1
|
Zhao Q, Lu C, Chang C, Gu L, Li J, Guo L, Hu S, Huang Z, Yang Y, Su Y. Studies on the Properties and Stability Mechanism of Double Emulsion Gels Prepared by Heat-Induced Aggregates of Egg White Protein-Oligosaccharides Glycosylation Products. Foods 2024; 13:1822. [PMID: 38928764 PMCID: PMC11202882 DOI: 10.3390/foods13121822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Multiple emulsions can dissolve some substances with different properties, such as hydrophilicity and lipophilicity, into different phases. They play an important role in protection, controlled release and targeted release of the encapsulated substances. However, it's poor stability has always been one of the main problems restricting its application in the food industry. For this reason, a heat-induced aggregate (HIA) of Maillard graft product of isomalto-oligosaccharides (IMO), as well as egg white protein (EWP), was used as hydrophilic emulsifier to improve the stability of W1/O/W2 emulsions. Moreover, gelatin was added into the internal aqueous phase (W1) to construct W1/O/W2 emulsion-gels system. The encapsulation efficiency of HIA-stabilized W1/O/W2 emulsions remained nearly unaltered, dropping by only 0.86%, significantly outperforming the conjugates and physical mixture of IMO and EWP in terms of encapsulation stability. The emulsion-gels system was constructed by adding 5% gelatin in the W1, and had the highest EE% and good salt and heat stability after 30 days of storage. This experiment provides guidance for improving the stability of W1/O/W2 emulsions system and its application in the package delivery of functional substances in the food field.
Collapse
Affiliation(s)
- Qianwen Zhao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Cheng Lu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Lulu Guo
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Shende Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Zijian Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Q.Z.); (C.L.); (C.C.); (L.G.); (J.L.); (L.G.); (S.H.); (Y.Y.)
| |
Collapse
|
2
|
Su C, De Meulenaer B, Van der Meeren P. Analytics and applications of polyglycerol polyricinoleate (PGPR)-Current research progress. Compr Rev Food Sci Food Saf 2023; 22:4282-4301. [PMID: 37583303 DOI: 10.1111/1541-4337.13223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Polyglycerol polyricinoleate (PGPR) is a synthetic food additive containing a complex mixture of various esters. In recent years, there has been a growing trend to use PGPR-stabilized water-in-oil (W/O) emulsions to replace fat in order to produce low-calorie food products. In this respect, it is essential to comprehensively characterize the PGPR molecular species composition, which might enable to reduce its required amount in emulsions and foods based on a better understanding of the structure-activity relationship. This review presents the recent research progress on the characterization and quantitative analysis of PGPR. The influencing factors of the emulsifying ability of PGPR in W/O emulsions are further illustrated to provide new insights on the total or partial replacement of PGPR. Moreover, the latest progress on applications of PGPR in food products is described. Current studies have revealed the complex structure of PGPR. Besides, recent research has focused on the quantitative determination of the composition of PGPR and the quantification of the PGPR concentration in foods. However, research on the quantitative determination of the (poly)glycerol composition of PGPR and of the individual molecular species present in PGPR is still limited. Some natural water- or oil-soluble surfactants (e.g., proteins or lecithin) have been proven to enable the partial replacement of PGPR in W/O emulsions. Additionally, water-dispersible phytosterol particles and lecithin have been successfully used as a substitute of PGPR to create stable W/O emulsions.
Collapse
Affiliation(s)
- Chunxia Su
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- nutriFOODchem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno De Meulenaer
- nutriFOODchem, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|