1
|
Moreillon B, Krumm B, Saugy JJ, Saugy M, Botrè F, Vesin JM, Faiss R. Prediction of plasma volume and total hemoglobin mass with machine learning. Physiol Rep 2023; 11:e15834. [PMID: 37828664 PMCID: PMC10570407 DOI: 10.14814/phy2.15834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Hemoglobin concentration ([Hb]) is used for the clinical diagnosis of anemia, and in sports as a marker of blood doping. [Hb] is however subject to significant variations mainly due to shifts in plasma volume (PV). This study proposes a newly developed model able to accurately predict total hemoglobin mass (Hbmass) and PV from a single complete blood count (CBC) and anthropometric variables in healthy subject. Seven hundred and sixty-nine CBC coupled to measures of Hbmass and PV using a CO-rebreathing method were used with a machine learning tool to calculate an estimation model. The predictive model resulted in a root mean square error of 33.2 g and 35.6 g for Hbmass, and 179 mL and 244 mL for PV, in women and men, respectively. Measured and predicted data were significantly correlated (p < 0.001) with a coefficient of determination (R2 ) ranging from 0.76 to 0.90 for Hbmass and PV, in both women and men. The Bland-Altman bias was on average 0.23 for Hbmass and 4.15 for PV. We herewith present a model with a robust prediction potential for Hbmass and PV. Such model would be relevant in providing complementary data in contexts such as the epidemiology of anemia or the individual monitoring of [Hb] in anti-doping.
Collapse
Affiliation(s)
- B. Moreillon
- Research and Expertise in anti‐Doping Sciences (REDs), Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Union Cycliste InternationaleWorld Cycling CentreAigleSwitzerland
| | - B. Krumm
- Research and Expertise in anti‐Doping Sciences (REDs), Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - J. J. Saugy
- Research and Expertise in anti‐Doping Sciences (REDs), Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - M. Saugy
- Research and Expertise in anti‐Doping Sciences (REDs), Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - F. Botrè
- Research and Expertise in anti‐Doping Sciences (REDs), Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
- Laboratorio AntidopingFederazione Medico Sportiva ItalianaRomeItaly
| | - J. M. Vesin
- Signal Processing Laboratory 2Swiss Federal Institute of TechnologyLausanneSwitzerland
| | - R. Faiss
- Research and Expertise in anti‐Doping Sciences (REDs), Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
2
|
Bouten J, Brick M, Saboua A, Hadjadj JL, Piscione J, Margot C, Doucende G, Bourrel N, Millet GP, Brocherie F. Effects of 2 Different Protocols of Repeated-Sprint Training in Hypoxia in Elite Female Rugby Sevens Players During an Altitude Training Camp. Int J Sports Physiol Perform 2023; 18:953-959. [PMID: 37487586 DOI: 10.1123/ijspp.2023-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 07/26/2023]
Abstract
OBJECTIVES Repeated-sprint training in hypoxia (RSH) is an effective way of improving physical performance compared with similar training in normoxia. RSH efficiency relies on hypoxia severity, but also on the oxidative-glycolytic balance determined by both sprint duration and exercise-to-rest ratio. This study investigated the effect of 2 types of RSH sessions during a classic altitude camp in world-class female rugby sevens players. METHODS Sixteen players performed 5 RSH sessions on a cycle ergometer (simulated altitude: 3000 m above sea level [asl]) during a 3-week natural altitude camp (1850 m asl). Players were assigned to 2 different protocols with either a high (RSH1:3, sprint duration: 8-10 s; exercise-to-rest ratios: 1:2-1:3; n = 7) or a low exercise-to-rest ratio (RSH1:5, sprint duration: 5-15 s; exercise-to-rest ratios: 1:2-1:5; n = 9). Repeated-sprint performances (maximal and mean power outputs [PPOmax, and PPOmean]) were measured before and after the intervention, along with physiological responses. RESULTS PPOmax (962 [100] to 1020 [143] W, P = .008, Cohen d = 0.47) and PPOmean (733 [71] to 773 [91] W, P = .008, d = 0.50) increased from before to after. A significant interaction effect (P = .048, d = 0.50) was observed for PPOmean, with a larger increase observed in RSH1:3 (P = .003). No interaction effects were observed (P > .05) for the other variables. CONCLUSION A classic altitude camp with 5 RSH sessions superimposed on rugby-sevens-specific training led to an improved repeated-sprint performance, suggesting that RSH effects are not blunted by prolonged hypoxic exposure. Interestingly, using a higher exercise-to-rest ratio during RSH appears to be more effective than when applying a lower exercise-to-rest ratio.
Collapse
Affiliation(s)
- Janne Bouten
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| | - Maxime Brick
- Research Department, French Rugby Union, Marcoussis,France
| | - Antoine Saboua
- Research Department, French Rugby Union, Marcoussis,France
| | | | | | - Chloé Margot
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Gregory Doucende
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Laboratoire Interdisciplinaire Performance Santé en Environnement de Montagne (LIPSEM), Université de Perpignan Via Domitia, Font Romeu,France
| | - Nicolas Bourrel
- Centre National d'Entraînement en Altitude, Font Romeu,France
- Institut National du Sport (INS), Montreal, QC,Canada
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne,Switzerland
| | - Franck Brocherie
- Laboratory of Sport, Expertise and Performance, French Institute of Sport (INSEP), Paris,France
| |
Collapse
|
3
|
Royal JT, Fisher JT, Mlinar T, Mekjavic IB, McDonnell AC. Validity and reliability of capillary vs. Venous blood for the assessment of haemoglobin mass and intravascular volumes. Front Physiol 2022; 13:1021588. [PMID: 36505074 PMCID: PMC9730879 DOI: 10.3389/fphys.2022.1021588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives: Haemoglobin mass (Hbmass) assessment with the carbon monoxide rebreathing method is a more accurate estimate than other measures of oxygen-carrying capacity. Blood may be collected by several means and differences in the measured variables may exist as a result. The present study assessed the validity and reliability of calculated Hbmass and intravascular volumes obtained from capillary blood (CAP) when compared to venous blood (VEN) draws. Methods: Twenty-two adults performed a carbon monoxide rebreathing procedure with paired VEN and CAP draws at baseline, pre-rebreathing and post-rebreathing (POST). Thirteen of these participants performed this protocol on two occasions to assess the data reliability from both blood sampling sites. In a second experiment, 14 adults performed a 20-min seated and a 20-min supine rest to assess for the effect of posture on haematological parameters. Results: Haemoglobin mass (CAP = 948.8 ± 156.8 g; VEN = 943.4 ± 157.3 g, p = 0.108) and intravascular volume (CAP = 6.5 ± 1 L; VEN = 6.5 ± 0.9 L, p = 0.752) were statistically indifferent, had low bias (Hbmass bias = 14.45 ± 40.42 g, LoA -64.78 g-93.67 g) and were highly correlated between sampling techniques. Reliability analysis demonstrated no difference in the mean change in variables calculated from both sampling sites and good to excellent intraclass correlation coefficients (>0.700), however, typical measurement error was larger in variables measured using CAP (VEN Hbmass TE% = 2.1%, CAP Hbmass TE% = 5.5%). The results indicate that a supine rest prior to the rebreathing protocol would have a significant effect on haemoglobin concentration and haematocrit values compared to a seated rest, with no effect on carboxyhaemoglobin %. Conclusion: The present study demonstrates that CAP and VEN were comparable for the calculation of Hbmass and intravascular volumes in terms of accuracy. However, reduced reliability and increased error in the CAP variables indicates that there are methodological considerations to address when deciding which blood drawing technique to utilise. To reduce this CAP error, increased replicate analyses are required.
Collapse
Affiliation(s)
- Joshua T. Royal
- Department of Automation, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Jason T. Fisher
- Department of Automation, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Tinkara Mlinar
- Department of Automation, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor B. Mekjavic
- Department of Automation, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia,Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, Burnaby, BC, Canada
| | - Adam C. McDonnell
- Department of Automation, Biocybernetics, and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia,*Correspondence: Adam C. McDonnell,
| |
Collapse
|
4
|
Bouten J, Debusschere J, Lootens L, Declercq L, Van Eenoo P, Boone J, Bourgois JG. Six weeks of static apnea training does not affect Hbmass and exercise performance. J Appl Physiol (1985) 2022; 132:673-681. [PMID: 35050796 DOI: 10.1152/japplphysiol.00770.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Acute apnea is known to induce decreases in oxyhemoglobin desaturation (SpO2) and increases in erythropoietin concentration ([EPO]). This study examined the potential of an apnea training program to induce erythropoiesis and increase hematological parameters and exercise performance. METHODS Twenty-two male subjects were randomly divided into an apnea and control group. The apnea group performed a 6-week apnea training program consisting of a daily series of 5 maximal static apneas. Before and after training, subjects visited the lab on three test days to perform 1) a ramp incremental test measuring V̇O2peak, 2) CO-rebreathing for Hb mass determination and a 3-km time trial and 3) an apnea test protocol with continuous finger SpO2 registration. Venous blood samples were drawn before and 180 minutes after the apnea test for analysis of [EPO]. RESULTS Minimal SpO2 reached during the apnea test protocol was 91 ±7% pre and 82 ±7% post apnea training. The apnea test protocol did not elicit an acute increase in [EPO] (p=0.685) before nor after the training program. Consequently, resting [EPO] (p=0.170), Hbmass (p=0.134), V̇O2peak (p=0.796) and 3-km cycling time trial performance (p=0.509) were not affected either. CONCLUSION The apnea test and training protocol, consisting of 5 maximal static apneas, did not induce a sufficiently strong hypoxic stimulus to cause erythropoiesis and therefore did not result in an increase in resting [EPO], Hbmass, V̇O2peak or time trial performance. Longer and/or more intense training sessions inducing a stronger hypoxic stimulus are probably needed to obtain changes in hematological and exercise parameters.
Collapse
Affiliation(s)
- Janne Bouten
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jonas Debusschere
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Leen Lootens
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Louise Declercq
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Gustaaf Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.,Centre of Sports Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Moreillon B, Equey T, Astolfi T, Salamin O, Faiss R. Removal of the influence of plasma volume fluctuations for the athlete biological passport and stability of haematological variables in active women taking oral contraception. Drug Test Anal 2022; 14:1004-1016. [PMID: 34994063 PMCID: PMC9306693 DOI: 10.1002/dta.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
The haematological module of the athlete biological passport (ABP) monitors longitudinal haematological variations that could be indicative of blood manipulation. This study applied a multi‐parametric model previously validated in elite cyclists to compare inferred and actual PV variations, whereas the potential influence of the oral contraceptive pill (OCP) cycle on the ABP blood biomarkers and plasma volume (PV) in 14 physically active women taking OCPs was also investigated. Blood and serum samples were collected each week for 8 weeks, and the ABP haematological variables were determined according to the World Anti‐Doping Agency guidelines. Transferrin (sTFN), ferritin (FERR), albumin (ALB), calcium (Ca), creatinine (CRE), total protein (TP) and low‐density lipoprotein (LDL) were additionally computed as ‘volume‐sensitive’ variables in a multivariate analysis to determine individual estimations of PV variations. Actual PV variations were indirectly measured using a validated carbon monoxide rebreathing method. We hypothesised ABP markers to be stable during a standard OCP cycle and estimated PV variations similar to measured PV variations. Measured PV variations were in good agreement with the predictions and allowed to explain an atypical passport finding (ATPF). The ABP biomarkers, Hbmass and PV were stable over 8 weeks. Significant differences occurred only between Week 7 and Week 1, with lower levels of haemoglobin concentration ([Hb]), haematocrit (HCT) and red blood cell count (RBC)(−4.4%, p < 0.01; −5.1%, p < 0.01; −5.2%, p < 0.01) and higher levels of PV at week 7 (+9%, p = 0.05). We thus concluded that estimating PV variations may help interpret individual ABP haematological profiles in women.
Collapse
Affiliation(s)
- Basile Moreillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Tiffany Astolfi
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Research and Expertise in anti-Doping sciences (REDs), University of Lausanne, Lausanne, Switzerland
| | - Olivier Salamin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Research and Expertise in anti-Doping sciences (REDs), University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.,Research and Expertise in anti-Doping sciences (REDs), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Krumm B, Faiss R. Factors Confounding the Athlete Biological Passport: A Systematic Narrative Review. SPORTS MEDICINE - OPEN 2021; 7:65. [PMID: 34524567 PMCID: PMC8443715 DOI: 10.1186/s40798-021-00356-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Through longitudinal, individual and adaptive monitoring of blood biomarkers, the haematological module of the athlete biological passport (ABP) has become a valuable tool in anti-doping efforts. The composition of blood as a vector of oxygen in the human body varies in athletes with the influence of multiple intrinsic (genetic) or extrinsic (training or environmental conditions) factors. In this context, it is fundamental to establish a comprehensive understanding of the various causes that may affect blood variables and thereby alter a fair interpretation of ABP profiles. METHODS This literature review described the potential factors confounding the ABP to outline influencing factors altering haematological profiles acutely or chronically. RESULTS Our investigation confirmed that natural variations in ABP variables appear relatively small, likely-at least in part-because of strong human homeostasis. Furthermore, the significant effects on haematological variations of environmental conditions (e.g. exposure to heat or hypoxia) remain debatable. The current ABP paradigm seems rather robust in view of the existing literature that aims to delineate adaptive individual limits. Nevertheless, its objective sensitivity may be further improved. CONCLUSIONS This narrative review contributes to disentangling the numerous confounding factors of the ABP to gather the available scientific evidence and help interpret individual athlete profiles.
Collapse
Affiliation(s)
- Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Raphael Faiss
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
- Center of Research and Expertise in Anti-Doping Sciences - REDs, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Bouten J, Bourgois JG, Lootens L, Boone J. Acute apnea and white blood cell count: A biphasic response formal comment on 'Hematologic changes after short term hypoxia in non-elite apnea divers under voluntary dry apnea conditions'. PLoS One 2021; 16:e0253584. [PMID: 34260608 PMCID: PMC8279404 DOI: 10.1371/journal.pone.0253584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Janne Bouten
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan G. Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Leen Lootens
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
- Doping Control Laboratory, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
8
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing 2019/2020. Drug Test Anal 2020; 13:8-35. [PMID: 33185038 DOI: 10.1002/dta.2969] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
Analytical chemistry-based research in sports drug testing has been a dynamic endeavor for several decades, with technology-driven innovations continuously contributing to significant improvements in various regards including analytical sensitivity, comprehensiveness of target analytes, differentiation of natural/endogenous substances from structurally identical but synthetically derived compounds, assessment of alternative matrices for doping control purposes, and so forth. The resulting breadth of tools being investigated and developed by anti-doping researchers has allowed to substantially improve anti-doping programs and data interpretation in general. Additionally, these outcomes have been an extremely valuable pledge for routine doping controls during the unprecedented global health crisis that severely affected established sports drug testing strategies. In this edition of the annual banned-substance review, literature on recent developments in anti-doping published between October 2019 and September 2020 is summarized and discussed, particularly focusing on human doping controls and potential applications of new testing strategies to substances and methods of doping specified the World Anti-Doping Agency's 2020 Prohibited List.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses, University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne, Germany
| |
Collapse
|