and in vitro starch digestibility of Tartary buckwheat dried noodles (TBDNs). When the substitution of TBBF was increased from 0 to 35%, the cooking and textural properties decreased significantly (p < 0.05), while the content of bioactive compounds (phenolic, flavonoids and dietary fiber) increased significantly (p < 0.05). In addition, the substitution of TBBF decreased the starch digestibility of TBDNs. A 10.4% reduction in eGI values was observed in the TBDNs with 35% TBBF substitution compared to the control sample. The results of differential scanning calorimetry showed that with the increase of TBBF, TBDNs starch became more resistant to thermal processing. Meanwhile, the X-ray diffraction and Fourier transform infrared spectroscopy results revealed that the long- and short-range ordered structures of TBDN starch increased significantly (p < 0.05). Furthermore, the substitution of TBBF decreased the fluorescence intensity of α-amylase and amyloglucosidase. This study suggests that replacing TBF with TBBF could produce low glycemic index and nutrient-rich TBDNs.
Collapse
|
4
|
Tamilselvan T, Sharma S, Thomas PE, Goyal K, Prabhasankar P. Role of hydrocolloids in improving the rheology, quality characteristics and microstructure of gluten free proso millet bread. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Tamilselvan
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Shivani Sharma
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Pinchu Elizabath Thomas
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Kanchan Goyal
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| | - Pichan Prabhasankar
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Flour milling Baking and Confectionery Technology Department, CSIR‐Central Food Technological Research Institute Mysuru 570020 Karnataka India
| |
Collapse
|
5
|
Functionality of Cordia and Ziziphus Gums with Respect to the Dough Properties and Baking Performance of Stored Pan Bread and Sponge Cakes. Foods 2022; 11:foods11030460. [PMID: 35159610 PMCID: PMC8834351 DOI: 10.3390/foods11030460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/05/2022] Open
Abstract
The functionality of hydrocolloids of different origins, gum Cordia (GC), and gum ziziphus (GZ) on pan bread and sponge cake quality and their potential use in retarding the staling process have been studied. The effects of the gums were determined by assessing the pasting qualities of wheat flour slurry, dough properties, and the finished product. After 24 and 96 h of storage, investigations were conducted on the finished product. Micro-doughLab was used to assess dough mixing qualities, and a texture profile analysis (TPA) test was used to assess the texture. A hedonic sensory test of texture, scent, taste, color, and general approval was also conducted. The type of gum used had a significant impact on the physical properties of the bread and cake and their evolution through time. Reduced amylose retrogradation was demonstrated by the lower peak viscosity and substantially lower setback of wheat flour gels, which corresponded to lower gel hardness. Gums were superior at increasing the bread loaf volume, especially GZ, although gums had the opposite effect on cake volume. After both storage periods, the hardness of the bread and cake was much lower than that of the control. Except when 2% GC was used, adding GC and GZ gums to bread and cake invariably increased the overall acceptability of the product. In terms of shelf-life, GZ was able to retain all texture parameters, volume, and general acceptability close to the control after storage.
Collapse
|
6
|
Li Y, Liang W, Huang W, Huang M, Feng J. Complexation between burdock holocellulose nanocrystals and corn starch: gelatinization properties, microstructure, and digestibility in vitro. Food Funct 2021; 13:548-560. [PMID: 34951438 DOI: 10.1039/d1fo03418a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Holocellulose nanocrystals (hCNCs), with hydrodynamic diameters (DZ) ranging from about 600 to 200 nm, were prepared by treating burdock insoluble dietary fiber (IDF) with enzymes and ultrasonic power. It was revealed that hCNCs improved the viscosity of corn starch (CS) during pasting and inhibited its short-term retrogradation. Besides, the crystallinity, short-range order of the double helix, viscoelastic properties, and microstructure compactness of CS gels improved remarkably in the presence of burdock hCNCs. These effects were both size- and dose-dependent, which primarily originated from the hydrogen bonding between hCNCs and amylopectin or leached amylose. In this regard, the digestion of CS gels containing hCNCs was remarkably retarded because of the reduced accessibility of digestive enzymes to the glycosidic bonds. Therefore, burdock hCNCs, prepared from natural resources using green techniques, hold potential applications in functional foods of a low glycemic index.
Collapse
Affiliation(s)
- Ying Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wei Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.,Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Wuyang Huang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Meigui Huang
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing forestry university, 159 Longpan Road, Nanjing 210037, China
| | - Jin Feng
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
7
|
Effects of Pectin on the Physicochemical Properties and Freeze-Thaw Stability of Waxy Rice Starch. Foods 2021; 10:foods10102419. [PMID: 34681468 PMCID: PMC8536014 DOI: 10.3390/foods10102419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/30/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the effects of the addition of pectin (PEC) on the physicochemical properties and freeze-thaw stability of waxy rice starch (WRS) were investigated. As PEC content increased, the pasting viscosity and pasting temperature of WRS significantly increased (p < 0.05), whereas its breakdown value and setback value decreased. Differential scanning calorimetry showed that the addition of PEC increased the gelatinization temperature of WRS, but decreased its gelatinization enthalpy. Rheological measurements indicated that the addition of PEC did not change the shear-thinning behavior of WRS-PEC blends, and the storage modulus and loss modulus were positively correlated with PEC content. Moreover, the textural parameter of WRS decreased with the increase in PEC content. Furthermore, the addition of PEC decreased the transmittance of starch paste, but enhanced the freeze-thaw stability of WRS to some extent. These results may contribute to the development of WRS-based food products.
Collapse
|