1
|
Usman M, Sahar A, Aadil RM, Shahid M. Extraction and physicochemical characterization of native and broiler chicken feet gelatin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8939-8944. [PMID: 38958028 DOI: 10.1002/jsfa.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Poultry processing generates a large amount of industrial waste, which is rich in collagen content. This waste can be utilized for the extraction of valuable components such as gelatin, which can be used as an alternative to mammalian gelatin (porcine and bovine). RESULTS Gelatins were analyzed for their yield, proximate analysis, pH, color, viscosity, bloom strength, and texture profile analysis. The yield of broiler chicken feet gelatin (BCFG) was slightly higher (7.93%) as compared to native chicken feet gelatin (NCFG) (7.06%). The protein content was 85.92% and 82.53% for BCFG and NCFG. Both gelatin had moisture content in the standard range (< 15) as given by Gelatin Manufacturers of Europe (GME). Both gelatins showed higher bloom strength (326 g for NCFG and 203 g for BCFG) at 6.67% gelatin concentration, classified as high bloom. Fourier-transform infrared (FTIR) analysis showed amide I, amide A, amide B at 1636 cm-1, 3302 cm-1, 2945 cm-1 for NCFG and 1738 cm-1, 3292 cm-1, 2920 cm-1 for BCFG. At 6.67% gelatin concentration, hardness and cohesiveness values were also higher than commercial gelatin previously studied. The pH values for NCFG were 5.43 and BCFG was 5.31. Both NCFG and BCFG viscosities (4.43 and 3.85 cP) were in the optimum range of commercial gelatins (2-7 cP). CONCLUSION Hence, the present study concluded that both NCFG and BCFG have a huge potential to replace commercial mammalian gelatins (porcine and bovine) in the food industries. However further studies should be done to optimize the extraction process. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Usman
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Zhang L, Liu H, Zhao Q. Fish Gelatin-Based Flexible and Self-Healing Hydrogel Modified by Fe 2(SO 4) 3. Gels 2024; 10:557. [PMID: 39330159 PMCID: PMC11431273 DOI: 10.3390/gels10090557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
The application of fish gelatin (FG) is limited due to its poor mechanical properties and thermal stability, both of which could be significantly improved by gellan gum (GG) found in previous research. However, the FG/GG composite hydrogel was brittle and easily damaged by external forces. It was found that the composite hydrogel with Fe2(SO4)3 showed good flexibility and self-healing properties in the pre-experiment. Thus, the synergistic effect of FG, GG and Fe2(SO4)3 on the mechanical properties of the composite hydrogel was investigated in this study. According to one-way experiments, response surface tests and Texture Profile Analysis, it was found that under the optimum condition of FG concentration 186.443 g/L, GG concentration 8.666 g/L and Fe2(SO4)3 concentration 56.503 g/L, the springiness of the composite cylindrical hydrogel with the height of 25 mm formed in 25 mL beakers (bottom diameter 30 mm) was 7.602 mm. Determination of the rheological properties, compression performance, adhesive performance and self-healing properties showed that the composite hydrogel had good thermal stability, flexibility and self-healing properties with good adhesion, skin compliance and compressive strength, and it was easy to remove. The composite hydrogel showed strong antimicrobial activity against A. salmonicida and V. parahaemolyticus. All hydrogels showed a uniform and porous structure. The 3D structure of the composite hydrogel was much looser and more porous than the pure FG hydrogel. The flexible and self-healing composite hydrogel with some antimicrobial activity is suitable for the development of medical dressings, which broadens the applications of the composite hydrogel.
Collapse
Affiliation(s)
- Lili Zhang
- School of Food Engineering, Ludong University, Yantai 264025, China; (H.L.); (Q.Z.)
| | | | | |
Collapse
|
3
|
Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem 2024; 446:138893. [PMID: 38432137 DOI: 10.1016/j.foodchem.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Modern food chain supply management necessitates the dire need for mitigating food fraud and adulterations. This holistic review addresses different advanced detection technologies coupled with chemometrics to identify various types of adulterated foods. The data on research, patent and systematic review analyses (2018-2023) revealed both destructive and non-destructive methods to demarcate a rational approach for food fraud detection in various countries. These intricate hygiene standards and AI-based technology are also summarized for further prospective research. Chemometrics or AI-based techniques for extensive food fraud detection are demanded. A systematic assessment reveals that various methods to detect food fraud involving multiple substances need to be simple, expeditious, precise, cost-effective, eco-friendly and non-intrusive. The scrutiny resulted in 39 relevant experimental data sets answering key questions. However, additional research is necessitated for an affirmative conclusion in food fraud detection system with modern AI and machine learning approaches.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| | - Owias Iqbal Dar
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
4
|
Lan X, Luo M, Li M, Mu L, Li G, Chen G, He Z, Xiao J. Swim bladder-derived biomaterials: structures, compositions, properties, modifications, and biomedical applications. J Nanobiotechnology 2024; 22:186. [PMID: 38632585 PMCID: PMC11022367 DOI: 10.1186/s12951-024-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Animal-derived biomaterials have been extensively employed in clinical practice owing to their compositional and structural similarities with those of human tissues and organs, exhibiting good mechanical properties and biocompatibility, and extensive sources. However, there is an associated risk of infection with pathogenic microorganisms after the implantation of tissues from pigs, cattle, and other mammals in humans. Therefore, researchers have begun to explore the development of non-mammalian regenerative biomaterials. Among these is the swim bladder, a fish-derived biomaterial that is rapidly used in various fields of biomedicine because of its high collagen, elastin, and polysaccharide content. However, relevant reviews on the biomedical applications of swim bladders as effective biomaterials are lacking. Therefore, based on our previous research and in-depth understanding of this field, this review describes the structures and compositions, properties, and modifications of the swim bladder, with their direct (including soft tissue repair, dural repair, cardiovascular repair, and edible and pharmaceutical fish maw) and indirect applications (including extracted collagen peptides with smaller molecular weights, and collagen or gelatin with higher molecular weights used for hydrogels, and biological adhesives or glues) in the field of biomedicine in recent years. This review provides insights into the use of swim bladders as source of biomaterial; hence, it can aid biomedicine scholars by providing directions for advancements in this field.
Collapse
Affiliation(s)
- Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Meiling Li
- Southwest Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Li Y, Yang J, Sun L, Liu B, Li H, Peng L. Crosslinked fish scale gelatin/alginate dialdehyde functional films incorporated with carbon dots derived from pomelo peel waste for active food packaging. Int J Biol Macromol 2023; 253:127290. [PMID: 37820915 DOI: 10.1016/j.ijbiomac.2023.127290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
A multifunctional and environmentally friendly composite film was developed by incorporating pomelo peel-derived carbon dots (PCDs) into a fish scale gelatin (FSG)/alginate dialdehyde (ADA) biopolymer matrix. ADA was used to reinforce the physicomechanical properties of the FSG film via Schiff base crosslinking. PCDs with strong antioxidant and antimicrobial activities were synthesized via a hydrothermal method. The effect of various PCDs content on the surface morphological, physicochemical, and functional characteristics of the composite films was investigated. The results showed that the introduction of PCDs into the FSG/ADA matrix effectively reinforced the mechanical performance, enhanced the water vapor and water resistance, increased UV-light blocking, conferred fluorescence properties, and improved the thermal properties of the composite films. Under 3 wt% PCDs content, the FSG/ADA/PCDs-3 % composite film not only presented significant antioxidant capacity with a radical scavenging rate of 91.71 % for DPPH and approximately 100 % for ABTS, but also exhibited excellent antimicrobial ability against bacteria and fungi. Results of a preservation experiment showed that the prepared FSG/ADA/PCDs-3 % film preserved the physiological qualities of strawberries post-harvest and extended their shelf-life to 7 days at room temperature. Overall, the fabricated FSG/ADA/PCDs composite films are promising for use in eco-friendly active food packaging.
Collapse
Affiliation(s)
- Yongshi Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Junxian Yang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Linping Sun
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bingzhen Liu
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Hui Li
- Faculty of Food Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Lincai Peng
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
6
|
Madkhali OA. Drug Delivery of Gelatin Nanoparticles as a Biodegradable Polymer for the Treatment of Infectious Diseases: Perspectives and Challenges. Polymers (Basel) 2023; 15:4327. [PMID: 37960007 PMCID: PMC10648051 DOI: 10.3390/polym15214327] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, there has been a growing interest in the use of gelatin nanoparticles (GNPs) for the treatment of infectious diseases. The inherent properties of these nanoparticles make them attractive options for drug delivery. Their biocompatibility ensures that they can interact with biological systems without causing adverse reactions, while their biodegradability ensures that they can break down harmlessly in the body once their function is performed. Furthermore, their capacity for controlled drug release ensures that therapeutic agents can be delivered over a sustained period, thereby enhancing treatment efficacy. This review examines the current landscape of GNP-based drug delivery, with a specific focus on its potential applications and challenges in the context of infectious diseases. Key challenges include controlling drug release rates, ensuring nanoparticle stability under physiological conditions, scaling up production while maintaining quality, mitigating potential immunogenic reactions, optimizing drug loading efficiency, and tracking the biodistribution and clearance of GNPs in the body. Despite these hurdles, GNPs hold promising potential in the realm of infectious disease treatment. Ongoing research and innovation are essential to overcome these obstacles and completely harness the potential of GNPs in clinical applications.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
7
|
Grasso F, Méndez-Paz D, Vázquez Sobrado R, Orlandi V, Turrini F, De Negri Atanasio G, Grasselli E, Tiso M, Boggia R. Feasibility of Enzymatic Protein Extraction from a Dehydrated Fish Biomass Obtained from Unsorted Canned Yellowfin Tuna Side Streams: Part I. Gels 2023; 9:760. [PMID: 37754441 PMCID: PMC10531079 DOI: 10.3390/gels9090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
This study presents for the first time a scalable process for the extraction of valuable proteins starting from samples of unsorted mixed tuna scraps which were previously dehydrated by an industrial patented process. The aims of this work were both to avoid the onerous sorting step of tuna leftovers, which generally consists of isolating skin and bones for collagen/gelatin extraction, and to improve the logistic of managing highly perishable biomass thanks to the reduction in its volume and to its microbiological stabilization. In view of a zero-waste economy, all the protein fractions (namely, non-collagenous proteins NCs and ALKs, gelatin, and hydrolyzed gelatin peptides, HGPs) isolated in the proposed single cascade flowchart were stabilized and preliminarily characterized. The extraction flowchart proposed allows one to obtain the following most promising compounds: 1.7 g of gelatin, 3.2 g of HGPs, and 14.6 g of NCs per 100 g of dehydrated starting material. A focus on oven-dried gelatin was reported in terms of proximate analysis, amino acid composition, color parameters, FT-IR spectrum, pH, and viscoelastic properties (5 mPa·s of viscosity and 14.3 °C of gelling temperature). All the obtained extracts are intended to be exploited in food supplements, feed, fertilizers/plant bio-stimulants, packaging, and the cosmetic industry.
Collapse
Affiliation(s)
- Federica Grasso
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Diego Méndez-Paz
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (D.M.-P.); (R.V.S.)
| | - Rebeca Vázquez Sobrado
- ANFACO-CECOPESCA, Department of Circular Economy, Colexio Universitario, 36310 Vigo, Spain; (D.M.-P.); (R.V.S.)
| | - Valentina Orlandi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
| | - Federica Turrini
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy;
| | - Giulia De Negri Atanasio
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Elena Grasselli
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy;
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Micaela Tiso
- MICAMO LAB, Via XX Settembre 33/10, 16121 Genova, Italy;
| | - Raffaella Boggia
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (F.G.); (V.O.); (R.B.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
8
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
9
|
Machado I, Marques CF, Martins E, Alves AL, Reis RL, Silva TH. Marine Gelatin-Methacryloyl-Based Hydrogels as Cell Templates for Cartilage Tissue Engineering. Polymers (Basel) 2023; 15:polym15071674. [PMID: 37050288 PMCID: PMC10096504 DOI: 10.3390/polym15071674] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Marine-origin gelatin has been increasingly used as a safe alternative to bovine and porcine ones due to their structural similarity, avoiding the health-related problems and sociocultural concerns associated with using mammalian-origin materials. Another benefit of marine-origin gelatin is that it can be produced from fish processing-products enabling high production at low cost. Recent studies have demonstrated the excellent capacity of gelatin-methacryloyl (GelMA)-based hydrogels in a wide range of biomedical applications due to their suitable biological properties and tunable physical characteristics, such as tissue engineering applications, including the engineering of cartilage. In this study, fish gelatin was obtained from Greenland halibut skins by an acidic extraction method and further functionalized by methacrylation using methacrylic anhydride, developing a photosensitive gelatin-methacryloyl (GelMA) with a degree of functionalization of 58%. The produced marine GelMA allowed the fabrication of photo-crosslinked hydrogels by incorporating a photoinitiator and UV light exposure. To improve the biological performance, GelMA was combined with two glycosaminoglycans (GAGs): hyaluronic acid (HA) and chondroitin sulfate (CS). GAGs methacrylation reaction was necessary, rendering methacrylated HA (HAMA) and methacrylated CS (CSMA). Three different concentrations of GelMA were combined with CSMA and HAMA at different ratios to produce biomechanically stable hydrogels with tunable physicochemical features. The 20% (w/v) GelMA-based hydrogels produced in this work were tested as a matrix for chondrocyte culture for cartilage tissue engineering with formulations containing both HAMA and CSMA showing improved cell viability. The obtained results suggest these hybrid hydrogels be used as promising biomaterials for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Inês Machado
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Catarina F. Marques
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Correspondence:
| | - Eva Martins
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana L. Alves
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3B’s—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| |
Collapse
|
10
|
Ali A, Wei S, Ali A, Khan I, Sun Q, Xia Q, Wang Z, Han Z, Liu Y, Liu S. Research Progress on Nutritional Value, Preservation and Processing of Fish-A Review. Foods 2022; 11:3669. [PMID: 36429260 PMCID: PMC9689683 DOI: 10.3390/foods11223669] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The global population has rapidly expanded in the last few decades and is continuing to increase at a rapid pace. To meet this growing food demand fish is considered a balanced food source due to their high nutritious value and low cost. Fish are rich in well-balanced nutrients, a good source of polyunsaturated fatty acids and impose various health benefits. Furthermore, the most commonly used preservation technologies including cooling, freezing, super-chilling and chemical preservatives are discussed, which could prolong the shelf life. Non-thermal technologies such as pulsed electric field (PEF), fluorescence spectroscopy, hyperspectral imaging technique (HSI) and high-pressure processing (HPP) are used over thermal techniques in marine food industries for processing of most economical fish products in such a way as to meet consumer demands with minimal quality damage. Many by-products are produced as a result of processing techniques, which have caused serious environmental pollution. Therefore, highly advanced technologies to utilize these by-products for high-value-added product preparation for various applications are required. This review provides updated information on the nutritional value of fish, focusing on their preservation technologies to inhibit spoilage, improve shelf life, retard microbial and oxidative degradation while extending the new applications of non-thermal technologies, as well as reconsidering the values of by-products to obtain bioactive compounds that can be used as functional ingredients in pharmaceutical, cosmetics and food processing industries.
Collapse
Affiliation(s)
- Ahtisham Ali
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Adnan Ali
- Livestock & Dairy Development Department, Abbottabad 22080, Pakistan
| | - Imran Khan
- Department of Food Science and Technology, The University of Haripur, Haripur 22620, Pakistan
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Qiuyu Xia
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institute, Guangdong Provincial Engineering Technology Research Centre of Seafood, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
11
|
Xia Y, Meng F, Wang S, Li P, Geng C, Zhang X, Zhou Z, Kong F. Tough, antibacterial fish scale gelatin/chitosan film with excellent water vapor and UV-blocking performance comprising liquefied chitin and silica sol. Int J Biol Macromol 2022; 222:3250-3260. [DOI: 10.1016/j.ijbiomac.2022.10.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
12
|
Fabrication and in vitro evaluation of chitosan-gelatin based aceclofenac loaded scaffold. Int J Biol Macromol 2022; 224:223-232. [DOI: 10.1016/j.ijbiomac.2022.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|