1
|
Han K, Gao J, Wei W, Zhu Q, Fersht V, Zhang M. Laccase‐induced wheat bran arabinoxylan hydrogels from different wheat cultivars: Structural, physicochemical, and rheological characteristics. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kexin Han
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
| | - Jianbiao Gao
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
| | - Wei Wei
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
| | - Qiaomei Zhu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
- Beijing Key Laboratory of Flavor Chemistry Beijing Technology and Business University (BTBU) Beijing China
| | - Viktor Fersht
- Center for Applied Medicine and Food Safety “Biomed” Lomonosov Moscow State University Moscow Russia
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science & Technology Tianjin China
- China‐Russia Agricultural Processing Joint Laboratory Tianjin Agricultural University Tianjin China
| |
Collapse
|
2
|
Li P, Zhao F, Wei X, Tao X, Ding F. Biological modification of pentosans in wheat B starch wastewater and preparation of a composite film. BMC Biotechnol 2022; 22:4. [PMID: 35039025 PMCID: PMC8764783 DOI: 10.1186/s12896-022-00734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Petrochemical resources are becoming increasingly scarce, and petroleum-based plastic materials adversely impact the environment. Thus, replacement of petroleum-based materials with new and effective renewable materials is urgently required. RESULTS In this study, a wheat pentosan-degrading bacterium (MXT-1) was isolated from wheat-processing plant wastewater. The MXT-1 strain was identified using molecular biology techniques. The degradation characteristics of the bacteria in wheat pentosan were analyzed. The results show that wheat pentosan was effectively degraded by bacteria. The molecular weight of fermented wheat pentosan decreased from 1730 to 257 kDa. The pentosan before and after the biological modification was mixed with chitosan to prepare a composite film. After fermentation, the water-vapor permeability of the wheat pentosan film decreased from 0.2769 to 0.1286 g mm (m2 h KPa)-1. Results obtained from the Fourier-transformed infrared experiments demonstrate that the wave number of the hydroxyl-stretching vibration peak of the membrane material decreased, and the width of the peak widened. The diffraction peak of the film shifted to the higher 2θ, as seen using X-ray diffraction. The cross-section of the modified composite membrane was observed via scanning electron microscopy, which revealed that the structure was denser; however, no detectable phase separation was observed. These results may indicate improved molecular compatibility between wheat pentosan and chitosan and stronger hydrogen bonding between the molecules. Given the increased number of short-chain wheat pentosan molecules, although the tensile strength of the film decreased, its flexibility increased after fermentation modification. CONCLUSION The findings of this study established that the physical properties of polysaccharide films can be improved using strain MXT-1 to ferment and modify wheat pentosan. The compatibility and synergy between pentosan and chitosan molecules was substantially enhanced, and hydrogen bonding was strengthened after biological modification. Therefore, modified pentosan film could be a potential candidate material for edible packaging films.
Collapse
Affiliation(s)
- Piwu Li
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road 3501, Changqing District, Jinan, 250353, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Fei Zhao
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road 3501, Changqing District, Jinan, 250353, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Xiaofeng Wei
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road 3501, Changqing District, Jinan, 250353, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Xiangling Tao
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road 3501, Changqing District, Jinan, 250353, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Feng Ding
- School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Daxue Road 3501, Changqing District, Jinan, 250353, People's Republic of China. .,State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China.
| |
Collapse
|
3
|
Zhang Y, Li Y, Xia Q, Liu L, Wu Z, Pan D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit Rev Food Sci Nutr 2021:1-17. [PMID: 34748438 DOI: 10.1080/10408398.2021.1995842] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-glucan from cereals such as wheat, barley, oats and rye are a water-soluble dietary fiber, which are composed of repeating (1→4)-β-bond β-D-glucopyranosyl units and a single (1→3)-β-D-bond separated unit. β-glucan has a series of physicochemical properties (such as viscosity, gelling properties, solubility, etc.), which can be used as a food gel and fat substitute. Its structure endows the healthy functions, including anti-oxidative stress, lowering blood glucose and serum cholesterol, regulating metabolic syndrome and exerting gut immunity via gut microbiota. Due to their unique structural properties and efficacy, cereal β-glucan are not only applied in food substrates in the food industry, but also in food coatings and packaging. This article reviewed the applications of cereal β-glucan in hydrogels, aerogels, intelligent packaging systems and targeted delivery carriers in recent years. Cereal β-glucan in edible film and gel packaging applications are becoming more diversified and intelligent in recent years. Those advances provide a potential solution based on cereal β-glucan as biodegradable substances for immune regulation delivery system and intelligent gelling material in the biomedicine field.
Collapse
Affiliation(s)
- Yunzhen Zhang
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Yueqin Li
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Qiang Xia
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Lianliang Liu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| | - Daodong Pan
- College of Food and Pharmaceutical Sciences, Deep Processing Technology Key Laboratory of Zhejiang Province Animal Protein Food, Ningbo University, Ningbo, Zhejiang Province, PR China
| |
Collapse
|