1
|
Ahmed N, Oluwole O, Mahmoudjafari Z, Suleman N, McGuirk JP. Managing Infection Complications in the Setting of Chimeric Antigen Receptor T cell (CAR-T) Therapy. Clin Hematol Int 2024; 6:31-45. [PMID: 38817309 PMCID: PMC11086990 DOI: 10.46989/001c.115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 06/01/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR T-cell) therapy has changed the paradigm of management of non-Hodgkin's lymphoma (NHL) and Multiple Myeloma. Infection complications have emerged as a concern that can arise in the setting of therapy and lead to morbidity and mortality. In this review, we classified infection complications into three categories, pre-infusion phase from the time pre- lymphodepletion (LD) up to day zero, early phase from day of infusion to day 30 post-infusion, and late phase after day 30 onwards. Infections arising in the pre-infusion phase are closely related to previous chemotherapy and bridging therapy. Infections arising in the early phase are more likely related to LD chemo and the expected brief period of grade 3-4 neutropenia. Infections arising in the late phase are particularly worrisome because they are associated with adverse risk features including prolonged neutropenia, dysregulation of humoral and adaptive immunity with lymphopenia, hypogammaglobinemia, and B cell aplasia. Bacterial, respiratory and other viral infections, protozoal and fungal infections can occur during this time . We recommend enhanced supportive care including prompt recognition and treatment of neutropenia with growth factor support, surveillance testing for specific viruses in the appropriate instance, management of hypogammaglobulinemia with repletion as appropriate and extended antimicrobial prophylaxis in those at higher risk (e.g. high dose steroid use and prolonged cytopenia). Finally, we recommend re-immunizing patients post CAR-T based on CDC and transplant guidelines.
Collapse
Affiliation(s)
- Nausheen Ahmed
- Hematologic Malignancies and Cellular TherapeuticsUniversity of Kansas Cancer Center
| | - Olalekan Oluwole
- Medicine, Hematology and OncologyVanderbilt University Medical Center
| | - Zahra Mahmoudjafari
- Hematologic Malignancies and Cellular TherapeuticsUniversity of Kansas Cancer Center
| | - Nahid Suleman
- Hematologic Malignancies and Cellular TherapeuticsUniversity of Kansas Cancer Center
| | - Joseph P McGuirk
- Hematologic Malignancies and Cellular TherapeuticsUniversity of Kansas Cancer Center
| |
Collapse
|
2
|
Degagné É, Donohoue PD, Roy S, Scherer J, Fowler TW, Davis RT, Reyes GA, Kwong G, Stanaway M, Larroca Vicena V, Mutha D, Guo R, Edwards L, Schilling B, Shaw M, Smith SC, Kohrs B, Kufeldt HJ, Churchward G, Ruan F, Nyer DB, McSweeney K, Irby MJ, Fuller CK, Banh L, Toh MS, Thompson M, Owen AL, An Z, Gradia S, Skoble J, Bryan M, Garner E, Kanner SB. High-Specificity CRISPR-Mediated Genome Engineering in Anti-BCMA Allogeneic CAR T Cells Suppresses Allograft Rejection in Preclinical Models. Cancer Immunol Res 2024; 12:462-477. [PMID: 38345397 PMCID: PMC10985478 DOI: 10.1158/2326-6066.cir-23-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 01/31/2024] [Indexed: 04/04/2024]
Abstract
Allogeneic chimeric antigen receptor (CAR) T cell therapies hold the potential to overcome many of the challenges associated with patient-derived (autologous) CAR T cells. Key considerations in the development of allogeneic CAR T cell therapies include prevention of graft-vs-host disease (GvHD) and suppression of allograft rejection. Here, we describe preclinical data supporting the ongoing first-in-human clinical study, the CaMMouflage trial (NCT05722418), evaluating CB-011 in patients with relapsed/refractory multiple myeloma. CB-011 is a hypoimmunogenic, allogeneic anti-B-cell maturation antigen (BCMA) CAR T cell therapy candidate. CB-011 cells feature 4 genomic alterations and were engineered from healthy donor-derived T cells using a Cas12a CRISPR hybrid RNA-DNA (chRDNA) genome-editing technology platform. To address allograft rejection, CAR T cells were engineered to prevent endogenous HLA class I complex expression and overexpress a single-chain polyprotein complex composed of beta-2 microglobulin (B2M) tethered to HLA-E. In addition, T-cell receptor (TCR) expression was disrupted at the TCR alpha constant locus in combination with the site-specific insertion of a humanized BCMA-specific CAR. CB-011 cells exhibited robust plasmablast cytotoxicity in vitro in a mixed lymphocyte reaction in cell cocultures derived from patients with multiple myeloma. In addition, CB-011 cells demonstrated suppressed recognition by and cytotoxicity from HLA-mismatched T cells. CB-011 cells were protected from natural killer cell-mediated cytotoxicity in vitro and in vivo due to endogenous promoter-driven expression of B2M-HLA-E. Potent antitumor efficacy, when combined with an immune-cloaking armoring strategy to dampen allograft rejection, offers optimized therapeutic potential in multiple myeloma. See related Spotlight by Caimi and Melenhorst, p. 385.
Collapse
Affiliation(s)
| | | | - Suparna Roy
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | | | | | | | | | - Devin Mutha
- Caribou Biosciences, Inc., Berkeley, California
| | - Raymond Guo
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - McKay Shaw
- Caribou Biosciences, Inc., Berkeley, California
| | | | - Bryan Kohrs
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - Finey Ruan
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | | | - Lynda Banh
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | | | - Zili An
- Caribou Biosciences, Inc., Berkeley, California
| | | | | | - Mara Bryan
- Caribou Biosciences, Inc., Berkeley, California
| | | | | |
Collapse
|
3
|
Gambella M, Carlomagno S, Mangerini R, Colombo N, Parodi A, Ghiggi C, Giannoni L, Coviello E, Setti C, Luchetti S, Serio A, Laudisi A, Passannante M, Bo A, Tedone E, Sivori S, Angelucci E, Raiola AM. Early CAR - CD4 + T-lymphocytes recovery following CAR-T cell infusion: A worse outcome in diffuse large B cell lymphoma. EJHAEM 2024; 5:360-368. [PMID: 38633118 PMCID: PMC11020131 DOI: 10.1002/jha2.871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
CAR- CD4+ T cell lymphopenia is an emerging issue following CAR-T cell therapy. We analyzed the determinants of CD4+ T cell recovery and a possible association with survival in 31 consecutive patients treated with commercial CAR-T for diffuse large B-cell (DLBCL) or mantle cell lymphoma. Circulating immune subpopulations were characterized through multiparametric-flow cytometry. Six-month cumulative incidence of CAR- CD4+ T cell recovery (≥200 cells/μL) was 0.43 (95% confidence interval [CI]: 0.28-0.65). Among possible determinants of CD4+ T cell recovery, we recognized infusion of a 4-1BB product (tisagenlecleucel, TSA) in comparison with a CD28 (axicabtagene/brexucabtagene, AXI/BRX) (hazard ratio [HR] [95% CI]: 5.79 [1.16-24.12] p = 0.016). Higher CD4+ T cell counts resulted with TSA at month-1, -2 and -3. Moderate-to-severe infections were registered with prolonged CD4+ T cell lymphopenia. Early, month-1 CD4+ T cell recovery was associated with a worse outcome in the DLBCL cohort, upheld in a multivariate regression model for overall survival (HR: 4.46 [95% CI: 1.12-17.71], p = 0.03). We conclude that a faster CAR- CD4+ T cell recovery is associated with TSA as compared to AXI/BRX. Month-1 CAR- CD4+ T cell subset recovery could represent a "red flag" for CAR-T cell therapy failure in DLBCL patients.
Collapse
Affiliation(s)
- Massimiliano Gambella
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
- Department of Experimental Medicine (DIMES)University of GenoaGenovaItaly
| | | | - Rosa Mangerini
- Anatomia Patologica OspedalieraIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Nicoletta Colombo
- Anatomia Patologica OspedalieraIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Alessia Parodi
- Anatomia Patologica OspedalieraIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Chiara Ghiggi
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Livia Giannoni
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Elisa Coviello
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Chiara Setti
- Department of Experimental Medicine (DIMES)University of GenoaGenovaItaly
| | - Silvia Luchetti
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Alberto Serio
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Antonella Laudisi
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Monica Passannante
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Alessandra Bo
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Elisabetta Tedone
- Anatomia Patologica OspedalieraIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Simona Sivori
- Department of Experimental Medicine (DIMES)University of GenoaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Emanuele Angelucci
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| | - Anna Maria Raiola
- Ematologia e Terapie CellulariIRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
4
|
Yin Y, Shen K, Li H, Zhang L. Pneumocystis jirovecii Pneumonia Secondary to Blinatumomab Therapy: A Case Report. Chemotherapy 2024; 69:104-107. [PMID: 38508148 DOI: 10.1159/000538256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION With the increasing use of blinatumomab in relapsed or refractory B-cell precursor acute lymphoblastic leukemia (ALL), including minimal residual disease (MRD)-positive cases, awareness of its adverse effects has gradually improved. Pneumocystis jirovecii pneumonia (PCP) associated with blinatumomab therapy is rare. CASE PRESENTATION We present a case of PCP in a patient undergoing blinatumomab therapy. A 70-year-old female diagnosed with Philadelphia-like CRLF2 overexpression B-cell precursor ALL received blinatumomab as consolidation therapy after achieving complete remission with prior induction chemotherapy. On the second day of blinatumomab infusion, she developed intermittent low-grade fever, and chest computed tomography (CT) revealed subtle infiltrates and nodules. Despite empiric trimethoprim-sulfamethoxazole (TMP-SMX) prophylaxis, she progressed to significant shortness of breath and type I respiratory failure, with increased lactate dehydrogenase and β-D-glucan assays. Chest CT showed diffuse ground-glass opacities with scattered small nodules. The dry cough prompted next-generation sequencing of peripheral blood, which tested positive for pneumocystis jirovecii without evidence of other pathogens. Consequently, the patient was diagnosed with PCP. The first cycle of blinatumomab had to be discontinued, and therapeutic dosages of TMP-SMX and dexamethasone were administered, resulting in full recovery and stable condition during follow-ups. CONCLUSION PCP is rare in B-cell precursor ALL patients receiving blinatumomab therapy but manifests with early onset and rapid disease progression. Despite prophylaxis, PCP infection cannot be ignored during blinatumomab therapy. Therefore, heightened attention is warranted when using blinatumomab therapy.
Collapse
Affiliation(s)
- Yue Yin
- Division of General Internal Medicine, Department of Primary Care and Family Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
| | - Kaini Shen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanyu Li
- Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Minson A, Hamad N, Cheah CY, Tam C, Blombery P, Westerman D, Ritchie D, Morgan H, Holzwart N, Lade S, Anderson MA, Khot A, Seymour JF, Robertson M, Caldwell I, Ryland G, Saghebi J, Sabahi Z, Xie J, Koldej R, Dickinson M. CAR T cells and time-limited ibrutinib as treatment for relapsed/refractory mantle cell lymphoma: the phase 2 TARMAC study. Blood 2024; 143:673-684. [PMID: 37883795 DOI: 10.1182/blood.2023021306] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
ABSTRACT CD19-directed chimeric antigen receptor T cells (CAR-T) achieve high response rates in patients with relapsed/refractory mantle cell lymphoma (MCL). However, their use is associated with significant toxicity, relapse concern, and unclear broad tractability. Preclinical and clinical data support a beneficial synergistic effect of ibrutinib on apheresis product fitness, CAR-T expansion, and toxicity. We evaluated the combination of time-limited ibrutinib and CTL019 CAR-T in 20 patients with MCL in the phase 2 TARMAC study. Ibrutinib commenced before leukapheresis and continued through CAR-T manufacture for a minimum of 6 months after CAR-T administration. The median prior lines of therapy was 2; 50% of patients were previously exposed to a Bruton tyrosine kinase inhibitor (BTKi). The primary end point was 4-month postinfusion complete response (CR) rate, and secondary end points included safety and subgroup analysis based on TP53 aberrancy. The primary end point was met; 80% of patients demonstrated CR, with 70% and 40% demonstrating measurable residual disease negativity by flow cytometry and molecular methods, respectively. At 13-month median follow-up, the estimated 12-month progression-free survival was 75% and overall survival 100%. Fifteen patients (75%) developed cytokine release syndrome; 12 (55%) with grade 1 to 2 and 3 (20%) with grade 3. Reversible grade 1 to 2 neurotoxicity was observed in 2 patients (10%). Efficacy was preserved irrespective of prior BTKi exposure or TP53 mutation. Deep responses correlated with robust CAR-T expansion and a less exhausted baseline T-cell phenotype. Overall, the safety and efficacy of the combination of BTKi and T-cell redirecting immunotherapy appears promising and merits further exploration. This trial was registered at www.ClinicalTrials.gov as #NCT04234061.
Collapse
Affiliation(s)
- Adrian Minson
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - Nada Hamad
- Department of Haematology, St Vincent's Hospital, Sydney, Australia
| | - Chan Y Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Australia
- School of Medicine, University of Western Australia, Crawley, Australia
| | | | - Piers Blombery
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - David Westerman
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - David Ritchie
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - Huw Morgan
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - Nicholas Holzwart
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - Stephen Lade
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mary Ann Anderson
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Amit Khot
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - John F Seymour
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - Molly Robertson
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Imogen Caldwell
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Georgina Ryland
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Javad Saghebi
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Zahra Sabahi
- Department of Haematology, St Vincent's Hospital, Sydney, Australia
| | - Jing Xie
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Rachel Koldej
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| | - Michael Dickinson
- Clinical Haematology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Clinical Haematology, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
6
|
Galli E, Fresa A, Bellesi S, Metafuni E, Maiolo E, Pansini I, Frioni F, Autore F, Limongiello MA, Innocenti I, Giammarco S, Chiusolo P, Zini G, Sorà F. Hematopoiesis and immune reconstitution after CD19 directed chimeric antigen receptor T-cells (CAR-T): A comprehensive review on incidence, risk factors and current management. Eur J Haematol 2024; 112:184-196. [PMID: 37491951 DOI: 10.1111/ejh.14052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/27/2023]
Abstract
Impaired function of hematopoiesis after treatment with chimeric antigen T-cells (CAR-T) is a frequent finding and can interest a wide range of patients, regardless of age and underlying disease. Trilinear cytopenias, as well as hypogammaglobulinemia, B-cell aplasia, and T-cell impairment, can severely affect the infectious risk of CAR-T recipients, as well as their quality of life. In this review, we provide an overview of defects in hematopoiesis after CAR-T, starting with a summary of different definitions and thresholds. We then move to summarize the main pathogenetic mechanisms of cytopenias, and we offer insight into cytomorphological aspects, the role of clonal hematopoiesis, and the risk of secondary myeloid malignancies. Subsequently, we expose the major findings and reports on T-cell and B-cell quantitative and functional impairment after CAR-T. Finally, we provide an overview of current recommendations and leading experiences regarding the management of cytopenias and defective B- and T-cell function.
Collapse
Affiliation(s)
- Eugenio Galli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alberto Fresa
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elisabetta Metafuni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Elena Maiolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ilaria Pansini
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Frioni
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Autore
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Assunta Limongiello
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Idanna Innocenti
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sabrina Giammarco
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizia Chiusolo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gina Zini
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Sorà
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
McNerney KO, Hsieh EM, Shalabi H, Epperly R, Wolters PL, Hill JA, Gardner R, Talleur AC, Shah NN, Rossoff J. INSPIRED Symposium Part 3: Prevention and Management of Pediatric Chimeric Antigen Receptor T Cell-Associated Emergent Toxicities. Transplant Cell Ther 2024; 30:38-55. [PMID: 37821079 PMCID: PMC10842156 DOI: 10.1016/j.jtct.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T) therapy has emerged as a revolutionary cancer treatment modality, particularly in children and young adults with B cell malignancies. Through clinical trials and real-world experience, much has been learned about the unique toxicity profile of CAR-T therapy. The past decade brought advances in identifying risk factors for severe inflammatory toxicities, investigating preventive measures to mitigate these toxicities, and exploring novel strategies to manage refractory and newly described toxicities, infectious risks, and delayed effects, such as cytopenias. Although much progress has been made, areas needing further improvements remain. Limited guidance exists regarding initial administration of tocilizumab with or without steroids and the management of inflammatory toxicities refractory to these treatments. There has not been widespread adoption of preventive strategies to mitigate inflammation in patients at high risk of severe toxicities, particularly children. Additionally, the majority of research related to CAR-T toxicity prevention and management has focused on adult populations, with only a few pediatric-specific studies published to date. Given that children and young adults undergoing CAR-T therapy represent a unique population with different underlying disease processes, physiology, and tolerance of toxicities than adults, it is important that studies be conducted to evaluate acute, delayed, and long-term toxicities following CAR-T therapy in this younger age group. In this pediatric-focused review, we summarize key findings on CAR-T therapy-related toxicities over the past decade, highlight emergent CAR-T toxicities, and identify areas of greatest need for ongoing research.
Collapse
Affiliation(s)
- Kevin O McNerney
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois.
| | - Emily M Hsieh
- Pediatric Hematology/Oncology, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine of USC, Los Angeles, California
| | - Haneen Shalabi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Rebecca Epperly
- Department of Bone Marrow Transplant, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joshua A Hill
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Rebecca Gardner
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aimee C Talleur
- Department of Bone Marrow Transplant, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jenna Rossoff
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| |
Collapse
|
8
|
Epperly R, Giordani VM, Mikkilineni L, Shah NN. Early and Late Toxicities of Chimeric Antigen Receptor T-Cells. Hematol Oncol Clin North Am 2023; 37:1169-1188. [PMID: 37349152 PMCID: PMC10592597 DOI: 10.1016/j.hoc.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
As chimeric antigen receptor (CAR) T-cell therapy is increasingly integrated into clinical practice across a range of malignancies, identifying and treating inflammatory toxicities will be vital to success. Early experiences with CD19-targeted CAR T-cell therapy identified cytokine release syndrome and neurotoxicity as key acute toxicities and led to unified initiatives to mitigate the influence of these complications. In this section, we provide an update on the current state of CAR T-cell-related toxicities, with an emphasis on emerging acute toxicities affecting additional organ systems and considerations for delayed toxicities and late effects.
Collapse
Affiliation(s)
- Rebecca Epperly
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 1130, Memphis, TN 38105, USA
| | - Victoria M Giordani
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA; Pediatric Hematology/Oncology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Lekha Mikkilineni
- Blood and Marrow Transplantation & Cellular Therapy, Stanford University, Palo Alto, CA, USA; Stanford School of Medicine, 300 Pasteur Drive, Room H0101, Stanford, CA 94305, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Building 10, Room 1W-3750, 9000 Rockville Pike MSC 1104, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Cheng H, Ji S, Wang J, Hua T, Chen Z, Liu J, Shao L, Wang X, Chen W, Sang W, Qi K, Li Z, Sun C, Shi M, Qiao J, Wu Q, Zeng L, Fei X, Huang H, Gu W, Xu K, Zheng J, Cao J. Long-term analysis of cellular immunity in patients with RRMM treated with CAR-T cell therapy. Clin Exp Med 2023; 23:5241-5254. [PMID: 37907623 DOI: 10.1007/s10238-023-01232-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy exhibits remarkable efficacy against refractory or relapsed multiple myeloma (RRMM); however, the immune deficiency following CAR-Ts infusion has not been well studied. In this study, 126 patients who achieved remission post-CAR-Ts infusion were evaluated for cellular immunity. Following lymphodepletion (LD) chemotherapy, the absolute lymphocyte count (ALC) and absolute counts of lymphocyte subsets were significantly lower than baseline at D0. Grade ≥ 3 lymphopenia occurred in 99% of patients within the first 30 days, with most being resolved by 180 days. The median CD4+ T-cell count was consistently below baseline and the lower limit of normal (LLN) levels at follow-up. Conversely, the median CD8+ T-cell count returned to the baseline and LLN levels by D30. The median B-cell count remained lower than baseline level at D60 and returned to baseline and LLN levels at D180. In the first 30 days, 27 (21.4%) patients had 29 infections, with the majority being mild to moderate in severity (21/29; 72.4%). After day 30, 44 (34.9%) patients had 56 infections, including 20 severe infections. One patient died from bacteremia at 3.8 months post-CAR-Ts infusion. In conclusion, most patients with RRMM experienced cellular immune deficiency caused by LD chemotherapy and CAR-Ts infusion. The ALC and most lymphocyte subsets gradually recovered after day 30 of CAR-Ts infusion, except for CD4+ T cells. Some patients experience prolonged CD4+ T-cell immunosuppression without severe infection.
Collapse
Affiliation(s)
- Hai Cheng
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Shengwei Ji
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiaojiao Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Tian Hua
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zihan Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jiaying Liu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Lingyan Shao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xue Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Wei Chen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Wei Sang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Kunming Qi
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Cai Sun
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jianlin Qiao
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Qingyun Wu
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute, Xuzhou, 221002, China
| | - Xiaoming Fei
- Department of Hematology, The Affiliated Hospital of Jiangsu University, Zhenjiang, 212000, China
| | - Hongming Huang
- Department of Hematology, The Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Weiying Gu
- Department of Hematology, The First People's Hospital of Changzhou, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
10
|
Mak JWY, Law AWH, Law KWT, Ho R, Cheung CKM, Law MF. Prevention and management of hepatitis B virus reactivation in patients with hematological malignancies in the targeted therapy era. World J Gastroenterol 2023; 29:4942-4961. [PMID: 37731995 PMCID: PMC10507505 DOI: 10.3748/wjg.v29.i33.4942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatitis due to hepatitis B virus (HBV) reactivation can be serious and potentially fatal, but is preventable. HBV reactivation is most commonly reported in patients receiving chemotherapy, especially rituximab-containing therapy for hematological malignancies and those receiving stem cell transplantation. Patients with inactive and even resolved HBV infection still have persistence of HBV genomes in the liver. The expression of these silent genomes is controlled by the immune system. Suppression or ablation of immune cells, most importantly B cells, may lead to reactivation of seemingly resolved HBV infection. Thus, all patients with hematological malignancies receiving anticancer therapy should be screened for active or resolved HBV infection by blood tests for hepatitis B surface antigen (HBsAg) and antibody to hepatitis B core antigen. Patients found to be positive for HBsAg should be given prophylactic antiviral therapy. For patients with resolved HBV infection, there are two approaches. The first is pre-emptive therapy guided by serial HBV DNA monitoring, and treatment with antiviral therapy as soon as HBV DNA becomes detectable. The second approach is prophylactic antiviral therapy, particularly for patients receiving high-risk therapy, especially anti-CD20 monoclonal antibody or hematopoietic stem cell transplantation. Entecavir and tenofovir are the preferred antiviral choices. Many new effective therapies for hematological malignancies have been introduced in the past decade, for example, chimeric antigen receptor (CAR)-T cell therapy, novel monoclonal antibodies, bispecific antibody drug conjugates, and small molecule inhibitors, which may be associated with HBV reactivation. Although there is limited evidence to guide the optimal preventive measures, we recommend antiviral prophylaxis in HBsAg-positive patients receiving novel treatments, including Bruton's tyrosine kinase inhibitors, B-cell lymphoma 2 inhibitors, and CAR-T cell therapy. Further studies are needed to determine the risk of HBV reactivation with these agents and the best prophylactic strategy.
Collapse
Affiliation(s)
- Joyce Wing Yan Mak
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| | | | | | - Rita Ho
- Department of Medicine, North District Hospital, Hong Kong 852, China
| | - Carmen Ka Man Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong 852, China
| |
Collapse
|
11
|
Niu J, Qiu H, Xiang F, Zhu L, Yang J, Huang C, Zhou K, Tong Y, Cai Y, Dong B, Lu Y, Sun X, Wan L, Ding X, Wang H, Song X. CD19/CD22 bispecific CAR-T cells for MRD-positive adult B cell acute lymphoblastic leukemia: a phase I clinical study. Blood Cancer J 2023; 13:44. [PMID: 36964132 PMCID: PMC10039051 DOI: 10.1038/s41408-023-00813-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/26/2023] Open
Affiliation(s)
- Jiahua Niu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Huiying Qiu
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | | | - Lin Zhu
- Hrain Biotechnology, Shanghai, China
| | - Jun Yang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Chongmei Huang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yu Cai
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Baoxia Dong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Yuan Lu
- Hrain Biotechnology, Shanghai, China
| | | | - Liping Wan
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China
| | - Xueying Ding
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China.
| | - Haopeng Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee (STCSM), Shanghai, China.
| |
Collapse
|
12
|
Xia Y, Zhang J, Li J, Zhang L, Li J, Fan L, Chen L. Cytopenias following anti-CD19 chimeric antigen receptor (CAR) T cell therapy: a systematic analysis for contributing factors. Ann Med 2022; 54:2951-2965. [PMID: 36382675 PMCID: PMC9673810 DOI: 10.1080/07853890.2022.2136748] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cytopenia is one of the most common adverse events following the CAR-T cell infusion, affecting the quality of life and potentially leading to life-threatening bleeding and infection. This study aimed to systematically review the cytopenias following anti-CD19 CAR-T therapy and further analyse the contributing factors. METHODS Databases including PubMed, MEDLINE, Embase and Cochrane were systematically searched on 8 May 2022. A random-effect meta-analysis was used to estimate the incidence of cytopenia, and subgroup analyses were applied to explore heterogeneity. RESULTS A total of 68 studies involving 2950 patients were included in this study. The overall incidence of all grade anaemia, thrombocytopenia, neutropenia, leukopoenia, lymphocytopenia and febrile neutropenia was 65%, 55%, 78%, 62%, 70% and 27%, respectively, and the corresponding cytopenias of grade 3 or worse were 33%, 31%, 61%, 45%, 46%, and 21%, respectively. Subgroup analysis showed increased incidence of cytopenias in subgroups with lower median age, proportion of males (<65%) and proportion of bridging therapy (<80%) and in the subgroup with a median line of prior therapy ≥3. In terms of disease and therapeutic target, cytopenias were more frequent in ALL patients and in dual-target CAR-T therapies (targeting CD19 in combination with other targets). Furthermore, CAR-T products manufactured by lentiviral vectors and those with the costimulatory domain of CD28 were more likely to cause haematological toxicity. No significant differences were observed in cytopenia between patients treated with CAR-T products with murine and humanized scFv. CONCLUSION In conclusion, neutropenia is the most frequent cytopenia after CAR-T therapy, both in all grades or grade ≥3. The incidence of cytopenias following CAR-T therapy is influenced by the age, sex, disease and number of prior therapy lines of the patients, as well as the target and costimulatory domain of CAR-T cells, and viral vectors used for manufacturing.KEY MESSAGESNeutropenia is the most frequent cytopenia after CAR-T therapy.The clinical characteristics of the patients, the design of CAR-T cells and the protocol of CAR-T treatment can influence the occurrence of cytopenias following the CAR-T therapy.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jue Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lina Zhang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lijuan Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
13
|
Han L, Zhao R, Yang J, Zu Y, Liu Y, Zhou J, Li L, Huang Z, Zhang J, Gao Q, Song Y, Zhou K. Case Report: Successful engraftment of allogeneic hematopoietic stem cells using CAR-T cell therapy as the conditioning regimen in R/R Ph+ B cell acute lymphoblastic leukemia. Front Immunol 2022; 13:965932. [PMID: 36225940 PMCID: PMC9549058 DOI: 10.3389/fimmu.2022.965932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Consolidative allogeneic hematopoietic stem cells (allo-HSCs) after chimeric antigen receptor T cells (CAR-T) therapy is an emerging modality in hematologic malignancies. Knowledge about the success of allogeneic hematopoietic stem cell transplantation (allo-HSCT) after CAR-T therapy without a conditioning regimen is limited. Case presentation We report a patient with relapsed/refractory (R/R) Ph+ B-cell acute lymphoblastic leukemia (ALL) who underwent anti-CD19 CAR-T immunotherapy. After 1 month of treatment, bone marrow hyperplasia remained reduced with no hematopoietic improvements. In line with this, allogeneic hematopoietic stem cells (HSCs) were extracted from an HLA-matched sibling donor and administered to the patient on day 33 after CAR-T cell therapy to support hematopoiesis. On day 40, the level of immature bone marrow lymphocytes was at 0% and minimal residual disease-negative, and the fusion gene BCR/ABL 190 was negative. Chimerism analysis showed full donor chimerism. Three months after CAR-T cells infusion, the patient was still in complete remission with full donor chimerism. However, decreased liver function with skin pigmentation and festering, indicative of acute graft versus host disease, was noted. The treatment was halted owing to financial reasons. Conclusion We report the successful engraftment of allogeneic HSCs using CAR-T cell therapy as a conditioning regimen for R/R B-ALL patients.
Collapse
Affiliation(s)
- Lu Han
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ran Zhao
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jingyi Yang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yingling Zu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yanyan Liu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jian Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Linlin Li
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Zhenghua Huang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Jishuai Zhang
- Department of Research and Development, The Shenzhen Pregene Biopharma Company, Ltd., Shenzhen, China
| | - Quanli Gao
- Department of Immunology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Keshu Zhou
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Keshu Zhou,
| |
Collapse
|
14
|
Endowing universal CAR T-cell with immune-evasive properties using TALEN-gene editing. Nat Commun 2022; 13:3453. [PMID: 35773273 PMCID: PMC9247096 DOI: 10.1038/s41467-022-30896-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/24/2022] [Indexed: 12/29/2022] Open
Abstract
Universal CAR T-cell therapies are poised to revolutionize cancer treatment and to improve patient outcomes. However, realizing these advantages in an allogeneic setting requires universal CAR T-cells that can kill target tumor cells, avoid depletion by the host immune system, and proliferate without attacking host tissues. Here, we describe the development of a novel immune-evasive universal CAR T-cells scaffold using precise TALEN-mediated gene editing and DNA matrices vectorized by recombinant adeno-associated virus 6. We simultaneously disrupt and repurpose the endogenous TRAC and B2M loci to generate TCRαβ- and HLA-ABC-deficient T-cells expressing the CAR construct and the NK-inhibitor named HLA-E. This highly efficient gene editing process enables the engineered T-cells to evade NK cell and alloresponsive T-cell attacks and extend their persistence and antitumor activity in the presence of cytotoxic levels of NK cell in vivo and in vitro, respectively. This scaffold could enable the broad use of universal CAR T-cells in allogeneic settings and holds great promise for clinical applications.
Collapse
|
15
|
Luo W, Li C, Zhang Y, Du M, Kou H, Lu C, Mei H, Hu Y. Adverse effects in hematologic malignancies treated with chimeric antigen receptor (CAR) T cell therapy: a systematic review and Meta-analysis. BMC Cancer 2022; 22:98. [PMID: 35073859 PMCID: PMC8785493 DOI: 10.1186/s12885-021-09102-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Background
Recently, chimeric antigen receptor-modified (CAR) T cell therapy for hematological malignancies has shown clinical efficacy. Hundreds of clinical trials have been registered and lots of studies have shown hematologic toxic effects were very common. The main purpose of this review is to systematically analyze hematologic toxicity in hematologic malignancies treated with CAR-T cell therapy.
Methods
We searched databases including PubMed, Web of Science, Embase and Cochrane up to January 2021. For safety analysis of overall hematologic toxicity, the rate of neutrophil, thrombocytopenia and anemia were calculated. Subgroup analysis was performed for age, pathological type, target antigen, co-stimulatory molecule, history of hematopoietic stem cell transplantation (HSCT) and prior therapy lines. The incidence rate of aspartate transferase (AST) increased, alanine transaminase (ALT) increased, serum creatine increased, APTT prolonged and fibrinogen decreased were also calculated.
Results
Overall, 52 studies involving 2004 patients were included in this meta-analysis. The incidence of any grade neutropenia, thrombocytopenia and anemia was 80% (95% CI: 68–89%), 61% (95% CI: 49–73%), and 68% (95%CI: 54–80%) respectively. The incidences of grade ≥ 3 neutropenia, thrombocytopenia and anemia were 60% (95% CI: 49–70%), 33% (95% CI: 27–40%), and 32% (95%CI: 25–40%) respectively. According to subgroup analysis and the corresponding Z test, hematological toxicity was more frequent in younger patients, in patients with ≥4 median lines of prior therapy and in anti-CD19 cases. The subgroup analysis of CD19 CAR-T cell constructs showed that 41BB resulted in less hematological toxicity than CD28.
Conclusion
CAR-T cell therapy has dramatical efficacy in hematological malignancies, but the relevant adverse effects remain its obstacle. The most common ≥3 grade side effect is hematological toxicity, and some cases die from infections or severe hemorrhage in early period. In long-term follow-up, hematological toxicity is less life-threatening generally and most suffered patients recover to adequate levels after 3 months. To prevent life-threatening infections or bleeding events, clinicians should pay attention to intervention of hematological toxicity in the early process of CAR-T cell therapy.
Collapse
|
16
|
Targeted Therapy in the Treatment of Pediatric Acute Lymphoblastic Leukemia-Therapy and Toxicity Mechanisms. Int J Mol Sci 2021; 22:ijms22189827. [PMID: 34575992 PMCID: PMC8468873 DOI: 10.3390/ijms22189827] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Targeted therapy has revolutionized the treatment of poor-prognosis pediatric acute lymphoblastic leukemia (ALL) with specific genetic abnormalities. It is still being described as a new landmark therapeutic approach. The main purpose of the use of molecularly targeted drugs and immunotherapy in the treatment of ALL is to improve the treatment outcomes and reduce the doses of conventional chemotherapy, while maintaining the effectiveness of the therapy. Despite promising treatment results, there is limited clinical research on the effect of target cell therapy on the potential toxic events in children and adolescents. The recent development of highly specific molecular methods has led to an improvement in the identification of numerous unique expression profiles of acute lymphoblastic leukemia. The detection of specific genetic mutations determines patients’ risk groups, which allows for patient stratification and for an adjustment of the directed and personalized target therapies that are focused on particular molecular alteration. This review summarizes the knowledge concerning the toxicity of molecular-targeted drugs and immunotherapies applied in childhood ALL.
Collapse
|