1
|
Marino A, Leonardi M, Zambonelli A, Iotti M, Galante A. Application of Quantitative Magnetic Resonance Imaging (QMRI) to Evaluate the Effectiveness of Ultrasonic Atomization of Water in Truffle Preservation. J Fungi (Basel) 2024; 10:717. [PMID: 39452669 PMCID: PMC11509026 DOI: 10.3390/jof10100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Truffles of the Tuber genus (Pezizales, Ascomycetes) are among the most valuable and expensive foods, but their shelf life is limited to 7-10 days when stored at 4 °C. Alternative preservation methods have been proposed to extend their shelf life, though they may alter certain quality parameters. Recently, a hypogeal display case equipped with an ultrasonic humidity system (HDC) was developed, extending the shelf life to 2-3 weeks, depending on the truffle species. This study assesses the efficacy of HDC in preserving Tuber melanosporum and Tuber borchii ascomata over 16 days, using quantitative magnetic resonance imaging (QMRI) to monitor water content and other parameters. Sixteen T. melanosporum and six T. borchii ascomata were stored at 4 °C in an HDC or a static fridge (SF) as controls. QMRI confirmed that T. borchii has a shorter shelf life than T. melanosporum under all conditions. HDC reduced the rate of shrinkage, water, and mass loss in both species. Additionally, the Apparent Diffusion Coefficient (ADC), longitudinal relaxation time (T1), and transverse relaxation time (T2), which reflect molecular changes, decreased more slowly in HDC than SF. QMRI proves useful for studying water-rich samples and assessing truffle preservation technologies. Further optimization of this method for industrial use is needed.
Collapse
Affiliation(s)
- Alessia Marino
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.M.); (M.L.); (A.G.)
| | - Marco Leonardi
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.M.); (M.L.); (A.G.)
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy;
| | - Mirco Iotti
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.M.); (M.L.); (A.G.)
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences (MESVA), University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (A.M.); (M.L.); (A.G.)
- Gran Sasso National Laboratory (LNGS), National Institute for Nuclear Physics (INFN), 67100 L’Aquila, Italy
- Department of Physical and Chemical Sciences, CNR-SPIN Institute, 67100 L’Aquila, Italy
| |
Collapse
|
2
|
Marco P, Ángeles Sanz M, Tejedor-Calvo E, Garcia-Barreda S, Caboni P, Reyna S, Sánchez S. Volatilome changes during black truffle (Tuber melanosporum) ontogeny. Food Res Int 2024; 194:114938. [PMID: 39232548 DOI: 10.1016/j.foodres.2024.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/06/2024]
Abstract
The aroma is critical in the reproductive biology of truffles and in their commercial quality. However, previous research has almost exclusively focused on characterizing ripe ascocarps. We characterized the volatilome of the highly-prized black truffle (Tuber melanosporum) ascocarps from July, in an early development stage, to March, in the late harvesting season, and investigated the relationships among aroma, ascocarp growth and morphogenetic development. The aroma profile was analyzed using a head space gas chromatography technique coupled with mass spectrometer. Seventy-one volatile compounds were identified and three development stages were clearly distinguished according to the volatile profile. In unripe ascocarps of July-September, the profile was dominated by methanethiol (19 %), 4-penten-2-ol (11 %) and acetone (11 %), the monthly mean weight of ascocarps ranged 2-20 g, and morphogenetic stages 4-6a were prevalent. In unripe ascocarps of October-December, the most abundant volatiles were 4-penten-2-ol (21 %), methanethiol (20 %) and ethanol (13 %), the monthly mean ascocarp weight ranged 28-43 g, and morphogenetic stages 6a, 6b-c were prevalent. In ripe ascocarps (December-March), the most abundant volatiles were 4-penten-2-ol (17 %), dimethyl sulfide (16 %) and ethanol (10 %), ascocarp weight did not increase significantly, and 6b-c was practically the sole morphogenetic stage. Thirty volatiles were associated to one of these three development stages. Amongst those with higher occurrence, 4-penten-2-ol, dimethyl sulfide, ethyl acetate, 2-pentanol and 2-butanone were associated to ripe truffles, whereas methanethiol, isobutyl isobutyrate, butanedione and 3-methylanisole were associated to unripe truffles.
Collapse
Affiliation(s)
- Pedro Marco
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), C/ Miguel Servet 177 50013, Zaragoza, Spain
| | - M Ángeles Sanz
- Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), C/ Miguel Servet 177 50013, Zaragoza, Spain; Laboratories and Technological Assistance, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930 50059, Zaragoza, Spain
| | - Eva Tejedor-Calvo
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Universidad de Zaragoza, C/ Pedro Cerbuna 12 50009, Zaragoza, Spain
| | - Sergi Garcia-Barreda
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), C/ Miguel Servet 177 50013, Zaragoza, Spain.
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences. University of Cagliary. Via Ospedale 72 09124, Cagliari, Italy
| | - Santiago Reyna
- ETS Ingeniería Agronómica y del Medio Natural, Universitat Politècnica de València, Camino de Vera s/n 46021, Valencia, Spain
| | - Sergio Sánchez
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), C/ Miguel Servet 177 50013, Zaragoza, Spain
| |
Collapse
|
3
|
Morales D, de la Fuente-Nieto L, Marco P, Tejedor-Calvo E. Elaboration and Characterization of Novel Kombucha Drinks Based on Truffles ( Tuber melanosporum and Tuber aestivum) with Interesting Aromatic and Compositional Profiles. Foods 2024; 13:2162. [PMID: 38998667 PMCID: PMC11241703 DOI: 10.3390/foods13132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
The organoleptic and bioactive properties of truffles place these fungi as interesting materials for use in the of design functional foods based on fruiting bodies outside commercial standards. Moreover, kombucha beverages have become more popular in the Western world, leading to novel drinks using alternative substrates instead of tea leaves. In this work, two truffle species (Tuber melanosporum, TMEL; Tuber aestivum, TAES) and three different symbiotic consortia of bacteria and yeasts (SCOBYs: SC1, SC2, and SC3) were tested. Fermentation (21 days) was monitored in terms of physicochemical (pH, viscosity), biochemical (total carbohydrates, alcohol, soluble proteins, phenolic compounds), and sensory attributes (volatile organic compounds, VOCs). The obtained pH ranges were adequate, alcohol levels were undetectable or very low, and sugar content was lower than in traditional kombuchas or other beverages. In most cases, the usual bottling time could be applied (7-10 days), although longer fermentations are recommended (14 days) to reach higher protein and phenolic compounds contents. Truffle kombuchas produced up to 51 volatile organic compounds (alcohols, acids, esters, ketones, and aldehydes, among others), with TMEL showing a more complex profile than TAES. During the first week, acidic compound production was observed, especially acetic acid. Similar behavior in the VOC profile was reported with different SCOBYs.
Collapse
Affiliation(s)
- Diego Morales
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Laura de la Fuente-Nieto
- Departmental Section of Galenic Pharmacy and Food Technology, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Pedro Marco
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
| | - Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragón (CITA), Avenida Montañana 930, 50059 Zaragoza, Spain;
- Laboratory for Flavor Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Instituto Agroalimentario de Aragón (IA2), University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
4
|
Kuhar F, Tejedor-Calvo E, Sequeira A, Pelissero D, Cosse M, Donnini D, Nouhra E. Comprehensive Characterization of Tuber maculatum, New in Uruguay: Morphological, Molecular, and Aromatic Analyses. J Fungi (Basel) 2024; 10:421. [PMID: 38921407 PMCID: PMC11205242 DOI: 10.3390/jof10060421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Although only a few species of Tuber account for the major truffle sales volume, many species that are not considered delicacies are finding their way to the market, especially in regions where the traditionally appreciated ones do not occur. This is the case for whitish truffles. Specimens of whitish truffles were collected in pecan (Carya illinoinensis) orchards in Uruguay in October 2021. Morphological and molecular methods were used to characterize and assess their identity as Tuber maculatum Vittad. An SPME extraction of volatile compounds and GC-MS analyses were performed to characterize the aromatic profile of these specimens and evaluate their potential applications. Among the 60 VOCs detected, 3-octenone (mushroom odor), 3-octanol (moss, nut, mushroom odor), and 2H-pyran-2-one (no odor), followed by octen-1-ol-acetate (no odor) and 2-undecanone (orange, fresh, green odor) were the major compounds in T. maculatum fruiting bodies. The attributes of exotic edible mushrooms of commercial value in the region are highlighted. In particular, this work emphasizes the characteristics of truffles as a byproduct of pecan cultivation.
Collapse
Affiliation(s)
- Francisco Kuhar
- Innomy Biotech S.L. Astondo Bidea, Edificio 612, 48160 Derio, Spain
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Facultad de Ciencias Exactas, Físicas y Naturales (F.C.E.F. y N.), Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (D.P.); (E.N.)
| | - Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Avda. Montañana, 50059 Zaragoza, Spain;
- Laboratory for Flavour Analysis and Analytical Chemistry, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain
| | - Alejandro Sequeira
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Av. Italia 3318, Montevideo 11600, Uruguay; (A.S.); (M.C.)
| | - David Pelissero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Facultad de Ciencias Exactas, Físicas y Naturales (F.C.E.F. y N.), Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (D.P.); (E.N.)
| | - Mariana Cosse
- Departamento de Biodiversidad y Genética, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Av. Italia 3318, Montevideo 11600, Uruguay; (A.S.); (M.C.)
| | - Domizia Donnini
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06121 Perugia, Italy;
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Facultad de Ciencias Exactas, Físicas y Naturales (F.C.E.F. y N.), Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (D.P.); (E.N.)
| |
Collapse
|
5
|
Epping R, Lisec J, Koch M. Changes in Black Truffle ( Tuber melanosporum) Aroma during Storage under Different Conditions. J Fungi (Basel) 2024; 10:354. [PMID: 38786709 PMCID: PMC11121890 DOI: 10.3390/jof10050354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC-MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown.
Collapse
Affiliation(s)
| | | | - Matthias Koch
- Department of Analytical Chemistry and Reference Materials, Bundesanstalt für Materialforschung und-Prüfung (BAM), 12489 Berlin, Germany; (R.E.); (J.L.)
| |
Collapse
|
6
|
Tejedor-Calvo E, Garcia-Barreda S, Sebastián Dambolena J, Pelissero D, Sánchez S, Marco P, Nouhra E. Aromatic profile of black truffle grown in Argentina: Characterization of commercial categories and alterations associated to maturation, harvesting date and orchard management practices. Food Res Int 2023; 173:113300. [PMID: 37803611 DOI: 10.1016/j.foodres.2023.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Black truffle (Tuber melanosporum) is one of the most appreciated fungi in the world mainly due to its aromatic properties. In the emerging markets such as Argentina, the aroma of locally produced truffles has not been described yet. The volatile organic compounds (VOCs) from 102 black truffles from Argentina were analyzed using solid phase microextraction gas chromatography coupled with mass spectrometer detector (SPME-GC-MS). Several factors such as commercial category, maturity stage, host tree, geographical origin, and aromatic defects detected during classification were also registered and considered. As a result, 79 VOCs were detected, among which 2-methyl-propanal, 2-butanone, 2-methyl-1-propanol, butanal-3-methyl, 3-methyl-1-butanol, 2-methyl-1-butanol were present in high percentage in fresh mature truffles, whereas immature truffles were associated with 3,5-dimethoxytoluene, 2-phenyl-2-butenal, 2,3-dimethoxytoluene. The Argentine black truffles showed significant similarities in their aromatic profile when compared with their Australian and European counterparts, but with some distinctive notes.
Collapse
Affiliation(s)
- Eva Tejedor-Calvo
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón - IA2 (CITA-Zaragoza University), Av. Montañana, 930, 50059 Zaragoza, Spain.
| | - Sergi Garcia-Barreda
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón - IA2 (CITA-Zaragoza University), Av. Montañana, 930, 50059 Zaragoza, Spain
| | - José Sebastián Dambolena
- Instituto Multidisciplinario de Biología Vegetal (CONICET), FCEFyN, Universidad Nacional de Córdoba (UNC), CC 495, CP 5000 Córdoba, Argentina
| | - David Pelissero
- Instituto Multidisciplinario de Biología Vegetal (CONICET), FCEFyN, Universidad Nacional de Córdoba (UNC), CC 495, CP 5000 Córdoba, Argentina
| | - Sergio Sánchez
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón - IA2 (CITA-Zaragoza University), Av. Montañana, 930, 50059 Zaragoza, Spain
| | - Pedro Marco
- Department of Plant Science, Agrifood Research and Technology Centre of Aragon (CITA), Agrifood Institute of Aragón - IA2 (CITA-Zaragoza University), Av. Montañana, 930, 50059 Zaragoza, Spain
| | - Eduardo Nouhra
- Instituto Multidisciplinario de Biología Vegetal (CONICET), FCEFyN, Universidad Nacional de Córdoba (UNC), CC 495, CP 5000 Córdoba, Argentina
| |
Collapse
|
7
|
Ferreira I, Dias T, Mouazen AM, Cruz C. Using Science and Technology to Unveil The Hidden Delicacy Terfezia arenaria, a Desert Truffle. Foods 2023; 12:3527. [PMID: 37835181 PMCID: PMC10572273 DOI: 10.3390/foods12193527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Terfezia arenaria is a desert truffle native to the Mediterranean Basin region, highly appreciated for its nutritional and aromatic properties. Despite the increasing interest in this desert truffle, T. arenaria is not listed as an edible truffle authorized for trade in the European Union. Therefore, our objective was to showcase T. arenaria's nutritional and chemical composition and volatile profile. The nutritional analysis showed that T. arenaria is a good source of carbohydrates (67%), proteins (14%), and dietary fibre (10%), resulting in a Nutri-Score A. The truffle's volatile profile was dominated by eight-carbon volatile compounds, with 1-octen-3-ol being the most abundant (64%), and 29 compounds were reported for the first time for T. arenaria. T. arenaria's nutritional and chemical compositions were similar to those of four commercial mushroom and truffle species, while the aromatic profile was not. An electronic nose corroborated that T. arenaria's aromatic profile differs from that of the other four tested mushroom and truffle species. Our data showed that T. arenaria is a valuable food resource with a unique aroma and an analogous composition to meat, which makes it an ideal source for plant-based meat products. Our findings could help promote a sustainable future exploitation of T. arenaria and ensure the quality and authenticity of this delicacy.
Collapse
Affiliation(s)
- Inês Ferreira
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisboa, Portugal; (I.F.); (C.C.)
| | - Teresa Dias
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisboa, Portugal; (I.F.); (C.C.)
| | - Abdul M. Mouazen
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Cristina Cruz
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE, Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Bloco C2, 1749-016 Lisboa, Portugal; (I.F.); (C.C.)
| |
Collapse
|
8
|
de Souza AA, Ortíz BLS, Borges SF, Pinto AVP, Ramos RDS, Pena IC, Rocha Koga RDC, Batista CE, de Souza GC, Ferreira AM, Duvoisin Junior S, Tavares Carvalho JC. Acute Toxicity and Anti-Inflammatory Activity of Trattinnickia rhoifolia Willd (Sucuruba) Using the Zebrafish Model. Molecules 2022; 27:7741. [PMID: 36431841 PMCID: PMC9699319 DOI: 10.3390/molecules27227741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/12/2022] Open
Abstract
The species Trattinnickia rhoifolia Willd, (T. rhoifolia), which belongs to the Burseraceae family, is widely used in ethnopharmacological cultural practices by traditional Amazonian people for anti-inflammatory purposes, sometimes as their only therapeutic resource. Although it is used in teas, infusions, macerations and in food, the species is still unexplored in regard to its pharmacophoric potential and chemical profile. Therefore, the aim of this study was to conduct a phytochemical characterization of the hydroethanolic extract of T. rhoifolia leaves (HELTr) and to evaluate the acute toxicity and anti-inflammatory activity of this species using zebrafish (Danio rerio). The extract was analyzed by gas chromatography−mass spectrometry (GC-MS). The evaluation of the acute toxicity of the HELTr in adult zebrafish was determined using the limit test (2000 mg/kg), with behavioral and histopathological evaluations, in addition to the analysis of the anti-inflammatory potential of HELTr in carrageenan-induced abdominal edema, followed by the use of the computational method of molecular docking. The phytochemical profile of the species is chemically diverse, suggesting the presence of the fatty acids, ester, alcohol and benzoic acid classes, including propanoic acid, ethyl ester and hexadecanoic acid. In the studies of zebrafish performed according to the index of histopathological changes (IHC), the HELTr did not demonstrate toxicity in the behavioral and histopathological assessments, since the vital organs remained unchanged. Carrageenan-induced abdominal edema was significantly reduced at all HELTr doses (100, 200 and 500 mg/kg) in relation to the negative control, dimethyl sulfoxide (DMSO), while the 200 mg/kg dose showed significant anti-inflammatory activity in relation to the positive control (indomethacin). With these activities being confirmed by molecular docking studies, they showed a good profile for the inhibition of the enzyme Cyclooxygenase-2 (COX-2), as the interactions established at the sites of the receptors used in the docking study were similar to the controls (RCX, IMN and CEL). Therefore, the HELTr has an acceptable degree of safety for acute toxicity, defined in the analysis of behavioral changes, mortality and histopathology, with a significant anti-inflammatory action in zebrafish at all doses, which demonstrates the high pharmacophoric potential of the species. These results may direct future applications and drug development but still require further elucidation.
Collapse
Affiliation(s)
- Agerdânio Andrade de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Indigenous Intercultural Licensing Course, Binational Campus, Federal University of Amapá, Rodovia BR 156, No. 3051, Universidade, Oiapoque CEP 68980-000, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Brenda Lorena Sánchez Ortíz
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Swanny Ferreira Borges
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Andria Vanessa Pena Pinto
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Ryan da Silva Ramos
- Graduate Program in Biotechnology and Biodiversity-Network BIONORTE, Federal University of Amapá, Macapá CEP 68903-419, Amapá, Brazil
| | - Igor Colares Pena
- Laboratory of Modeling and Computational Chemistry, Department of Biological and Health Sciences, Federal University of Amapá, Macapá CEP 68902-280, Amapá, Brazil
| | - Rosemary de Carvalho Rocha Koga
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Carla Estefani Batista
- School of Technology, University of the State of Amazonas–UEA, Manaus CEP 69050-020, Amazonas, Brazil
| | - Gisele Custódio de Souza
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Adriana Maciel Ferreira
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
| | - Sergio Duvoisin Junior
- School of Technology, University of the State of Amazonas–UEA, Manaus CEP 69050-020, Amazonas, Brazil
| | - José Carlos Tavares Carvalho
- Post-Graduate Program in Pharmaceutical Innovation, Pharmacy Course, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, Macapá CEP 68903-419, Amapá, Brazil
- Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitschek, km 02, Macapá CEP 68903-419, Amapá, Brazil
- University Hospital of the Federal University of Amapá, R. do Estádio Zerão, Macapá CEP 68902-336, Amapá, Brazil
| |
Collapse
|
9
|
Gómez I, Lavega González R, Tejedor-Calvo E, Pérez Clavijo M, Carrasco J. Odor Profile of Four Cultivated and Freeze-Dried Edible Mushrooms by Using Sensory Panel, Electronic Nose and GC-MS. J Fungi (Basel) 2022; 8:953. [PMID: 36135678 PMCID: PMC9504341 DOI: 10.3390/jof8090953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cultivated mushrooms are well-known nutrient inputs for an equilibrated diet. Some species are broadly appreciated due to their medicinal properties. Lately, a number of novel foods and nutraceuticals based on dehydrated and freeze-dried powder obtained from cultivated mushrooms has been reaching the market. The food industry requires fast and reliable tools to prevent fraud. In this, work we have cultivated Agaricus bisporus sp. bisporus (AB) (white button mushroom), Agaricus bisporus sp. brunnescens (ABP) (portobello), Lentinula edodes (LE) (shiitake) and Grifola frondosa (GF) (maitake) using tailor-made substrates for the different species and standardized cropping conditions, which were individually freeze-dried to obtain the samples under evaluation. The aim of this article was to validate the use of two different methodologies, namely, electronic nose and sensory panel, to discriminate the olfactory profile of nutritional products based on freeze-dried mushrooms from the different cultivated species. Additionally, GC-MS was used to detect and quantify the most abundant volatile organic compounds (VOCs) in the samples. The multivariate analysis performed proved the utility of electronic nose as an analytical tool, which was similar to the classical sensory panel but faster in distinguishing among the different species, with one limitation it being unable to differentiate between the same species. GC-MS analysis showed the chemical volatile formulation of the samples, also showing significant differences between different samples but high similarities between varieties of the same cultivated species. The techniques employed can be used to prevent fraud and have the potential to evaluate further medicinal mushroom species and build solid and trustful connections between these novel food products and potential consumers.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Department of Biotechnology and Food Science, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Rebeca Lavega González
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH), Carretera Calahorra, KM 4, 26560 Autol, Spain
| | - Eva Tejedor-Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de Aragón—IA2 (CITA-Universidad de Zaragoza), Avda. Montañana 930, 50059 Zaragoza, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research—CIAL (UAM + CSIC), C/Nicolas Cabrera 9, Campus de Cantoblanco, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Margarita Pérez Clavijo
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH), Carretera Calahorra, KM 4, 26560 Autol, Spain
| | - Jaime Carrasco
- Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH), Carretera Calahorra, KM 4, 26560 Autol, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
10
|
Phong WN, Sung B, Cao Z, Gibberd MR, Dykes GA, Payne AD, Coorey R. Impact of different processing techniques on the key volatile profile, sensory, and consumer acceptance of black truffle (Tuber melanosporum Vittadini). J Food Sci 2022; 87:4174-4187. [PMID: 35975798 DOI: 10.1111/1750-3841.16275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/13/2022] [Indexed: 01/07/2023]
Abstract
Fresh truffles which include black truffle (Tuber melanosporum Vittadini) deteriorate and lose aroma rapidly after harvest; therefore, postharvest processing via freeze-drying or encapsulation is an option to preserve truffle aroma for extended supply. However, the aroma profile that directly affects the truffle quality and consumer acceptance is influenced by processing and producers require processing options that balance processing feasibility with retention of a suitable aroma profile. This study aimed to determine the impact of freeze-drying and encapsulation on the profile of key volatiles, consumer discrimination, and overall sensory impression (aroma intensity, liking, and acceptability) of processed truffle products compared to the starting material (positive control). The study combined experimental-scale processing with GC-MS analysis and consumer sensory evaluation to compare and optimize postharvest processing options. Based on the results, some volatile changes were detected in the processed truffle products compared to the positive control which were aligned with the consumer discrimination (triangle test) and the aroma intensity score (consumer sensory test). Despite some chemical and sensory differences detected, the consumer panel did not have any preference for processed truffle products compared to the positive control. The overall finding indicates the potential value of processing truffles into a natural flavoring ingredient for food application via freeze-drying or encapsulation, which should be of great interest for the truffle and food industry. According to the correlation analysis, the consumer acceptance of a truffle product may be increased by retaining 1-octen-3-ol and methional, while reducing the amount of p-cresol in the product. PRACTICAL APPLICATION: The postharvest process of turning truffles into a food flavoring ingredient may cause undesirable volatile changes that would directly impact the aroma quality and consumer acceptance of the processed truffle products. Hence, the impacts of freeze-drying and encapsulation on the chemical and sensory profile of truffles were evaluated in this study. Overall, the results of the concurrent instrument and sensory analysis demonstrated that both freeze-drying and encapsulation are potential options for processing.
Collapse
Affiliation(s)
- Win Nee Phong
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Billy Sung
- School of Management and Marketing, Curtin University, Bentley, Western Australia, Australia
| | - Zhanglong Cao
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Mark R Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gary A Dykes
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| |
Collapse
|
11
|
Kalogiouri NP, Manousi N, Paraskevopoulou A, Mourtzinos I, Zachariadis GA, Rosenberg E. Headspace Solid-Phase Microextraction Followed by Gas Chromatography-Mass Spectrometry as a Powerful Analytical Tool for the Discrimination of Truffle Species According to Their Volatiles. Front Nutr 2022; 9:856250. [PMID: 35558753 PMCID: PMC9085510 DOI: 10.3389/fnut.2022.856250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
This study provides the first assessment of the volatile metabolome map of Tuber Aestivum and Tuber Borchii originating from Greece using headspace solid-phase micro-extraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS). For the extraction of the volatile fraction, the SPME protocol was optimized after examining the effects of sample mass, extraction temperature, and extraction time using the one-variable at-a-time approach (OVAT). The optimum parameters involved the extraction of 100 mg of homogenized truffle for 45 min at 50°C. Overall, 19 truffle samples were analyzed, and the acquired data were normalized and further processed with chemometrics. Agglomerative hierarchical clustering (HCA) was used to identify the groups of the two species. Partial least squares-discriminant analysis (PLS-DA) was employed to develop a chemometric model that could discriminate the truffles according to the species and reveal characteristic volatile markers for Tuber Aestivum and Tuber Borchii grown in Greece.
Collapse
Affiliation(s)
- Natasa P. Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Natalia Manousi
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | - Adamantini Paraskevopoulou
- Laboratory of Food Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George A. Zachariadis
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Erwin Rosenberg
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| |
Collapse
|