1
|
Yerezhepov D, Gabdulkayum A, Akhmetova A, Abilova Z, Rakhimova S, Kairov U, Akilzhanova A, Kozhamkulov U. Epidemiological and genetic aspects of pulmonary tuberculosis in Kazakhstan. J Infect Public Health 2024; 17:102540. [PMID: 39260130 DOI: 10.1016/j.jiph.2024.102540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
OBJECTIVE Tuberculosis is a major health problem in many countries, including Kazakhstan. Host genetics can affect TB risk, and epidemiological and social factors may contribute to disease progression. Due to the high incidence of pulmonary tuberculosis in the country, our research aimed to study the epidemiological and genetic aspects of pulmonary tuberculosis in Kazakhstan. MATERIAL AND METHODS 1026 participants of Central Asian origin were recruited in the study: 342 individuals diagnosed with active PTB, 342 household contacts, and 342 controls without a family history of TB. Genetic polymorphisms of selected genes were determined by real-time polymerase chain reaction. The association between the risk of pulmonary TB and polymorphisms was evaluated using logistic regression and assessed with the ORs and their corresponding 95 % CIs, and the significance level was determined as p < 0.05. RESULTS Epidemiological data revealed that underweight BMI (χ² = 89.97, p < 0.001), employment (χ² = 39.28, p < 0.001), and diabetes (χ² = 12.38, p < 0.001) showed a significant association with PTB. A/T polymorphism of the IFG gene showed a lower risk, and A/A polymorphism showed an increased risk of susceptibility to TB. A/A polymorphism of the IFG gene was associated with an almost 3-fold increased risk of PTB, and A/T polymorphism of the IFG gene was associated with a decreased risk of PTB (OR = 0.67, 95 % CI = 0.49-0.92, p = 0.01). The analysis revealed a decreased risk of PTB for A/A polymorphism of the VDR ApaI (OR = 0.67, 95 % CI = 0.46-0.97, p < 0.05). A/A polymorphism of the TLR8 gene was associated with a 1.5-fold increased risk of PTB (OR = 1.53, 95 % CI = 1.00-2.33, p < 0.05). CONCLUSION Results showed that gender, employment, underweight BMI and diabetes are associated with PTB incidence in our study cohort. The A/A genotype of the IFG (rs2430561) and an A/A genotype of the TLR8 (rs3764880) genes were associated with an increased risk of PTB. A/T polymorphism of the IFG (rs2430561) and A/A polymorphism of the VDR ApaI were associated with a decreased risk of PTB.
Collapse
Affiliation(s)
- Dauren Yerezhepov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Aidana Gabdulkayum
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ainur Akhmetova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Zhannur Abilova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Saule Rakhimova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ainur Akilzhanova
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ulan Kozhamkulov
- Laboratory of Genomic and Personalized Medicine, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
2
|
Schorey JS, Vecchio J, McManus WR, Ongalo J, Webber K. Activation of host nucleic acid sensors by Mycobacterium: good for us or good for them? Crit Rev Microbiol 2024; 50:224-240. [PMID: 38153209 PMCID: PMC10985831 DOI: 10.1080/1040841x.2023.2294904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
Although the importance of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) sensors in controlling viral infection is well established, their role in promoting an effective immune response to pathogens other than viruses is less clear. This is particularly true for infections with mycobacteria, as studies point to both protective and detrimental roles for activation of nucleic acid sensors in controlling a mycobacterial infection. Some of the contradiction likely stems from the use of different model systems and different mycobacterial species/strains as well as from which nucleic acid sensors were studied and what downstream effectors were evaluated. In this review, we will describe the different nucleic acid sensors that have been studied in the context of mycobacterial infections, and how the different studies compare. We conclude with a section on how nucleic acid sensor agonists have been used therapeutically and what further information is needed to enhance their potential as therapeutic agents.
Collapse
Affiliation(s)
- Jeffery S. Schorey
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joseph Vecchio
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - William R. McManus
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Joshua Ongalo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| | - Kylie Webber
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
3
|
Zhang J, Wang MG, Xiang X, He JQ. Association between a single nucleotide polymorphism of the IL23R gene and tuberculosis in a Chinese Han population: a case‒control study. BMC Pulm Med 2023; 23:265. [PMID: 37464360 DOI: 10.1186/s12890-023-02546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/01/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Severe tuberculosis constitutes a significant menace to human safety and well-being, with a considerable mortality rate. The severity of tuberculosis can be impacted by genetic variations in host genes, particularly single nucleotide polymorphisms (SNPs). METHODS A case‒control study was undertaken, encompassing a cohort of 1137 tuberculosis patients (558 with severe tuberculosis and 579 with mild tuberculosis), alongside 581 healthy controls within the age range of fifteen to forty-five years. Whole blood DNA was extracted from all participants, and three tag polymorphisms (rs1884444, rs7518660, rs7539625) of the IL23R gene were selectively identified and genotyped. RESULTS No significant correlation was observed between the IL23R gene polymorphisms (rs1884444, rs7518660, and rs7539625) and tuberculosis. Upon comparing the tuberculosis group with the healthy control group, the mild tuberculosis group with the healthy control group, and the severe tuberculosis group with the healthy control group, the obtained P-values were> 0.05. However, in the comparison between severe tuberculosis and mild tuberculosis, the presence of rs1884444 G alleles exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex (ORa: 1.199, 95% CI: 1.009-1.424; Pa=0.039, respectively). In subgroup analysis, after accounting for confounding factors, including age and sex, rs1884444 G alleles continued to demonstrate a significantly heightened risk of severe tuberculosis. Nonetheless, the comparison between the multisystemic tuberculosis group and the mild tuberculosis group was no significant difference. Notably, rs1884444 of the IL23R gene exhibited a noteworthy association with the risk of severe tuberculosis in the comparison between severe tuberculosis and mild tuberculosis before and after adjusting for age and sex (ORa: 1.301, 95% CI: 1.030-1.643; Pa=0.027, respectively). Furthermore, the presence of the rs1884444 G allele exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex in the comparison between tuberculous meningitis and mild tuberculosis (ORa: 1.646, 95% CI: 1.100-2.461; Pa=0.015, respectively). CONCLUSIONS The present study suggests that there is no significant association between IL23R gene polymorphism and tuberculosis susceptibility in the Chinese Han population. However, it does indicate a potential link between IL23R polymorphism and an increased risk of developing severe tuberculosis.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
- Intensive Care Unit, Deyang People's Hospital, No 173, North Taishan Road, Deyang, 618000, Sichuan Province, People's Republic of China
| | - Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xi Xiang
- West China School of Nursing, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
4
|
Mhmoud NA. Association of Toll-like Receptors 1, 2, 4, 6, 8, 9 and 10 Genes Polymorphisms and Susceptibility to Pulmonary Tuberculosis in Sudanese Patients. Immunotargets Ther 2023; 12:47-75. [PMID: 37051380 PMCID: PMC10085002 DOI: 10.2147/itt.s404915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Background Genetic factors are important contributors to the development of a wide range of complex disease. Polymorphisms in genes encoding for toll-like receptors (TLRs) usually influence the efficiency of the immune response to infection and are associated with disease susceptibility and progression. Therefore, we aim to describe the first association between TLR1, TLR2, TLR4 TLR6, TLR8, TLR9 and TLR10 genes polymorphisms and susceptibility to pulmonary tuberculosis (PTB) in Sudanese patients. Methodology Here we performed a case study which included 160 tuberculosis patients and 220 healthy matched controls from Sudan. In the study population, we evaluated the possible association between 86 markers in TLR1, TLR2, TLR4 TLR6, TLR8, TLR9 and TLR10 genes polymorphisms and susceptibility to PTB disease in Sudanese population using polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Results From our results it appeared that in the PTB population the TLR1 (rs5743557, rs4833095, rs5743596), TLR2 (rs5743704, rs5743708, rs3804099), TLR4 (rs4986790, rs4986791), TLR6 (rs5743810), TLR8 (rs3764879, rs3764880), TLR9 (rs352165, rs352167, rs187084) and TLR10 (rs4129009) were significantly more often encountered (p<0.0001) than in the control population and were associated with PTB in the Sudanese population. For the other polymorphisms tested, no association with PTB was found in the population tested. Conclusion The work describes novel mutations in TLR1, TLR2, TLR4, TLR6, TLR8, TLR9 and TLR10 genes and their association with PTB infection in Sudanese population. These results will enhance our ability to determine the risk of developing the disease by targeting specific TLR pathways to reduce the severity of the disease. Future studies are needed in a larger sample to replicate our findings and understand the mechanism of association of TLR polymorphism in PTB.
Collapse
Affiliation(s)
- Najwa A Mhmoud
- Faculty of Medical Laboratory Sciences, Department of Medical Microbiology and Immunology, University of Khartoum, Khartoum, Sudan
- Correspondence: Najwa A Mhmoud, Faculty of Medical Laboratory Sciences, Department of Medical Microbiology and Immunology University of Khartoum, P.O. Box 102, Khartoum, Sudan, Fax +249-83-383590, Email
| |
Collapse
|
5
|
McHenry ML, Simmons J, Hong H, Malone LL, Mayanja-Kizza H, Bush WS, Boom WH, Hawn TR, Williams SM, Stein CM. Tuberculosis severity associates with variants and eQTLs related to vascular biology and infection-induced inflammation. PLoS Genet 2023; 19:e1010387. [PMID: 36972313 PMCID: PMC10079228 DOI: 10.1371/journal.pgen.1010387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/06/2023] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
Background
Tuberculosis (TB) remains a major public health problem globally, even compared to COVID-19. Genome-wide studies have failed to discover genes that explain a large proportion of genetic risk for adult pulmonary TB, and even fewer have examined genetic factors underlying TB severity, an intermediate trait impacting disease experience, quality of life, and risk of mortality. No prior severity analyses used a genome-wide approach.
Methods and findings
As part of our ongoing household contact study in Kampala, Uganda, we conducted a genome-wide association study (GWAS) of TB severity measured by TBScore, in two independent cohorts of culture-confirmed adult TB cases (n = 149 and n = 179). We identified 3 SNPs (P<1.0 x 10–7) including one on chromosome 5, rs1848553, that was GWAS significant (meta-analysis p = 2.97x10-8). All three SNPs are in introns of RGS7BP and have effect sizes corresponding to clinically meaningful reductions in disease severity. RGS7BP is highly expressed in blood vessels and plays a role in infectious disease pathogenesis. Other genes with suggestive associations defined gene sets involved in platelet homeostasis and transport of organic anions. To explore functional implications of the TB severity-associated variants, we conducted eQTL analyses using expression data from Mtb-stimulated monocyte-derived macrophages. A single variant (rs2976562) associated with monocyte SLA expression (p = 0.03) and subsequent analyses indicated that SLA downregulation following MTB stimulation associated with increased TB severity. Src Like Adaptor (SLAP-1), encoded by SLA, is highly expressed in immune cells and negatively regulates T cell receptor signaling, providing a potential mechanistic link to TB severity.
Conclusions
These analyses reveal new insights into the genetics of TB severity with regulation of platelet homeostasis and vascular biology being central to consequences for active TB patients. This analysis also reveals genes that regulate inflammation can lead to differences in severity. Our findings provide an important step in improving TB patient outcomes.
Collapse
|
6
|
Kovačić D, Salihović A. Multi-epitope mRNA Vaccine Design that Exploits Variola Virus and Monkeypox Virus Proteins for Elicitation of Long-lasting Humoral and Cellular Protection Against Severe Disease. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human monkeypox represents a relatively underexplored infection that has received increased attention since the reported outbreak in May 2022. Due to its clinical similarities with human smallpox, this virus represents a potentially tremendous health problem demanding further research in the context of host-pathogen interactions and vaccine development. Furthermore, the cross-continental spread of monkeypox has reaffirmed the need for devoting attention to human poxviruses in general, as they represent potential bioterrorism agents. Currently, smallpox vaccines are utilized in immunization efforts against monkeypox, an unsurprising fact considering their genomic and phenotypic similarities. Though it offers long-lasting protection against smallpox, its protective effects against human monkeypox continue to be explored, with encouraging results. Taking this into account, this works aims at utilizing in silico tools to identify potent peptide-based epitopes stemming from the variola virus and monkeypox virus proteomes, to devise a vaccine that would offer significant protection against smallpox and monkeypox. In theory, a vaccine that offers cross-protection against variola and monkeypox would also protect against related viruses, at least in severe clinical manifestation. Herein, we introduce a novel multi-epitope mRNA vaccine design that exploits these two viral proteomes to elicit long-lasting humoral and cellular immunity. Special consideration was taken in ensuring that the vaccine candidate elicits a Th1 immune response, correlated with protection against clinically severe disease for both viruses. Immune system simulations and physicochemical and safety analyses characterize our vaccine candidate as antigenically potent, safe, and overall stable. The protein product displays high binding affinity towards relevant immune receptors. Furthermore, the vaccine candidate is to elicit a protective, humoral and Th1-dominated cellular immune response that lasts over five years. Lastly, we build a case about the rapidity and convenience of circumventing the live attenuated vaccine platform using mRNA vaccine technology.
Collapse
|
7
|
Varshney D, Singh S, Sinha E, Mohanty KK, Kumar S, Kumar Barik S, Patil SA, Katara P. Systematic review and meta-analysis of human Toll-like receptors genetic polymorphisms for susceptibility to tuberculosis infection. Cytokine 2022; 152:155791. [DOI: 10.1016/j.cyto.2021.155791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
|
8
|
Charles A, Penggoam S, Maskoen AM, Sahiratmadja E. Influence of TLR-8 Gene Polymorphisms (rs3764880 and rs3788935) Associated to Pulmonary Tuberculosis in Kupang, Indonesia. INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE 2021. [DOI: 10.20473/ijtid.v9i1.22056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptor 8 (TLR-8) is known as part of intracellular signaling transduction for bacterial phagocytosis. Mycobacterium tuberculosis (Mtb) is intracellular pathogenic bacteria that is recognized by this receptor, and genetic variation of TLR-8 might alter susceptibility of the host towards pulmonary tuberculosis (PTB). This study aimed to determine whether TLR-8 gene polymorphisms were associated to PTB in Kupang, Indonesia. This case-control study compared demographic and clinical data between 115 PTB patients and 115 controls, then two TLR-8 single nucleotide polymorphisms (rs3764880 and rs3788935) were explored using the GoldenGate® Genotyping for VeraCode® / BeadXpress Illumina®. There is no significant difference between sex distribution of patient vs control groups. The polymorphisms (rs3764880 and rs3788935) are in Hardy-Weinberg Equilibrium in this population (p > 0.05). The distribution of major vs minor genotypes and alleles of TLR-8 polymorphisms in PTB patients were as followed: rs3764880 (GG vs GA vs AA, 50.0% vs 21.4% vs 28.6% ; G vs A, 60.9% vs 39.1% ) and rs3788935 (GG vs GA vs AA, 53.0% vs 21.7% vs 25.3%; G vs A, 62.9% vs 37.1%). Neither genotypes nor alleles were associated with PTB in this population (P > 0.05). Besides, when the analyses were stratified by gender, none of the alleles of polymorphism in both genders were associated with PTB cases. None of the TLR-8 polymorphisms have associated the risk of developing PTB in Kupang, East Nusa Tenggara population (as opposed to other studies in different ethnic groups). These might reflect the diversity of genetic polymorphisms in eastern Indonesia populations, suggesting different genetic backgrounds with western part of Indonesia.
Collapse
|
9
|
Xu M, Li J, Xiao Z, Lou J, Pan X, Ma Y. Integrative genomics analysis identifies promising SNPs and genes implicated in tuberculosis risk based on multiple omics datasets. Aging (Albany NY) 2020; 12:19173-19220. [PMID: 33051402 PMCID: PMC7732298 DOI: 10.18632/aging.103744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
More than 10 GWASs have reported numerous genetic loci associated with tuberculosis (TB). However, the functional effects of genetic variants on TB remains largely unknown. In the present study, by combining a reported GWAS summary dataset (N = 452,264) with 3 independent eQTL datasets (N = 2,242) and other omics datasets downloaded from public databases, we conducted an integrative genomics analysis to highlight SNPs and genes implicated in TB risk. Based on independent biological and technical validations, we prioritized 26 candidate genes with eSNPs significantly associated with gene expression and TB susceptibility simultaneously; such as, CDC16 (rs7987202, rs9590408, and rs948182) and RCN3 (rs2946863, rs2878342, and rs3810194). Based on the network-based enrichment analysis, we found these 26 highlighted genes were jointly connected to exert effects on TB susceptibility. The co-expression patterns among these 26 genes were remarkably changed according to Mycobacterium tuberculosis (MTB) infection status. Based on 4 independent gene expression datasets, 21 of 26 genes (80.77%) showed significantly differential expressions between TB group and control group in mesenchymal stem cells, mice blood and lung tissues, as well as human alveolar macrophages. Together, we provide robust evidence to support 26 highlighted genes as important candidates for TB.
Collapse
Affiliation(s)
- Mengqiu Xu
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Jingjing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Zhaoying Xiao
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Jiongpo Lou
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Xinrong Pan
- Department of Infectious Diseases, Shengzhou People’s Hospital, The First Affiliated Hospital of Zhejiang University Shengzhou Branch, Shengshou 312400, Zhejiang, China
| | - Yunlong Ma
- Institute of Biomedical Big Data, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China,School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| |
Collapse
|
10
|
McHenry ML, Williams SM, Stein CM. Genetics and evolution of tuberculosis pathogenesis: New perspectives and approaches. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 81:104204. [PMID: 31981609 PMCID: PMC7192760 DOI: 10.1016/j.meegid.2020.104204] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis is the most lethal infectious disease globally, but the vast majority of people who are exposed to the primary causative pathogen, Mycobacterium tuberculosis (MTB), do not develop active disease. Most people do, however, show signs of infection that remain throughout their lifetimes. In this review, we develop a framework that describes several possible transitions from pathogen exposure to TB disease and reflect on the genetics studies to address many of these. The evidence strongly supports a human genetic component for both infection and active disease, but many of the existing studies, including some of our own, do not clearly delineate what transition(s) is being explicitly examined. This can make interpretation difficult in terms of why only some people develop active disease. Nonetheless, both linkage peaks and associations with either active disease or latent infection have been identified. For transition to active disease, pathways defined as active TB altered T and B cell signaling in rheumatoid arthritis and T helper cell differentiation are significantly associated. Pathways that affect transition from exposure to infection are less clear-cut, as studies of this phenotype are less common, and a primary response, if it exists, is not yet well defined. Lastly, we discuss the role that interaction between the MTB lineage and human genetics can play in TB disease, especially severity. Severity of TB is at present the only way to study putative co-evolution between MTB and humans as it is impossible in the absence of disease to know the MTB lineage(s) to which an individual has been exposed. In addition, even though severity has been defined in multiple heterogeneous ways, it appears that MTB-human co-evolution may shape pathogenicity. Further analysis of co-evolution, requiring careful analysis of paired samples, may be the best way to completely assess the genetic basis of TB.
Collapse
Affiliation(s)
- Michael L McHenry
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States of America.
| | - Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America; Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
11
|
RNA Sensing of Mycobacterium tuberculosis and Its Impact on TB Vaccination Strategies. Vaccines (Basel) 2020; 8:vaccines8010067. [PMID: 32033104 PMCID: PMC7158685 DOI: 10.3390/vaccines8010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) is still an important global threat and although the causing organism has been discovered long ago, effective prevention strategies are lacking. Mycobacterium tuberculosis (MTB) is a unique pathogen with a complex host interaction. Understanding the immune responses upon infection with MTB is crucial for the development of new vaccination strategies and therapeutic targets for TB. Recently, it has been proposed that sensing bacterial nucleic acid in antigen-presenting cells via intracellular pattern recognition receptors (PRRs) is a central mechanism for initiating an effective host immune response. Here, we summarize key findings of the impact of mycobacterial RNA sensing for innate and adaptive host immunity after MTB infection, with emphasis on endosomal toll-like receptors (TLRs) and cytosolic sensors such as NLRP3 and RLRs, modulating T-cell differentiation through IL-12, IL-21, and type I interferons. Ultimately, these immunological pathways may impact immune memory and TB vaccine efficacy. The novel findings described here may change our current understanding of the host response to MTB and potentially impact clinical research, as well as future vaccination design. In this review, the current state of the art is summarized, and an outlook is given on how progress can be made.
Collapse
|
12
|
Contribution of Toll like receptor polymorphisms to dengue susceptibility and clinical outcome among eastern Indian patients. Immunobiology 2019; 224:774-785. [PMID: 31481269 DOI: 10.1016/j.imbio.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
Dengue infection has been one of the major public health concerns in India causing simple dengue fever (DF) to severe dengue infection. In the present study, contribution of TLR3, 7 and 8 polymorphisms towards dengue disease susceptibility and severity among Eastern Indian patients was analysed. Genomic DNA was extracted from blood of 201 dengue infected patients and 157 healthy individuals, followed by genotyping of eight polymorphisms of TLR3 (rs3775290), TLR7 (rs5741880, rs3853839, rs179008 and rs179010) and TLR8 (rs3764879, rs3764880 and rs5744080) genes by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Functional analyses of the polymorphisms were predicted. Genotypic association of polymorphisms, alone and in combination, with dengue disease susceptibility and development of WHO-defined warning signs among patients was calculated by using SPSS software. TLR7-rs179008 & TLR8-rs3764880 were implicated to be non-synonymous polymorphisms. Specific genotypes of majority of the analysed TLR polymorphisms exhibited significant positive association with disease susceptibility. CC/C and AA/A of TLR7-rs179008 (p < 0.0001) and TLR8-rs3764880 (p < 0.00001) respectively were significantly associated with development of warning signs among dengue infected patients. Particular genotypic combinations of rs3853839-rs5744080 and rs179008-rs3764880 increased the risk of dengue infectivity, whereas, presence of last combination was more prevalent among dengue patients with warning signs. Thus these polymorphic variants of TLR3, 7 and 8 might act as potential prognostic biomarkers for predicting disease severity among dengue virus infected patients.
Collapse
|
13
|
Schurz H, Kinnear CJ, Gignoux C, Wojcik G, van Helden PD, Tromp G, Henn B, Hoal EG, Möller M. A Sex-Stratified Genome-Wide Association Study of Tuberculosis Using a Multi-Ethnic Genotyping Array. Front Genet 2019; 9:678. [PMID: 30713548 PMCID: PMC6346682 DOI: 10.3389/fgene.2018.00678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a complex disease with a known human genetic component. Males seem to be more affected than females and in most countries the TB notification rate is twice as high in males than in females. While socio-economic status, behavior and sex hormones influence the male bias they do not fully account for it. Males have only one copy of the X chromosome, while diploid females are subject to X chromosome inactivation. In addition, the X chromosome codes for many immune-related genes, supporting the hypothesis that X-linked genes could contribute to TB susceptibility in a sex-biased manner. We report the first TB susceptibility genome-wide association study (GWAS) with a specific focus on sex-stratified autosomal analysis and the X chromosome. A total of 810 individuals (410 cases and 405 controls) from an admixed South African population were genotyped using the Illumina Multi Ethnic Genotyping Array, specifically designed as a suitable platform for diverse and admixed populations. Association testing was done on the autosome (8,27,386 variants) and X chromosome (20,939 variants) in a sex stratified and combined manner. SNP association testing was not statistically significant using a stringent cut-off for significance but revealed likely candidate genes that warrant further investigation. A genome wide interaction analysis detected 16 significant interactions. Finally, the results highlight the importance of sex-stratified analysis as strong sex-specific effects were identified on both the autosome and X chromosome.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Chris Gignoux
- Colorado Center for Personalized Medicine, Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Genevieve Wojcik
- Department of Genetics, Stanford University, Stanford, CA, United States
| | - Paul D. van Helden
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, South Africa
| | - Brenna Henn
- Department of Anthropology, UC Davis Genome Center, University of California, Davis, Davis, CA, United States
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
14
|
Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics 2019; 13:2. [PMID: 30621780 PMCID: PMC6325731 DOI: 10.1186/s40246-018-0185-z] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
The X chromosome and X-linked variants have largely been ignored in genome-wide and candidate association studies of infectious diseases due to the complexity of statistical analysis of the X chromosome. This exclusion is significant, since the X chromosome contains a high density of immune-related genes and regulatory elements that are extensively involved in both the innate and adaptive immune responses. Many diseases present with a clear sex bias, and apart from the influence of sex hormones and socioeconomic and behavioural factors, the X chromosome, X-linked genes and X chromosome inactivation mechanisms contribute to this difference. Females are functional mosaics for X-linked genes due to X chromosome inactivation and this, combined with other X chromosome inactivation mechanisms such as genes that escape silencing and skewed inactivation, could contribute to an immunological advantage for females in many infections. In this review, we discuss the involvement of the X chromosome and X inactivation in immunity and address its role in sexual dimorphism of infectious diseases using tuberculosis susceptibility as an example, in which male sex bias is clear, yet not fully explored.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Muneeb Salie
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
15
|
Wang MG, Zhang MM, Wang Y, Wu SQ, Zhang M, He JQ. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: a case-control study. BMC Infect Dis 2018; 18:561. [PMID: 30424735 PMCID: PMC6234681 DOI: 10.1186/s12879-018-3485-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/31/2018] [Indexed: 02/05/2023] Open
Abstract
Background Toll-like receptor (TLR) single nucleotide polymorphisms (SNPs) have been associated with regulation of TLR expression and development of active tuberculosis (TB). The objectives of this study were to determine whether TLR8 and TLR9 SNPs were associated with the development of latent TB infection (LTBI) and the subsequent pulmonary TB (PTB) in a Chinese Han population. Methods Two independent samples were enrolled. The first sample contained 584 TB cases and 608 controls; the second sample included 204 healthy controls, 201 LTBI subjects and 209 bacteria-confirmed active PTB patients. Three SNPs (rs3764880, rs187084 and rs5743836) were genotyped. The associations between the SNPs and risk of LTBI or PTB were investigated using unconditional logistic regression analysis. Results The A-allele of TLR8 rs3764880 SNP was protective against the development of TB in males (A vs G, OR = 0.58, 95%CI = 0.37–0.91). The AA genotype of rs3764880 SNP was found to increase the risk of PTB among females with an OR of 4.81 (1.11–20.85). The G allele of TLR9 SNP rs187084 was found to increase the risk of PTB (G vs A, P = 0.01, OR = 1.48, 95% CI = 1.10–2.00), the significance was also observed under dominant genetic models. The GA-genotype of TLR9 rs187084 SNP was found to increase the risk of PTB with an OR of 1.68 (1.07–2.65), but was found to decrease the risk of MTB infection with an OR = 0.64 (0.41–0.98). TLR9_rs5743836 SNP was excluded from the data analyses, because the minimum allele frequency was< 1%. Conclusions Our findings in two independent samples indicated that SNPs in TLR8 and TLR9 were associated with the development of TB, and highlight that SNPs may have different effects on disease pathogenesis and progression.
Collapse
Affiliation(s)
- Ming-Gui Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Miao-Miao Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Shou-Quan Wu
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Meng Zhang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Jian-Qing He
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guo Xue Alley, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
16
|
Harishankar M, Selvaraj P, Bethunaickan R. Influence of Genetic Polymorphism Towards Pulmonary Tuberculosis Susceptibility. Front Med (Lausanne) 2018; 5:213. [PMID: 30167433 PMCID: PMC6106802 DOI: 10.3389/fmed.2018.00213] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is still remains the major threat for human health worldwide. Several case-control, candidate-gene, family studies and genome-wide association studies (GWAS) suggested the association of host genetic factors to TB susceptibility or resistance in various ethnic populations. Moreover, these factors modulate the host immune responses to tuberculosis. Studies have reported genetic markers to predict TB development in human leukocyte antigen (HLA) and non-HLA genes like killer immunoglobulin-like receptor (KIR), toll-like receptors (TLRs), cytokine/chemokines and their receptors, vitamin D receptor (VDR) and SLC11A1 etc. Highly polymorphic HLA loci may influence antigen presentation specificities by modifying peptide binding motifs. The recent meta-analysis studies revealed the association of several HLA alleles in particular class II HLA-DRB1 with TB susceptibility and valuable marker for disease development especially in Asian populations. Case-control studies have found the association of HLA-DR2 in some populations, but not in other populations, this could be due to an ethnic specific association of gene variants. Recently, GWAS conducted in case-control and family based studies in Russia, Chinese Han, Morocco, Uganda and Tanzania revealed the association of genes such as ASAP1, Alkylglycerol monooxygenase (AGMO), Forkhead BoxP1 (FOXP1), C-terminal domain phosphatase 1 (UBLCP1) and intergenic SNP rs932347C/T with TB. Whereas, SNP rs10956514A/G were not associated with TB in western Chinese Han and Tibetan population. In this review, we summarize the recent findings of genetic variants with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Murugesan Harishankar
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | - Paramasivam Selvaraj
- Department of Immunology, National Institute of Research in Tuberculosis, Chennai, India
| | | |
Collapse
|
17
|
Keegan C, Krutzik S, Schenk M, Scumpia PO, Lu J, Pang YLJ, Russell BS, Lim KS, Shell S, Prestwich E, Su D, Elashoff D, Hershberg RM, Bloom BR, Belisle JT, Fortune S, Dedon PC, Pellegrini M, Modlin RL. Mycobacterium tuberculosis Transfer RNA Induces IL-12p70 via Synergistic Activation of Pattern Recognition Receptors within a Cell Network. THE JOURNAL OF IMMUNOLOGY 2018; 200:3244-3258. [PMID: 29610140 DOI: 10.4049/jimmunol.1701733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Upon recognition of a microbial pathogen, the innate and adaptive immune systems are linked to generate a cell-mediated immune response against the foreign invader. The culture filtrate of Mycobacterium tuberculosis contains ligands, such as M. tuberculosis tRNA, that activate the innate immune response and secreted Ags recognized by T cells to drive adaptive immune responses. In this study, bioinformatics analysis of gene-expression profiles derived from human PBMCs treated with distinct microbial ligands identified a mycobacterial tRNA-induced innate immune network resulting in the robust production of IL-12p70, a cytokine required to instruct an adaptive Th1 response for host defense against intracellular bacteria. As validated by functional studies, this pathway contained a feed-forward loop, whereby the early production of IL-18, type I IFNs, and IL-12p70 primed NK cells to respond to IL-18 and produce IFN-γ, enhancing further production of IL-12p70. Mechanistically, tRNA activates TLR3 and TLR8, and this synergistic induction of IL-12p70 was recapitulated by the addition of a specific TLR8 agonist with a TLR3 ligand to PBMCs. These data indicate that M. tuberculosis tRNA activates a gene network involving the integration of multiple innate signals, including types I and II IFNs, as well as distinct cell types to induce IL-12p70.
Collapse
Affiliation(s)
- Caroline Keegan
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Stephan Krutzik
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Mirjam Schenk
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jing Lu
- Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Yan Ling Joy Pang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Brandon S Russell
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Kok Seong Lim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Scarlet Shell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Erin Prestwich
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Dan Su
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - David Elashoff
- Division of General Internal Medicine, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Barry R Bloom
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - John T Belisle
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523; and
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.,Singapore-MIT Alliance for Research and Technology, Antimicrobial Drug Resistance Interdisciplinary Research Group, Singapore 138602, Singapore
| | - Matteo Pellegrini
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095.,Department of Molecular, Cell and Developmental Biology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; .,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
18
|
van Tong H, Velavan TP, Thye T, Meyer CG. Human genetic factors in tuberculosis: an update. Trop Med Int Health 2017; 22:1063-1071. [PMID: 28685916 DOI: 10.1111/tmi.12923] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tuberculosis (TB) is a major threat to human health, especially in many developing countries. Human genetic variability has been recognised to be of great relevance in host responses to Mycobacterium tuberculosis infection and in regulating both the establishment and the progression of the disease. An increasing number of candidate gene and genome-wide association studies (GWAS) have focused on human genetic factors contributing to susceptibility or resistance to TB. To update previous reviews on human genetic factors in TB we searched the MEDLINE database and PubMed for articles from 1 January 2014 through 31 March 2017 and reviewed the role of human genetic variability in TB. Search terms applied in various combinations were 'tuberculosis', 'human genetics', 'candidate gene studies', 'genome-wide association studies' and 'Mycobacterium tuberculosis'. Articles in English retrieved and relevant references cited in these articles were reviewed. Abstracts and reports from meetings were also included. This review provides a recent summary of associations of polymorphisms of human genes with susceptibility/resistance to TB.
Collapse
Affiliation(s)
- Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Biomedical and Pharmaceutical Applied Research Center, Vietnam Military Medical University, Hanoi, Vietnam
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Thorsten Thye
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
19
|
Faridgohar M, Nikoueinejad H. New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health 2017; 111:256-264. [PMID: 28715935 DOI: 10.1080/20477724.2017.1351080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), an important issue in the present age, affects millions of people each year. The infectious agent of TB, Mycobacterium tuberculosis (Mtb), interacts with the immune system which prevents the development of this bacterium as much as possible. In fact, the receptors on the surface of immune cells identify the bacteria, one of which is Toll-like receptors (TLRs). Different TLRs including 2, 4, 9 and 8 play critical roles in tuberculosis infection. In this paper, we focused on the role of TLRs which interact with different components of Mtb and, consequently, prevent the entrance and influence of bacteria on the body.
Collapse
Affiliation(s)
- Majid Faridgohar
- a Molecular Biology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hassan Nikoueinejad
- b Nephrology and Urology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
20
|
Uren C, Henn BM, Franke A, Wittig M, van Helden PD, Hoal EG, Möller M. A post-GWAS analysis of predicted regulatory variants and tuberculosis susceptibility. PLoS One 2017; 12:e0174738. [PMID: 28384278 PMCID: PMC5383035 DOI: 10.1371/journal.pone.0174738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/14/2017] [Indexed: 01/19/2023] Open
Abstract
Utilizing data from published tuberculosis (TB) genome-wide association studies (GWAS), we use a bioinformatics pipeline to detect all polymorphisms in linkage disequilibrium (LD) with variants previously implicated in TB disease susceptibility. The probability that these variants had a predicted regulatory function was estimated using RegulomeDB and Ensembl's Variant Effect Predictor. Subsequent genotyping of these 133 predicted regulatory polymorphisms was performed in 400 admixed South African TB cases and 366 healthy controls in a population-based case-control association study to fine-map the causal variant. We detected associations between tuberculosis susceptibility and six intronic polymorphisms located in MARCO, IFNGR2, ASHAS2, ACACA, NISCH and TLR10. Our post-GWAS approach demonstrates the feasibility of combining multiple TB GWAS datasets with linkage information to identify regulatory variants associated with this infectious disease.
Collapse
Affiliation(s)
- Caitlin Uren
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Brenna M. Henn
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Strasse Kiel, Germany
| | - Michael Wittig
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Rosalind-Franklin-Strasse Kiel, Germany
| | - Paul D. van Helden
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical TB Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
21
|
Vu A, Calzadilla A, Gidfar S, Calderon-Candelario R, Mirsaeidi M. Toll-like receptors in mycobacterial infection. Eur J Pharmacol 2016; 808:1-7. [PMID: 27756604 DOI: 10.1016/j.ejphar.2016.10.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Toll-like receptors are transmembrane glycoproteins predominantly expressed in tissues with immune function. They are considered one of the most important pattern recognition receptor families discovered at the end of 20th century and a key aspect of the innate immune system response to infectious disease. Here we present a review of the current knowledge of individual Toll-like receptors, 1 through 13, with a focus on their role in the immune system response to mycobacterial infection. We present literature to date about the Toll-like receptors structure, localization and expression, signaling pathways, and function. The Toll-like receptor family may have proven an important role in the immune system response to mycobacterial infections, including M. tuberculosis and non-tuberculous (NTM) organisms.
Collapse
Affiliation(s)
- Ann Vu
- Department of Medicine, University of Miami, 1600 NW, Miami, FL 33136, USA.
| | - Andrew Calzadilla
- Department of Medicine, University of Miami, 1600 NW, Miami, FL 33136, USA.
| | - Sanaz Gidfar
- Department of Medicine, University of Miami, 1600 NW, Miami, FL 33136, USA.
| | - Rafael Calderon-Candelario
- Division of Pulmonary and Critical Care, University of Miami, 1600 NW, Miami, FL 33136, USA; Miami VA Medical Center, 1201 N.W. 16th St., Miami, FL 33125, USA.
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, University of Miami, 1600 NW, Miami, FL 33136, USA; Miami VA Medical Center, 1201 N.W. 16th St., Miami, FL 33125, USA.
| |
Collapse
|
22
|
Association Between IL12A rs568408, IL12B rs3212227 and IL-12 Receptor rs383483 Polymorphisms and Risk of Pulmonary Tuberculosis. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2016. [DOI: 10.5812/archcid.39318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Schurz H, Daya M, Möller M, Hoal EG, Salie M. TLR1, 2, 4, 6 and 9 Variants Associated with Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. PLoS One 2015; 10:e0139711. [PMID: 26430737 PMCID: PMC4592262 DOI: 10.1371/journal.pone.0139711] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Studies investigating the influence of toll-like receptor (TLR) polymorphisms and tuberculosis susceptibility have yielded varying and often contradictory results in different ethnic groups. A meta-analysis was conducted to investigate the relationship between TLR variants and susceptibility to tuberculosis, both across and within specific ethnic groups. METHODS An extensive database search was performed for studies investigating the relationship between TLR and tuberculosis (TB) susceptibility. Data was subsequently extracted from included studies and statistically analysed. RESULTS 32 articles involving 18907 individuals were included in this meta-analysis, and data was extracted for 14 TLR polymorphisms. Various genetic models were employed. An increased risk of TB was found for individuals with the TLR2 rs3804100 CC and the TLR9 rs352139 GA and GG genotypes, while decreased risk was identified for those with the AG genotype of TLR1 rs4833095. The T allele of TLR6 rs5743810 conferred protection across all ethnic groups. TLR2 rs5743708 subgroup analysis identified the A allele to increase susceptibility to TB in the Asian ethnic group, while conferring protection in the Hispanic group. The T allele of TLR4 rs4986791 was also found to increase the risk of TB in the Asian subgroup. All other TLR gene variants investigated were not found to be associated with TB in this meta-analysis. DISCUSSION Although general associations were identified, most TLR variants showed no significant association with TB, indicating that additional studies investigating a wider range of pattern recognition receptors is required to gain a better understanding of this complex disease.
Collapse
Affiliation(s)
- Haiko Schurz
- SA MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Michelle Daya
- SA MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Marlo Möller
- SA MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Eileen G. Hoal
- SA MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Muneeb Salie
- SA MRC Centre for Tuberculosis Research and the DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- * E-mail:
| |
Collapse
|