1
|
Popova L, Carabetta VJ. The Use of Next-Generation Sequencing in Personalized Medicine. Methods Mol Biol 2025; 2866:287-315. [PMID: 39546209 DOI: 10.1007/978-1-0716-4192-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The revolutionary progress in development of next-generation sequencing (NGS) technologies has made it possible to deliver accurate genomic information in a timely manner. Over the past several years, NGS has transformed biomedical and clinical research and found its application in the field of personalized medicine. Here we discuss the rise of personalized medicine and the history of NGS. We discuss current applications and uses of NGS in medicine, including infectious diseases, oncology, genomic medicine, and dermatology. We provide a brief discussion of selected studies where NGS was used to respond to wide variety of questions in biomedical research and clinical medicine. Finally, we discuss the challenges of implementing NGS into routine clinical use.
Collapse
Affiliation(s)
- Liya Popova
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
2
|
Kumar KR, Cowley MJ, Davis RL. Next-Generation Sequencing and Emerging Technologies. Semin Thromb Hemost 2024; 50:1026-1038. [PMID: 38692283 DOI: 10.1055/s-0044-1786397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Genetic sequencing technologies are evolving at a rapid pace with major implications for research and clinical practice. In this review, the authors provide an updated overview of next-generation sequencing (NGS) and emerging methodologies. NGS has tremendously improved sequencing output while being more time and cost-efficient in comparison to Sanger sequencing. The authors describe short-read sequencing approaches, such as sequencing by synthesis, ion semiconductor sequencing, and nanoball sequencing. Third-generation long-read sequencing now promises to overcome many of the limitations of short-read sequencing, such as the ability to reliably resolve repeat sequences and large genomic rearrangements. By combining complementary methods with massively parallel DNA sequencing, a greater insight into the biological context of disease mechanisms is now possible. Emerging methodologies, such as advances in nanopore technology, in situ nucleic acid sequencing, and microscopy-based sequencing, will continue the rapid evolution of this area. These new technologies hold many potential applications for hematological disorders, with the promise of precision and personalized medical care in the future.
Collapse
Affiliation(s)
- Kishore R Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, Australia
| | - Mark J Cowley
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Computational Biology Group, Children's Cancer Institute, University of New South Wales, Randwick, New South Wales, Australia
| | - Ryan L Davis
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
3
|
Ross JE, Mohan S, Zhang J, Sullivan MJ, Bury L, Lee K, Futchi I, Frantz A, McDougal D, Perez Botero J, Cattaneo M, Cooper N, Downes K, Gresele P, Keenan C, Lee AI, Megy K, Morange PE, Morgan NV, Schulze H, Zimowski K, Freson K, Lambert MP. Evaluating the clinical validity of genes related to hemostasis and thrombosis using the Clinical Genome Resource gene curation framework. J Thromb Haemost 2024; 22:645-665. [PMID: 38016518 PMCID: PMC10922649 DOI: 10.1016/j.jtha.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Inherited bleeding, thrombotic, and platelet disorders (BTPDs) are a heterogeneous set of diseases, many of which are very rare globally. Over the past 5 decades, the genetic basis of some of these disorders has been identified, and recently, high-throughput sequencing has become the primary means of identifying disease-causing genetic variants. OBJECTIVES Knowledge of the clinical validity of a gene-disease relationship is essential to provide an accurate diagnosis based on results of diagnostic gene panel tests and inform the construction of such panels. The Scientific and Standardization Committee for Genetics in Thrombosis and Hemostasis undertook a curation process for selecting 96 TIER1 genes for BTPDs. The purpose of the process was to evaluate the evidence supporting each gene-disease relationship and provide an expert-reviewed classification for the clinical validity of genes associated with BTPDs. METHODS The Clinical Genome Resource (ClinGen) Hemostasis/Thrombosis Gene Curation Expert Panel assessed the strength of evidence for TIER1 genes using the semiquantitative ClinGen gene-disease clinical validity framework. ClinGen Lumping and Splitting guidelines were used to determine the appropriate disease entity or entities for each gene, and 101 gene-disease relationships were identified for curation. RESULTS The final outcome included 68 Definitive (67%), 26 Moderate (26%), and 7 Limited (7%) classifications. The summary of each curation is available on the ClinGen website. CONCLUSION Expert-reviewed assignment of gene-disease relationships by the ClinGen Hemostasis/Thrombosis Gene Curation Expert Panel facilitates accurate molecular diagnoses of BTPDs by clinicians and diagnostic laboratories. These curation efforts can allow genetic testing to focus on genes with a validated role in disease.
Collapse
Affiliation(s)
- Justyne E Ross
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shruthi Mohan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jing Zhang
- KingMed Diagnostics, Guangzhou, Guangdong, China
| | - Mia J Sullivan
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Isabella Futchi
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Annabelle Frantz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dara McDougal
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Juliana Perez Botero
- Versiti Blood Center of Wisconsin, Milwaukee, Wisconsin, USA; Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Marco Cattaneo
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Nichola Cooper
- Centre for Haematology, Imperial College London, London, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Catriona Keenan
- Haemostasis Molecular Diagnostic Laboratory, National Coagulation Centre, St James's Hospital, Dublin, Ireland
| | - Alfred I Lee
- Section of Hematology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Karyn Megy
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Pierre-Emmanuel Morange
- INSERM, INRAE, C2VN, Aix Marseille University, Marseille, France; Hematology Laboratory, La Timone Hospital, APHM, Marseille, France
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Harald Schulze
- Institute of Experimental Biomedicine, Julius-Maximilians-University Wuerzburg, Wuerzburg, Germany
| | - Karen Zimowski
- Aflac Cancer and Blood Disorders Center, Emory University/Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium.
| | - Michele P Lambert
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
Gebetsberger J, Mott K, Bernar A, Klopocki E, Streif W, Schulze H. State-of-the-Art Targeted High-Throughput Sequencing for Detecting Inherited Platelet Disorders. Hamostaseologie 2023; 43:244-251. [PMID: 37611606 DOI: 10.1055/a-2099-3266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Inherited platelet disorders (IPDs) are a heterogeneous group of rare entities caused by molecular divergence in genes relevant for platelet formation and function. A rational diagnostic approach is necessary to counsel and treat patients with IPDs. With the introduction of high-throughput sequencing at the beginning of this millennium, a more accurate diagnosis of IPDs has become available. We discuss advantages and limitations of genetic testing, technical issues, and ethical aspects. Additionally, we provide information on the clinical significance of different classes of variants and how they are correctly reported.
Collapse
Affiliation(s)
- Jennifer Gebetsberger
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Kristina Mott
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Aline Bernar
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Eva Klopocki
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Werner Streif
- Department of Pediatrics I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Center for Rare Blood Cell Disorders, Center for Rare Diseases, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Di Buduo CA, Miguel CP, Balduini A. Inside-to-outside and back to the future of megakaryopoiesis. Res Pract Thromb Haemost 2023; 7:100197. [PMID: 37416054 PMCID: PMC10320384 DOI: 10.1016/j.rpth.2023.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
A State of the Art lecture titled "Megakaryocytes and different thrombopoietic environments" was presented at the ISTH Congress in 2022. Circulating platelets are specialized cells produced by megakaryocytes. Leading studies point to the bone marrow niche as the core of hematopoietic stem cell differentiation, revealing interesting and complex environmental factors for consideration. Megakaryocytes take cues from the physiochemical bone marrow microenvironment, which includes cell-cell interactions, contact with extracellular matrix components, and flow generated by blood circulation in the sinusoidal lumen. Germinal and acquired mutations in hematopoietic stem cells may manifest in altered megakaryocyte maturation, proliferation, and platelet production. Diseased megakaryopoiesis may also cause modifications of the entire hematopoietic niche, highlighting the central role of megakaryocytes in the control of physiologic bone marrow homeostasis. Tissue-engineering approaches have been developed to translate knowledge from in vivo (inside) to functional mimics of native tissue ex vivo (outside). Reproducing the thrombopoietic environment is instrumental to gain new insight into its activity and answering the growing demand for human platelets for fundamental studies and clinical applications. In this review, we discuss the major achievements on this topic, and finally, we summarize relevant new data presented during the 2022 ISTH Congress that pave the road to the future of megakaryopoiesis.
Collapse
Affiliation(s)
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
6
|
Stritt S, Nurden P, Nurden AT, Schved JF, Bordet JC, Roux M, Alessi MC, Trégouët DA, Mäkinen T, Giansily-Blaizot M. APOLD1 loss causes endothelial dysfunction involving cell junctions, cytoskeletal architecture, and Weibel-Palade bodies, while disrupting hemostasis. Haematologica 2023; 108:772-784. [PMID: 35638551 PMCID: PMC9973481 DOI: 10.3324/haematol.2022.280816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/09/2022] Open
Abstract
Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear. We have localized APOLD1 to endothelial cell contacts and to Weibel-Palade bodies (WPB) where it associates with von Willebrand factor (VWF) tubules. Silencing of APOLD1 in primary human endothelial cells disrupted the cell junction-cytoskeletal interface, thereby altering endothelial permeability accompanied by spontaneous release of WPB contents. This resulted in an increased presence of WPB cargoes, notably VWF and angiopoietin-2 in the extracellular medium. Autophagy flux, previously recognized as an essential mechanism for the regulated release of WPB, was impaired in the absence of APOLD1. In addition, we report APOLD1 as a candidate gene for a novel inherited bleeding disorder across three generations of a large family in which an atypical bleeding diathesis was associated with episodic impaired microcirculation. A dominant heterozygous nonsense APOLD1:p.R49* variant segregated to affected family members. Compromised vascular integrity resulting from an excess of plasma angiopoietin-2, and locally impaired availability of VWF may explain the unusual clinical profile of APOLD1:p.R49* patients. In summary, our findings identify APOLD1 as an important regulator of vascular homeostasis and raise the need to consider testing of endothelial cell function in patients with inherited bleeding disorders without apparent platelet or coagulation defects.
Collapse
Affiliation(s)
- Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Paquita Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France.
| | - Alan T Nurden
- Institut de Rythmologie et de Modélisation Cardiaque, Hôpital Xavier Arnozan, Pessac, France
| | - Jean-François Schved
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| | - Jean-Claude Bordet
- Hematology, Hospices civils de Lyon, Bron biology center and Hemostasis- Thrombosis, Lyon-1 University, Lyon
| | | | | | - David-Alexandre Trégouët
- Laboratory of Excellence GENMED (Medical Genomics), Paris; University of Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, Bordeaux
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Muriel Giansily-Blaizot
- Department of Biological Hematology, CHU Montpellier, Université de Montpellier, Montpellier
| |
Collapse
|
7
|
Novel insights into mouse models of ectopic proplatelet release. Blood Adv 2022; 6:6135-6139. [PMID: 36251748 PMCID: PMC9768245 DOI: 10.1182/bloodadvances.2022007824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 12/31/2022] Open
Abstract
Mature bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Defects in this process can lead to thrombocytopenia and increased risk of bleeding. Mice lacking the actin-regulatory proteins Profilin 1 (PFN1), Wiskott-Aldrich Syndrome protein (WASp), Actin Related Protein 2/3 complex (Arp2/3), or adhesion and degranulation-promoting adapter protein (ADAP) display thrombocytopenia and ectopic release of (pro)platelet-like particles into the BM compartment, pointing to an important axis of actin-mediated directional proplatelet formation. The mechanism underlying ectopic release in these mice is still not completely understood. However, we hypothesized that similar functional defects account for this observation. We analyzed WASp-, ADAP-, PFN1-, and ARPC2-knockout mice to determine the role of actin reorganization and integrin activation in directional proplatelet formation. ADAP-, ARPC2-, and PFN1-deficient MKs displayed reduced adhesion to collagen, defective F-actin organization, and diminished β1-integrin activation. WASp-deficient MKs showed the strongest reduction in the adhesion assay of collagen and altered F-actin organization with reduced podosome formation. Our results indicate that ADAP, PFN1, WASp, and ARP2/3 are part of the same pathway that regulates polarization processes in MKs and directional proplatelet formation into BM sinusoids.
Collapse
|
8
|
Coste T, Vincent-Delorme C, Stichelbout M, Devisme L, Gelot A, Deryabin I, Pelluard F, Aloui C, Leutenegger AL, Jouannic JM, Héron D, Gould DB, Tournier-Lasserve E. COL4A1/COL4A2 and inherited platelet disorder gene variants in fetuses showing intracranial hemorrhage. Prenat Diagn 2022; 42:601-610. [PMID: 35150448 PMCID: PMC10434296 DOI: 10.1002/pd.6113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Variants of COL4A1/COL4A2 genes have been reported in fetal intracranial hemorrhage (ICH) cases but their prevalence and characteristics have not been established in a large series of fetuses. Fetal neonatal alloimmune thrombocytopenia is a major acquired ICH factor but the prevalence and characteristics of inherited platelet disorder (IPD) gene variants leading to thrombocytopenia are unknown. Herein, we screened COL4A1/COL4A2 and IPD genes in a large series of ICH fetuses. METHODS A cohort of 194 consecutive ICH fetuses were first screened for COL4A1/COL4A2 variants. We manually curated a list of 64 genes involved in IPD and investigated them in COL4A1/COL4A2 negative fetuses, using exome sequencing data from 101 of these fetuses. RESULT Pathogenic variants of COL4A1/COL4A2 genes were identified in 36 fetuses (19%). They occurred de novo in 70% of the 32 fetuses for whom parental DNA was available. Pathogenic variants in two megakaryopoiesis genes (MPL and MECOM genes) were identified in two families with recurrent and severe fetal ICH, with variable extraneurological pathological features. CONCLUSION Our study emphasizes the genetic heterogeneity of fetal ICH and the need to screen both COL4A1/COL4A2 and IPD genes in the etiological investigation of fetal ICH to allow proper genetic counseling.
Collapse
Affiliation(s)
- Thibault Coste
- AP-HP, Service de génétique moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris, France
| | | | | | | | - Antoinette Gelot
- APHP, Service de fœtopathologie, Hôpital Trousseau, Paris, France
| | - Igor Deryabin
- APHP, Service de fœtopathologie, Hôpital Trousseau, Paris, France
| | - Fanny Pelluard
- University Bordeaux, INSERM, BaRITOn, U1053, Bordeaux, France
| | - Chaker Aloui
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris, France
| | | | - Jean-Marie Jouannic
- APHP Sorbonne Université, Service de médecine fœtale, Hôpital Trousseau, Paris, France
| | - Delphine Héron
- AP-HP, Service de génétique clinique, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, San Francisco, California, USA
| | - Elisabeth Tournier-Lasserve
- AP-HP, Service de génétique moléculaire Neurovasculaire, Hôpital Saint-Louis, Paris, France
- Université de Paris, INSERM UMR-1141 Neurodiderot, Paris, France
| |
Collapse
|
9
|
Pezeshkpoor B, Oldenburg J, Pavlova A. Experiences in Routine Genetic Analysis of Hereditary Hemorrhagic, Thrombotic, and Platelet Disorders. Hamostaseologie 2022; 42:S5-S12. [PMID: 35226963 DOI: 10.1055/a-1726-4793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Hemostasis is a complex and tightly regulated system that attempts to maintain a homeostatic balance to permit normal blood flow, without bleeding or thrombosis. Hemostasis reflects the subtle balance between procoagulant and anticoagulant factors in the pathways of primary hemostasis, secondary hemostasis, and fibrinolysis. The major components in this interplay include the vascular endothelium, platelets, coagulation factors, and fibrinolytic factors. After vessel wall injury, the subendothelium is exposed to the blood stream, followed by rapid activation of platelets via collagen binding and von Willebrand factor-mediated platelet adhesion to the damaged vessel wall through platelet glycoprotein receptor Ib/IX/V. Activated platelets change their shape, release bioactive molecules from their granules, and expose negatively charged phospholipids on their surface. For a proper function of this process, an adequate number of functional platelets are required. Subsequently, a rapid generation of sufficient amounts of thrombin begins; followed by activation of the coagulation system and its coagulation factors (secondary hemostasis), generating fibrin that consolidates the platelet plug. To maintain equilibrium between coagulation and anticoagulation, the naturally occurring anticoagulants such as protein C, protein S, and antithrombin keep this process in balance. Deficiencies (inherited or acquired) at any level of this fine-tuned system result in pathologic bleedings or increased hypercoagulability states leading to thrombosis. This review will focus on genetic diagnosis of inherited bleeding, thrombotic, and platelet disorders, discussing strengths and limitations of existing diagnostic settings and genetic tools and highlight some important considerations necessary for clinical application.
Collapse
Affiliation(s)
- B Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - J Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - A Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany.,Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| |
Collapse
|
10
|
Ver Donck F, Labarque V, Freson K. Hemostatic phenotypes and genetic disorders. Res Pract Thromb Haemost 2021; 5:e12637. [PMID: 34964017 PMCID: PMC8677882 DOI: 10.1002/rth2.12637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
This review is focused on genetic regulators of bleeding and thrombosis with a focus on next-generation sequencing (NGS) technologies for diagnosis and research of patients with inherited disorders. The molecular diagnosis of hemostatic phenotypes relies on the detection of genetic variants in the 99 curated disease-causing genes implicated for bleeding, platelet, and thrombotic disorders through the use of multigene panel tests. In this review, we will provide an overview of the advantages and disadvantages of using such multigene panel tests for diagnostics. During the past decade, NGS technologies have also been used for the gene discovery of 32 novel genes involved in inherited hemostatic phenotypes. We will provide a brief overview of these genes and discuss what information (eg, linkage, consanguinity, multiple index cases with similar phenotypes, mouse models, and more) was used to support the gene discovery process. Next, we provide examples on how RNA sequencing is useful to explore disease mechanisms of novel and often unexpected genes. This review will summarize the important findings concerning NGS technologies for diagnostics and gene discovery that were presented at the ISTH 2021 conference. Finally, future perspectives in our field mainly deal with finding the needle in the haystack for some still unexplained patients and the need for exploring the noncoding gene space and rapid disease validation models.
Collapse
Affiliation(s)
- Fabienne Ver Donck
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
| | - Veerle Labarque
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
- Department of Pediatrics, Pediatric Hemato‐OncologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyUniversity of LeuvenLeuvenBelgium
| |
Collapse
|
11
|
Perez Botero J, Di Paola J. Diagnostic approach to the patient with a suspected inherited platelet disorder: Who and how to test. J Thromb Haemost 2021; 19:2127-2136. [PMID: 34347927 DOI: 10.1111/jth.15484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Bleeding and thrombocytopenia are common referrals to the pediatric and adult hematology practice. The differential diagnosis encompasses a wide spectrum of entities that vary in acuity, severity, and etiology. Most will be acquired (especially in adult patients), but many can be inherited, and some may have manifestations affecting other organ systems. The first step: defining whether the symptoms and/or laboratory findings are clinically significant and warrant additional work-up, can be equally as challenging as reaching the diagnosis itself. How much bleeding is too much to be considered normal? How low of a platelet count is too low? Once the decision has been made to pursue additional studies, considering the increasing number of laboratory tests available, the diagnostic process can be complex. In this article, we outline a general approach for the evaluation of patients in whom an inherited platelet disorder is being considered. We present two clinical vignettes as introduction to the diagnostic approach to inherited platelet disorders. We describe the rationale for the different types of tests that are clinically available, their limitations, and finally the challenges that are frequently encountered in the interpretation of results. We also intend to provide some guidance on the expected phenotype in terms of severity of bleeding and/or thrombocytopenia according to the etiology of the inherited disorder. Our goal is to provide the practicing hematologist with a practical framework that is clinically applicable in their daily practice.
Collapse
Affiliation(s)
- Juliana Perez Botero
- Versiti and Division of Hematology/Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Zaninetti C, Wolff M, Greinacher A. Diagnosing Inherited Platelet Disorders: Modalities and Consequences. Hamostaseologie 2021; 41:475-488. [PMID: 34391210 DOI: 10.1055/a-1515-0813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Inherited platelet disorders (IPDs) are a group of rare conditions featured by reduced circulating platelets and/or impaired platelet function causing variable bleeding tendency. Additional hematological or non hematological features, which can be congenital or acquired, distinctively mark the clinical picture of a subgroup of patients. Recognizing an IPD is challenging, and diagnostic delay or mistakes are frequent. Despite the increasing availability of next-generation sequencing, a careful phenotyping of suspected patients-concerning the general clinical features, platelet morphology, and function-is still demanded. The cornerstones of IPD diagnosis are clinical evaluation, laboratory characterization, and genetic testing. Achieving a diagnosis of IPD is desirable for several reasons, including the possibility of tailored therapeutic strategies and individual follow-up programs. However, detailed investigations can also open complex scenarios raising ethical issues in case of IPDs predisposing to hematological malignancies. This review offers an overview of IPD diagnostic workup, from the interview with the proband to the molecular confirmation of the suspected disorder. The main implications of an IPD diagnosis are also discussed.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany.,Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Martina Wolff
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
13
|
Specific proteome changes in platelets from individuals with GATA1-, GFI1B-, and RUNX1-linked bleeding disorders. Blood 2021; 138:86-90. [PMID: 33690840 DOI: 10.1182/blood.2020008118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Mutations in the transcription factors GATA binding factor 1 (GATA1), growth factor independence 1B (GFI1B), and Runt-related transcription factor 1 (RUNX1) cause familial platelet and bleeding disorders. Mutant platelets exhibit common abnormalities including an α-granule reduction resulting in a grayish appearance in blood smears. This suggests that similar pathways are deregulated by different transcription factor mutations. To identify common factors, full platelet proteomes from 11 individuals with mutant GATA1R216Q, GFI1BQ287*, RUNX1Q154Rfs, or RUNX1TD2-6 and 28 healthy controls were examined by label-free quantitative mass spectrometry. In total, 2875 platelet proteins were reliably quantified. Clustering analysis of more than 300 differentially expressed proteins revealed profound differences between cases and controls. Among cases, 44 of 143 significantly downregulated proteins were assigned to platelet function, hemostasis, and granule biology, in line with platelet dysfunction and bleedings. Remarkably, none of these proteins were significantly diminished in all affected cases. Similarly, no proteins were commonly overrepresented in all affected cases compared with controls. These data indicate that the studied transcription factor mutations alter platelet proteomes in distinct largely nonoverlapping manners. This work provides the quantitative landscape of proteins that affect platelet function when deregulated by mutated transcription factors in inherited bleeding disorders.
Collapse
|
14
|
Inherited Platelet Disorders: An Updated Overview. Int J Mol Sci 2021; 22:ijms22094521. [PMID: 33926054 PMCID: PMC8123627 DOI: 10.3390/ijms22094521] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Platelets play a major role in hemostasis as ppwell as in many other physiological and pathological processes. Accordingly, production of about 1011 platelet per day as well as appropriate survival and functions are life essential events. Inherited platelet disorders (IPDs), affecting either platelet count or platelet functions, comprise a heterogenous group of about sixty rare diseases caused by molecular anomalies in many culprit genes. Their clinical relevance is highly variable according to the specific disease and even within the same type, ranging from almost negligible to life-threatening. Mucocutaneous bleeding diathesis (epistaxis, gum bleeding, purpura, menorrhagia), but also multisystemic disorders and/or malignancy comprise the clinical spectrum of IPDs. The early and accurate diagnosis of IPDs and a close patient medical follow-up is of great importance. A genotype-phenotype relationship in many IPDs makes a molecular diagnosis especially relevant to proper clinical management. Genetic diagnosis of IPDs has been greatly facilitated by the introduction of high throughput sequencing (HTS) techniques into mainstream investigation practice in these diseases. However, there are still unsolved ethical concerns on general genetic investigations. Patients should be informed and comprehend the potential implications of their genetic analysis. Unlike the progress in diagnosis, there have been no major advances in the clinical management of IPDs. Educational and preventive measures, few hemostatic drugs, platelet transfusions, thrombopoietin receptor agonists, and in life-threatening IPDs, allogeneic hematopoietic stem cell transplantation are therapeutic possibilities. Gene therapy may be a future option. Regular follow-up by a specialized hematology service with multidisciplinary support especially for syndromic IPDs is mandatory.
Collapse
|
15
|
Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106:337-350. [PMID: 33147934 PMCID: PMC7849565 DOI: 10.3324/haematol.2020.248153] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules. Important are mutations of P2RY12 encoding the major ADP receptor causal for an inherited platelet disorder with inheritance characteristics that depend on the variant identified. Interestingly, variants of GP6 encoding the major subunit of the collagen receptor GPVI/FcRγ associate only with mild bleeding. The numbers of genes involved in dense granule defects including Hermansky-Pudlak and Chediak Higashi syndromes continue to progress and are updated. The ANO6 gene encoding a Ca2+-activated ion channel required for phospholipid scrambling is responsible for the rare Scott syndrome and decreased procoagulant activity. A novel EPHB2 defect in a familial bleeding syndrome demonstrates a role for this tyrosine kinase receptor independent of the classical model of its interaction with ephrins. Such advances highlight the large diversity of variants affecting platelet function but not their production, despite the difficulties in establishing a clear phenotype when few families are affected. They have provided insights into essential pathways of platelet function and have been at the origin of new and improved therapies for ischemic disease. Nevertheless, many patients remain without a diagnosis and requiring new strategies that are now discussed.
Collapse
Affiliation(s)
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Remi Favier
- French National Reference Center for Inherited Platelet Disorders, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris
| | | |
Collapse
|
16
|
Downes K, Borry P, Ericson K, Gomez K, Greinacher A, Lambert M, Leinoe E, Noris P, Van Geet C, Freson K. Clinical management, ethics and informed consent related to multi-gene panel-based high throughput sequencing testing for platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost 2020; 18:2751-2758. [PMID: 33079472 PMCID: PMC7589386 DOI: 10.1111/jth.14993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Molecular diagnostics of inherited platelet disorders (IPD) has been revolutionized by the implementation of high-throughput sequencing (HTS) approaches. A conclusive diagnosis using HTS tests can be obtained quickly and cost-effectively in many, but not all patients. The expanding use of HTS tests has raised concerns regarding complex variant interpretation and the ethical implications of detecting unsolicited findings such as variants in IPD genes RUNX1, ETV6, and ANKRD26, which are associated with increased leukemic risk. This guidance document has been developed and written by a multidisciplinary team of researchers and clinicians, with expertise in hematology, clinical and molecular genetics, and bioethics, alongside a RUNX1 patient advocacy representative. We recommend that for clinical diagnostics, HTS for IPD should use a multigene panel of curated diagnostic-grade genes. Critically, we advise that an HTS test for clinical diagnostics should only be ordered by a clinical expert that is: (a) fully aware of the complexity of genotype-phenotype correlations for IPD; (b) able to discuss these complexities with a patient and family members before the test is initiated; and (c) able to interpret and appropriately communicate the results of a HTS diagnostic report, including the implication of variants of uncertain clinical significance. Each patient should know what an HTS test could mean for his or her clinical management before initiating a test. We hereby propose an exemplified informed consent document that includes information on these ethical concerns and can be used by the community for implementation of HTS of IPD in a clinical diagnostic setting. This paper does not include recommendations for HTS of IPD in a research setting.
Collapse
Affiliation(s)
- Kate Downes
- East Genomic Laboratory HubCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Department of HaematologyUniversity of CambridgeCambridge Biomedical CampusCambridgeUK
| | - Pascal Borry
- Department of Public Health and Primary CareKU LeuvenLeuvenBelgium
| | | | - Keith Gomez
- Haemophilia Centre and Thrombosis UnitRoyal Free London NHS Foundation TrustLondonUK
| | - Andreas Greinacher
- Institut für Immunologie und TransfusionsmedizinUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Michele Lambert
- Division of HematologyThe Children’s Hospital of PhiladelphiaPhiladelphiaPAUSA
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Leinoe
- Department of HaematologyRigshospitaletNational University HospitalCopenhagenDenmark
| | - Patrizia Noris
- IRCCS Policlinico San Matteo Foundation and University of PaviaPaviaItaly
| | - Chris Van Geet
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter or Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | | |
Collapse
|
17
|
Ver Donck F, Downes K, Freson K. Strengths and limitations of high-throughput sequencing for the diagnosis of inherited bleeding and platelet disorders. J Thromb Haemost 2020; 18:1839-1845. [PMID: 32521110 DOI: 10.1111/jth.14945] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022]
Abstract
Inherited bleeding and platelet disorders (BPD) are highly heterogeneous and their diagnosis involves a combination of clinical investigations, laboratory tests, and genetic screening. This review will outline some of the challenges that geneticists and experts in clinical hemostasis face when implementing high-throughput sequencing (HTS) for patient care. We will provide an overview of the strengths and limitations of the different HTS techniques that can be used to diagnose BPD. An HTS test is cost-efficient and expected to increase the diagnostic rate with a possibility to detect unexpected diagnoses and decrease the turnaround time to diagnose patients. On the other hand, technical shortcomings, variant interpretation difficulties, and ethical issues related to HTS for BPD will also be documented. Delivering a genetic diagnosis to patients is highly desirable to improve clinical management and allow family counseling, but making incorrect assumptions about variants and providing insufficient information to patients before initiating the test could be harmful. Data-sharing and improved HTS guidelines are essential to limit these major drawbacks of HTS.
Collapse
Affiliation(s)
- Fabienne Ver Donck
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Kate Downes
- East Midlands and East of England Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW To provide a comprehensive update on the current available methodologies and techniques for diagnosis of inherited platelet disorders (IPD). RECENT FINDINGS The contributions of many groups have resulted in the significant progress in the molecular diagnosis of IPD including the identification of many genes responsible for the various phenotypes. The widespread use and availability of next-generation sequencing has brought to the forefront ethical challenges associated with nontargeted sequencing as well as provided us with novel variants to functionally validate. These requirements have driven the development of novel tools for functional assessment of platelets, although none of the novel techniques beyond sequencing have yet taken clinical hold. SUMMARY Much work is ongoing on functional and molecular assessment of platelet disorders and the incorporation of combined assessments is likely to yield the highest diagnostic results.
Collapse
|
19
|
Brunet J, Badin M, Chong M, Iyer J, Tasneem S, Graf L, Rivard GE, Paterson AD, Pare G, Hayward CPM. Bleeding risks for uncharacterized platelet function disorders. Res Pract Thromb Haemost 2020; 4:799-806. [PMID: 32685888 PMCID: PMC7354414 DOI: 10.1002/rth2.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The bleeding risks for nonsyndromic platelet function disorders (PFDs) that impair aggregation responses and/or cause dense granule deficiency (DGD) are uncertain. OBJECTIVES Our goal was to quantify bleeding risks for a cohort of consecutive cases with uncharacterized PFD. METHODS Sequential cases with uncharacterized PFDs that had reduced maximal aggregation (MA) with multiple agonists and/or nonsyndromic DGD were invited to participate along with additional family members to reduce bias. Index cases were further evaluated by exome sequencing, with analysis of RUNX1-dependent genes for cases with RUNX1 sequence variants. Bleeding assessment tools were used to estimate bleeding scores, with bleeding risks estimated as odds ratios (ORs) relative to general population controls. Relationships between symptoms and laboratory findings were also explored. RESULTS Participants with uncharacterized PFD (n = 37; 23 index cases) had impaired aggregation function (70%), nonsyndromic DGD (19%) or both (11%), unlike unaffected relatives. Probable pathogenic RUNX1 variants were found in 2 (9%) index cases/families, whereas others had PFD of unknown cause. Participants with PFD had increased bleeding scores compared to unaffected family members and general population controls, and increased risks for mucocutaneous (OR, 4-207) and challenge-related bleeding (OR, 12-43), and for receiving transfusions for bleeding (OR, 100). Reduced MA with collagen was associated with wound healing problems and bruising, and more severe DGD was associated with surgical bleeding (P < .04). CONCLUSIONS PFDs that impair MA and/or cause nonsyndromic DGD have significantly increased bleeding risks, and some symptoms are more common in those with more severe DGD or impaired collagen aggregation.
Collapse
Affiliation(s)
- Justin Brunet
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Matthew Badin
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Michael Chong
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Janaki Iyer
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Subia Tasneem
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Lucas Graf
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
- Centre for Laboratory Medicine and Hemophilia and Hemostasis CentreSt. GallenSwitzerland
| | | | - Andrew D. Paterson
- Genetics and Genome BiologyThe Hospital for Sick ChildrenTorontoONCanada
- The Dalla Lana School of Public Health and Institute of Medical SciencesUniversity of TorontoTorontoONCanada
| | - Guillaume Pare
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Catherine P. M. Hayward
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
- Department of MedicineMcMaster UniversityHamiltonONCanada
- Hamilton Regional Laboratory Medicine ProgramMcMaster UniversityHamiltonONCanada
| |
Collapse
|
20
|
Abstract
After vascular injury and exposure of subendothelial matrix proteins to the intravascular space, mediators of hemostasis are triggered and allow for clot formation and restoration of vascular integrity. Platelets are the mediators of primary hemostasis, creating a platelet plug and allowing for initial cessation of bleeding. Platelet disorders, qualitative and quantitative, may result in bleeding signs and symptoms, particularly mucocutaneous bleeding such as epistaxis, bruising, petechiae, and heavy menstrual bleeding. Increasing evidence suggests that platelets have functional capabilities beyond hemostasis, but this review focuses solely on platelet hemostatic properties. Herein, normal platelet function as well as the effects of abnormal function and thrombocytopenia are reviewed.
Collapse
Affiliation(s)
- Kristina M Haley
- Department of Pediatrics, Oregon Health & Science University, Portland, OR
| |
Collapse
|
21
|
Zaninetti C, Greinacher A. Diagnosis of Inherited Platelet Disorders on a Blood Smear. J Clin Med 2020; 9:jcm9020539. [PMID: 32079152 PMCID: PMC7074415 DOI: 10.3390/jcm9020539] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited platelet disorders (IPDs) are rare diseases featured by low platelet count and defective platelet function. Patients have variable bleeding diathesis and sometimes additional features that can be congenital or acquired. Identification of an IPD is desirable to avoid misdiagnosis of immune thrombocytopenia and the use of improper treatments. Diagnostic tools include platelet function studies and genetic testing. The latter can be challenging as the correlation of its outcomes with phenotype is not easy. The immune-morphological evaluation of blood smears (by light- and immunofluorescence microscopy) represents a reliable method to phenotype subjects with suspected IPD. It is relatively cheap, not excessively time-consuming and applicable to shipped samples. In some forms, it can provide a diagnosis by itself, as for MYH9-RD, or in addition to other first-line tests as aggregometry or flow cytometry. In regard to genetic testing, it can guide specific sequencing. Since only minimal amounts of blood are needed for the preparation of blood smears, it can be used to characterize thrombocytopenia in pediatric patients and even newborns further. In principle, it is based on visualizing alterations in the distribution of proteins, which result from specific genetic mutations by using monoclonal antibodies. It can be applied to identify deficiencies in membrane proteins, disturbed distribution of cytoskeletal proteins, and alpha as well as delta granules. On the other hand, mutations associated with impaired signal transduction are difficult to identify by immunofluorescence of blood smears. This review summarizes technical aspects and the main diagnostic patterns achievable by this method.
Collapse
Affiliation(s)
- Carlo Zaninetti
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- University of Pavia, and IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
- PhD Program of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, 17489 Greifswald, Germany;
- Correspondence: ; Tel.: +49-3834-865482; Fax: +49-3834-865489
| |
Collapse
|
22
|
Megy K, Downes K, Simeoni I, Bury L, Morales J, Mapeta R, Bellissimo DB, Bray PF, Goodeve AC, Gresele P, Lambert M, Reitsma P, Ouwehand WH, Freson K. Curated disease-causing genes for bleeding, thrombotic, and platelet disorders: Communication from the SSC of the ISTH. J Thromb Haemost 2019; 17:1253-1260. [PMID: 31179617 PMCID: PMC6852472 DOI: 10.1111/jth.14479] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/19/2019] [Accepted: 05/02/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Karyn Megy
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Kate Downes
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Ilenia Simeoni
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Loredana Bury
- Department of MedicineSection of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Joannella Morales
- European Molecular Biology LaboratoryEuropean Bioinformatics InstituteHinxtonUK
| | - Rutendo Mapeta
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | | | - Paul F. Bray
- Division of Hematology, and Program in Molecular MedicineUniversity of UtahSalt Lake CityUtah
| | - Anne C. Goodeve
- Haemostasis Research GroupDepartment of Infection, Immunity and Cardiovascular DiseaseFaculty of MedicineDentistry and HealthMedical SchoolUniversity of SheffieldSheffieldUK
| | - Paolo Gresele
- Department of MedicineSection of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Michele Lambert
- Department of PediatricsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvania
- Division of HematologyThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | - Pieter Reitsma
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Willem H. Ouwehand
- Department of HaematologyUniversity of CambridgeCambridgeUK
- NIHR BioResourceCambridge University HospitalsCambridgeUK
- NHS Blood and TransplantCambridgeUK
| | - Kathleen Freson
- Department of Cardiovascular SciencesCenter for Molecular and Vascular BiologyKU LeuvenLeuvenBelgium
| | | |
Collapse
|
23
|
Hayward CPM, Moffat KA, Brunet J, Carlino SA, Plumhoff E, Meijer P, Zehnder JL. Update on diagnostic testing for platelet function disorders: What is practical and useful? Int J Lab Hematol 2019; 41 Suppl 1:26-32. [PMID: 31069975 DOI: 10.1111/ijlh.12995] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/07/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Platelet function disorders (PFD) are an important group of bleeding disorders that require validated and practical laboratory strategies for diagnosis. METHODS This review summarizes the authors' experiences, current literature, and an international survey to evaluate the practices of diagnostic laboratories that offer tests for PFD. RESULTS Blood counts, blood film review, and aggregation tests are the most commonly performed investigations for PFD and help determine whether there is thrombocytopenia and/or defective platelet function due to a variety of causes. The performance characteristics of tests for PFD, and the level of evidence that these tests detect bleeding problems, are important issues to determine where tests are useful for diagnostic or correlative purposes, or research only uses. Platelet aggregation assays, and quantitative analysis of platelet dense granule numbers, are tests with good performance characteristics that detect abnormalities associated with increased bleeding in a significant proportion of individuals referred for PFD investigations. Lumiaggregometry estimates of platelet adenosine triphosphate release show greater variability which limits the diagnostic usefulness. Diagnostic laboratories report that fiscal and other constraints, including a lack of high-quality evidence, limit their ability to offer an expanded test menu for PFD. CONCLUSION PFD are clinically important bleeding disorders that remain challenging for diagnostic laboratories to investigate. While some PFD tests are well validated for diagnostic purposes, gaps in scientific evidence and resource limitations influence diagnostic laboratory decisions on which PFD tests to offer.
Collapse
Affiliation(s)
- Catherine P M Hayward
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Karen A Moffat
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada.,Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | - Justin Brunet
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Stephen A Carlino
- Hamilton Regional Laboratory Medicine Program, Hamilton, Ontario, Canada
| | | | - Piet Meijer
- ECAT Foundation, Voorschoten, The Netherlands
| | - James L Zehnder
- Departments of Pathology and Medicine, Stanford University, Stanford, California
| |
Collapse
|
24
|
Lambert MP. Inherited Platelet Disorders: A Modern Approach to Evaluation and Treatment. Hematol Oncol Clin North Am 2019; 33:471-487. [PMID: 31030814 DOI: 10.1016/j.hoc.2019.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The inherited platelet disorders are a heterogeneous group of disorders that can be pleotropic in their clinical presentations. They may present with variable platelet counts and bleeding, making their diagnosis difficult. New diagnostic tools range from flow cytometric platelet function assessments to next-generation sequencing. Several platelet disorders may now be treated with gene therapy or bone marrow transplant. Improved understanding of the molecular and biologic mechanisms of the inherited platelet disorders may lead to novel targeted therapies.
Collapse
Affiliation(s)
- Michele P Lambert
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Special Coagulation Laboratory, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Frontier Program in Immune Dysregulation, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
25
|
Simplifying the diagnosis of inherited platelet disorders? The new tools do not make it any easier. Blood 2019; 133:2478-2483. [PMID: 30858232 DOI: 10.1182/blood-2019-01-852350] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022] Open
Abstract
The molecular causes of many inherited platelet disorders are being unraveled. Next-generation sequencing facilitates diagnosis in 30% to 50% of patients. However, interpretation of genetic variants is challenging and requires careful evaluation in the context of a patient's phenotype. Before detailed testing is initiated, the treating physician and patient should establish an understanding of why testing is being performed and discuss potential consequences, especially before testing for variants in genes associated with an increased risk for hematologic malignancies.
Collapse
|
26
|
Greinacher A, Eekels JJM. Diagnosis of hereditary platelet disorders in the era of next-generation sequencing: "primum non nocere". J Thromb Haemost 2019; 17:551-554. [PMID: 30614196 DOI: 10.1111/jth.14377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/10/2023]
Abstract
Inherited platelet disorders can affect "only platelets", occur as a "syndromic phenotype" or be associated with "increased risk of hematological malignancies". Genetic testing is attractive for diagnosis of inherited platelet disorders. However, many physicians who refer patient blood for genetic testing are unaware of the association of certain inherited platelet disorders with other risks. Inherited platelet disorders associated with minor-moderate bleeding rarely cause patient distress. In contrast, identification of a mutation associated with an increased risk of leukemia may cause a major psychological disease burden, without offsetting the beneficial impact on management. Guidelines recommend postponing genetic testing "until the patient reaches adulthood or at least until the child is mature enough to participate in decision making". In our opinion, outside research, (genetic) testing in children with inherited platelet disorders should only be performed if it influences management. In adults, genes causing inherited platelet disorders associated with an increased risk of hematological malignancies should only be tested after obtaining explicit informed consent.
Collapse
Affiliation(s)
- Andreas Greinacher
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Julia J M Eekels
- Institut für Immunologie und Transfusionsmedizin, Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Gorski MM, Lecchi A, Femia EA, La Marca S, Cairo A, Pappalardo E, Lotta LA, Artoni A, Peyvandi F. Complications of whole-exome sequencing for causal gene discovery in primary platelet secretion defects. Haematologica 2019; 104:2084-2090. [PMID: 30819905 PMCID: PMC6886420 DOI: 10.3324/haematol.2018.204990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/22/2019] [Indexed: 01/24/2023] Open
Abstract
Primary platelet secretion defects constitute a heterogeneous group of functional defects characterized by reduced platelet granule secretion upon stimulation by different agonists. The clinical and laboratory heterogeneity of primary platelet secretion defects warrants a tailored approach. We performed a pilot study in order to develop DNA sequence analysis pipelines for gene discovery and to create a list of candidate causal genes for platelet secretion defects. Whole-exome sequencing analysis of 14 unrelated Italian patients with primary secretion defects and 16 controls was performed on Illumina HiSeq. Variant prioritization was carried out using two filtering approaches: identification of rare, potentially damaging variants in platelet candidate genes or by selecting singletons. To corroborate the results, exome sequencing was applied in a family in which platelet secretion defects and a bleeding diathesis were present. Platelet candidate gene analysis revealed gene defects in 10/14 patients, which included ADRA2A, ARHGAP1, DIAPH1, EXOC1, FCGR2A, ITPR1, LTBP1, PTPN7, PTPN12, PRKACG, PRKCD, RAP1GAP, STXBP5L, and VWF. The analysis of singletons identified additional gene defects in PLG and PHACTR2 in two other patients. The family analysis confirmed a missense variant p.D1144N in the STXBP5L gene and p.P83H in the KCNMB3 gene as potentially causal. In summary, exome sequencing revealed potential causal variants in 12 of 14 patients with primary platelet secretion defects, highlighting the limitations of the genomic approaches for causal gene identification in this heterogeneous clinical and laboratory phenotype.
Collapse
Affiliation(s)
- Marcin M Gorski
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan.,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| | - Anna Lecchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Eti A Femia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Silvia La Marca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Andrea Cairo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Emanuela Pappalardo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan.,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| | - Luca A Lotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Andrea Artoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan .,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| |
Collapse
|
28
|
Gresele P, Bury L, Mezzasoma AM, Falcinelli E. Platelet function assays in diagnosis: an update. Expert Rev Hematol 2019; 12:29-46. [DOI: 10.1080/17474086.2019.1562333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Anna Maria Mezzasoma
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| | - Emanuela Falcinelli
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Rand ML, Reddy EC, Israels SJ. Laboratory diagnosis of inherited platelet function disorders. Transfus Apher Sci 2018; 57:485-493. [DOI: 10.1016/j.transci.2018.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|