1
|
Qin L, Li H, Lu H, Chen J, Wang H, Liao E. Tandem Mass Tag-based proteomic analysis of protein changes in superchilled crayfish (Procambarus clarkii) presoaked with carrageenan oligosaccharides. Food Chem 2024; 457:140126. [PMID: 38936119 DOI: 10.1016/j.foodchem.2024.140126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
To assess the effectiveness of carrageenan oligosaccharides (COs) in enhancing superchilling storage of crayfish, the physicochemical features of muscle and protein abundance in the refrigerated sample (RS), superchilled sample (SS) and COs soaked superchilled sample (CS) were evaluated. Microstructural and SDS-PAGE analyses suggested that CS exhibited fewer pores, with a microstructure and protein subunits distribution more similar to RS. Tandem Mass Tags quantitative proteomic analysis revealed 66 up-regulated differentially abundant proteins (DAPs) in the CS vs. SS batch, including myosin light chain 2, neural cadherin, integrin beta, lectin-like protein, toll-1, reticulon-1, and moesin/ezrin/radixin homolog 1, which facilitate cells adhesion and maintain membrane/cytoskeleton integrity. Eukaryotic Clusters of Orthologous Groups results confirmed that COs treatment increased the stability of crayfish myofibrillar proteins by up-regulating DAPs, which were concentrated in functional categories such as "posttranslation modification, protein turnover, chaperones", "signal transduction mechanisms", "energy production and conversion", and "cytoskeleton".
Collapse
Affiliation(s)
- Lerong Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Han Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongyan Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China; National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China.
| |
Collapse
|
2
|
Wang B, Liang J, Zhou C, Zhang J, Ji L, Li C, Mei X, Chen H. Research Progress on the Effect and Mechanism of Superchilling Preservation Technology on Meat Quality Control. Foods 2024; 13:3309. [PMID: 39456370 PMCID: PMC11507462 DOI: 10.3390/foods13203309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
During storage and transportation, meat is susceptible to the effects of microorganisms, endogenous enzymes, and oxygen, leading to issues such as moisture loss, spoilage, and deterioration. Superchilling, as a preservation method that combines the benefits of refrigeration and freezing, can effectively slow the growth and reproduction of microorganisms, control protein and lipid oxidation, reduce water loss, and maintain the quality and sensory properties of meat. This paper reviews the current application status of superchilling technology in meat preservation, focusing on the mechanisms of ice crystal formation, water retention, tenderness preservation, protein and fat oxidation control, and microbial growth inhibition under superchilling conditions. Additionally, it summarizes the research progress on the combined application of superchilling with emerging technologies such as electric fields, magnetic fields, and electron beams in meat preservation and explores its potential and future prospects for improving meat quality. The aim is to provide scientific evidence and technical support for the application of superchilling technology in enhancing meat quality.
Collapse
Affiliation(s)
- Bo Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Jiamin Liang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Changyu Zhou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science & Engineering, Ningbo University, Ningbo 315211, China;
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Lili Ji
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (B.W.); (J.L.); (L.J.)
| | - Congyan Li
- Sichuan Academy of Animal Husbandry Science, Chengdu 610106, China; (C.L.); (X.M.)
| | - Xiuli Mei
- Sichuan Academy of Animal Husbandry Science, Chengdu 610106, China; (C.L.); (X.M.)
| | - Hongyue Chen
- Chongqing Animal Husbandry and Veterinary Technology Extension Station, Chongqing 710014, China;
| |
Collapse
|
3
|
Qin L, Li H, Zhang Y, Chen J, Wang H, Liao E. Inhibitory effects of glutathione peroxidase on microbial spoilage of crayfish ( Procambarus clarkii) during refrigerated storage. Food Chem X 2024; 22:101388. [PMID: 38665628 PMCID: PMC11043841 DOI: 10.1016/j.fochx.2024.101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/17/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The variety of enzyme-based biological preservatives is limited. This study evaluated the effects of glutathione peroxidase (GSH-Px) on the quality of crayfish during refrigerated storage by measuring the pH, total volatile basic nitrogen, trimethylamine, and microbial contamination in crayfish muscle simulation system. The results revealed that 0.3% GSH-Px (CK3) not only suppressed the degradation of nitrogenous substances but also decreased the contamination levels of total viable, Enterobacteriaceae, and Pseudomonas counts (P < 0.05). Furthermore, the populations of Lactococcus, Aeromonas, and Massilia differed in the CK3 group compared to the other groups (P < 0.05) at the end of the storage (day 15). Moreover, the principal coordinate analysis showed that the colony composition of CK3 stored for 15 days was similar to that of the control group stored for 10 days. Therefore, GSH-Px exhibits antibacterial activity against Gram-negative bacteria and has good application potential in freshwater aquatic product preservation.
Collapse
Affiliation(s)
- Lerong Qin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Han Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ying Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
- National Research & Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, 430023, China
| | - Haibin Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
- National Research & Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, 430023, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
- National Research & Development Center for Se-rich Agricultural Products Processing Technology, Wuhan, 430023, China
| |
Collapse
|
4
|
Li H, Li Q, Wang Q, Chen J, Xia W, Liao E. Effects of Inoculating Autochthonous Starter Cultures on Changes of N-Nitrosamines and Their Precursors in Chinese Traditional Fermented Fish during In Vitro Human Digestion. Foods 2024; 13:2021. [PMID: 38998527 PMCID: PMC11241300 DOI: 10.3390/foods13132021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
The objective of this research was to investigate the impact of inoculating autochthonous starter cultures on the alterations in microorganisms, biogenic amines, nitrite, and N-nitrosamines in Chinese traditional fermented fish products (CTFPs) during in vitro human digestion. The results revealed that gastric digestion significantly (p < 0.05) inhibited the proliferation of lactic acid bacteria, yeast, Staphylococcus, and Enterobacteriaceae, whereas various microorganisms proliferated extensively during small intestine digestion. Meanwhile, small intestine digestion could significantly increase (p < 0.05) levels of putrescine, cadaverine, and tyramine. The reduced content observed in inoculated fermentation groups suggests that starter cultures may have the ability to deplete biogenic amines in this digestion stage. Gastric digestion significantly (p < 0.05) inhibited nitrite accumulation in all CTFPs samples. Conversely, the nitrite content increased significantly (p < 0.05) in all groups during subsequent small intestine digestion. However, the rise in the inoculated fermentation groups was smaller than that observed in the spontaneous fermentation group, indicating a potentially positive role of inoculated fermentation in inhibiting nitrite accumulation during this phase. Additionally, gastric digestion significantly (p < 0.05) elevated the levels of N-nitrosodimethylamine (NDMA) and N-nitrosopiperidine in CTFPs. Inoculation with L. plantarum 120, S. cerevisiae 2018, and mixed starter cultures (L. plantarum 120, S. cerevisiae 2018, and S. xylosus 135 [1:1:1]) effectively increased the degree of depletion of NDMA during this digestion process.
Collapse
Affiliation(s)
- Han Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qi Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan 430023, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan 430023, China
| | - Wenshui Xia
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Ministry of Education, Wuhan 430023, China
- National R&D Center for Se-Rich Agricultural Products Processing Technology, Wuhan 430023, China
| |
Collapse
|
5
|
Sun R, Xu W, Xiong L, Jiang N, Xia J, Zhu Y, Wang C, Liu Q, Ma Y, Luo H. The combined effects of ultrasound and plasma-activated water on microbial inactivation and quality attributes of crayfish during refrigerated storage. ULTRASONICS SONOCHEMISTRY 2023; 98:106517. [PMID: 37454538 PMCID: PMC10371844 DOI: 10.1016/j.ultsonch.2023.106517] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
In this study, a decontamination technology combining ultrasound (US) and plasma-activated water (PAW) was developed to better preserve crayfish. First, the decontamination efficacy of US, PAW and their combinations (UP) on crayfish was quantified after 0, 20, 40, or 60 min of treatments. The total viable count (TVC) was reduced by 0.27-0.77 Log CFU/g after individual US or PAW treatments, while a TVC reduction of 1.17 Log CFU/g was achieved after 40 min of UP treatment. Besides, the changes in psychrotrophic bacteria, lactic acid bacteria, yeasts and molds followed a similar trend to TVC. UP treatments normally resulted in more significant reductions in the natural microbiota of crayfish than US or PAW treatments. Furthermore, the microbial quality, physicochemical properties and sensory properties of crayfish after different treatments were assessed during storage at 4 °C for 12 days. According to TVC and total volatile basic nitrogen (TVB-N) values, the control group became unacceptable from 4 days, US or PAW groups became unacceptable from 6 days, while UP group extended the storage time to 8-10 days. During storage, thiobarbituric acid reactive substances (TBARS) values of all the groups were maintained below 0.5 mg/kg, among which the control group exhibited the highest value (0.39 mg/kg). Moreover, UP treatment effectively retarded the deterioration in color and texture properties of crayfish. Fourier transform infrared (FTIR) spectroscopy analysis indicated that UP treatment decreased the α-helix contents and increased the β-sheet contents of crayfish proteins, while the structural changes were not evident at the end of storage. Low-field nuclear magnetic resonance (LF-NMR) analysis revealed that UP treatment reduced the water migration and enhanced the stability of bond water in crayfish. In addition, E-nose analysis revealed the protection of UP treatment on the sensory properties of crayfish during storage. This study demonstrated that the combinations of US and PAW treatments effectively accelerated the decontamination of crayfish and contributed to better storage quality.
Collapse
Affiliation(s)
- Rongxue Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Weicheng Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Lingming Xiong
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Ning Jiang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China.
| | - Jiangyue Xia
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yongzhi Zhu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Cheng Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Qianyuan Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Yanhong Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; Integrated Scientific Research Base for Preservation, Storage and Processing Technology of Aquatic Products of the Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu 210014, China
| | - Haibo Luo
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
6
|
Liao E, Wu Y, Pan Y, Zhang Y, Zhang P, Chen J. Cryoprotective Effects of Carrageenan Oligosaccharides on Crayfish ( Procambarus clarkii) during Superchilling. Foods 2023; 12:foods12112258. [PMID: 37297502 DOI: 10.3390/foods12112258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Cryoprotectants are widely used to protect muscle tissue from ice crystal damage during the aquatic products freezing process, but traditional phosphate cryoprotectants may cause an imbalance in the calcium-to-phosphorus ratio for the human body. This study evaluated the effects of carrageenan oligosaccharides (CRGO) on quality deterioration and protein hydrolysis of crayfish (Procambarus clarkii) during superchilling. The physical-chemical analyses showed that CRGO treatments could significantly (p < 0.05) inhibit the increase of pH values, TVB-N, total viable counts, and thawing loss, and improve the water holding capacity and the proportion of immobilized water, which indicated that CRGO treatment effectively delayed the quality deterioration of crayfish. The myofibrillar protein structural results demonstrated that the increase of the disulfide bond, carbonyl content, S0-ANS, and the decrease of total sulfhydryl content were suppressed significantly (p < 0.05) in CRGO treatment groups. Furthermore, SDS-PAGE results showed that the band intensity of myosin heavy chain and actin in CRGO treatment groups were stronger than in the control. Overall, the application of CRGO to crayfish might maintain better quality and stable protein structure during the superchilling process, and CRGO has the potential to replace phosphate as a novel cryoprotectant for aquatic products.
Collapse
Affiliation(s)
- E Liao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Yuxin Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Pan
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ying Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Peng Zhang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), Wuhan 430023, China
- National Research & Development Branch Center for Crayfish Processing (Qianjiang), Qianjiang 433100, China
| |
Collapse
|
7
|
Tang C, Xu Y, Yu D, Xia W. Label-free quantification proteomics reveals potential proteins associated with the freshness status of crayfish (Procambarus clarkii) as affected by cooking. Food Res Int 2022; 160:111717. [DOI: 10.1016/j.foodres.2022.111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
|
8
|
Monitoring freshness of crayfish (Prokaryophyllus clarkii) through the combination of near-infrared spectroscopy and chemometric method. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01451-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|