1
|
Li L, Zuo Y, Shi Y, Yang Y, Wu Y. Overexpression of the F116V allele of CYP9A186 in transgenic Helicoverpa armigera confers high-level resistance to emamectin benzoate. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 163:104042. [PMID: 38030045 DOI: 10.1016/j.ibmb.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Insect cytochrome P450s play important roles in the detoxification of xenobiotics and the metabolic resistance to insecticides. However, the approach for in vivo validation of the contribution of specific candidate P450s to resistance is still limited in most non-model insect species. Previous studies with heterologous expression and in vitro functional assays have confirmed that a natural substitution (F116V) in the substrate recognition site 1 (SRS1) of the CYP9A186 of Spodoptera exigua is a gain-of-function mutation, which results in detoxification capability of and thus high-level resistance to both emamectin benzoate (EB) and abamectin. In this study, we established an effective piggyBac-based transformation system in the serious agricultural pest Helicoverpa armigera and overexpressed in vivo a resistance P450 allele, CYP9A186-F116V, from another lepidopteran pest Spodoptera exigua. Bioassays showed that transgenic H. armigera larvae expressing CYP9A186-F116V obtained 358-fold and 38.6-fold resistance to EB and abamectin, respectively. In contrast, a transgenic line of Drosophila melanogaster overexpressing this P450 variant only confers ∼20-fold resistance to the two insecticides. This bias towards the resistance level revealed that closely related species might provide a more appropriate cellular environment for gene expression and subsequent toxicokinetics of insecticides. These results not only present an alternative method for in vivo functional characterization of P450s in H. armigera and other phylogenetically close species but also provide a valuable genetic engineering toolkit for the genetic manipulation of H. armigera.
Collapse
Affiliation(s)
- Lin Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yayun Zuo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Pesticide Science, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yu Shi
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yihua Yang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Li X, Liu Q, Bi H, Wang Y, Xu X, Sun W, Zhang Z, Huang Y. piggyBac-based transgenic RNAi of serine protease 2 results in male sterility in Hyphantria cunea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103726. [PMID: 35131470 DOI: 10.1016/j.ibmb.2022.103726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/25/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Fall webworm, Hyphantria cunea, is a global invasive forest pest that causes serious damage to the economy and ecosystem of agriculture and forestry. Due to the extent of the problem and the difficulty of conventional chemical control, new technologies must be pursued, such as genetic-based inheritable insect sterile technology (gSIT), which exhibits promise for pest control. In the present study, we established a piggyBac-based transgenic system in fall webworm and generated a dominant male-sterile strain by targeting the seminal fluid protein serine protease 2 (Hcser2), displaying an outstanding trait of gSIT. First, an RNA polymerase type III (Pol III) promoter, the HcU62 small nuclear RNA (snRNA) gene promoter, was identified and characterized through direct injection of RNAi plasmids in vivo. Quantitative real-time PCR revealed that HcU62 had the greatest knockdown efficiency of the Hcyellow gene among five short hairpin RNA (shRNA) plasmids tested, designated HcU61-HcU65. Second, subsequent application of piggyBac-based transgenic RNAi (HcU62: shHcyellow, Ysh2) significantly reduced the expression level of the Hcyellow gene, resulting in a stable yellow observable phenotype from the larval to pupal stages in Ysh2 transgenic mutants. Finally, an HcU62-driven transgenic RNAi strain targeting the Hcser2 gene was obtained, resulting in a dominant male-sterile phenotype. Significantly, this process did not affect the growth, development, mating behavior or egg laying of the mutants, and the dominant sterile trait could be inherited in the next generation through female Hcser2 mutants. Furthermore, CRISPR/Cas9-mediated disruption of the Hcser2 gene further confirmed the dominant sterile phenotype, supporting it as a generalized target for genetic control of H. cunea. This study reports the first piggyBac-mediated transgenic system in H. cunea, providing a promising genetic method for controlling this pest by targeting Hcser2 gene.
Collapse
Affiliation(s)
- Xiaowei Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 401331, China; CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Qun Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Xia Xu
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zhou J, Chen J, Shu Y. Lead stress affects the reproduction of Spodoptera litura but not by regulating the vitellogenin gene promoter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111581. [PMID: 33396104 DOI: 10.1016/j.ecoenv.2020.111581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) stress affects hormone-mediated responses (e.g., reproduction) in insects. In this study, the effects of Pb stress (12.5-50 mg Pb/kg in larval artificial diets) on the reproduction of the common cutworm Spodoptera litura (Lepidoptera: Noctuidae) were investigated after 7 generations. The results showed that Pb stress did not reduce the longevity of adult females, but 50 mg Pb/kg significantly reduced the longevity of adult males, regardless of the generation. After 50 mg Pb/kg stress for one or 7 generations, the peak time of egg-laying was delayed, and egg production and hatchability were decreased significantly. The vitellin content in eggs was significantly inhibited by Pb stress. The S. litura vitellogenin (Vg) gene promoter was cloned and analyzed. Multiple putative transcription factors were predicted for the 2321 bp Vg promoter region, including the TATA box, GATA, basic helix-loop-helix (bHLH) transcription factor, Broad-Complex (BR-C) binding sites, etc. The fragment from -2222 to -211 bp of the Vg promoter was the activation domain for Vg, whereas the region from -211 to -55 bp repressed the activity of the Vg promoter. The construct promoter (-782/+76) in Trichoplusia ni (Hi5) cells significantly improved Vg expression, which was not affected by Pb stress (1 or 10 mg/ml). Therefore, Pb stress significantly inhibited the reproduction of S. litura but not by regulating the Vg promoter.
Collapse
Affiliation(s)
- Jialiang Zhou
- School of Life Sciences, Jinggangshan University, Ji'an, 343009, China
| | - Jin Chen
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yinghua Shu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Qian HY, Zhang X, Zhao GD, Guo HM, Li G, Xu AY. Effects of Pyriproxyfen Exposure on Reproduction and Gene Expressions in Silkworm, Bombyx mori. INSECTS 2020; 11:insects11080467. [PMID: 32722009 PMCID: PMC7469178 DOI: 10.3390/insects11080467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
Abstract
The silkworm, Bombyx mori Linnaeus, is an important economic insect and a representative model organism of Lepidoptera, which has been widely used in the study of reproduction and development. The development of the silkworm's reproductive gland is easily affected by many external factors, such as chemical insecticides. After the silkworm larvae were treated with different concentrations of pyriproxyfen, the results showed that the number of eggs and hatching rate of eggs in the silkworm can be reduced by pyriproxyfen, and the concentration effects were displayed. Pyriproxyfen exposure could affect the normal development of the ovary tissue by reducing the number of oocytes and oogonia in the ovaries of silkworm fed with pyriproxyfen. We employed qRT-PCR, to detect the expressions of genes related to ovary development (Vg, Ovo, Otu, Sxl-S and Sxl-L) and hormone regulation (EcR and JHBP2) in silkworm. Our study showed that the transcription levels of Vg, Ovo, Otu, Sxl-S and Sxl-L in the treatment group were lower than those in the control group (6.08%, 61.99%, 83.51%, 99.31% and 71.95%, respectively). The transcription level of ECR was 70.22% for the control group, while that of JHBP2 was upregulated by 3.92-fold. Changes of transcription levels of these genes caused by pyriproxyfen exposure ultimately affect the absorption of nutrients, energy metabolism, ovary development and egg formation of the silkworm, thus leading to reproductive disorders of the silkworm. In general, our study revealed the response of silkworm reproduction to pyriproxyfen exposure and provided a certain reference value for the metabolism of the silkworm to pyriproxyfen.
Collapse
Affiliation(s)
- He-Ying Qian
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
- Correspondence: (H.-Y.Q.); (A.-Y.X.)
| | - Xiao Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
| | - Guo-Dong Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
| | - Hui-Min Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
| | - Gang Li
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
| | - An-Ying Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Jiangsu 212018, China; (X.Z.); (G.-D.Z.); (H.-M.G.); (G.L.)
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu 212018, China
- Correspondence: (H.-Y.Q.); (A.-Y.X.)
| |
Collapse
|
5
|
Shen G, Liu H, Lin Y, Xing D, Zhang Y, Xia Q. Effects of Certain cis-Regulatory Elements on Stage-Specific vitellogenin Expression in the Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5859241. [PMID: 32556319 PMCID: PMC7300837 DOI: 10.1093/jisesa/ieaa054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori vitellogenin (BmVg) is highly upregulated during pupation, and the 20-hydroxyecdysone and amino acids may regulate stage-specific BmVg expression. However, previous studies showed that other factors may also affect stage-specific BmVg expression. Here, we characterized effective BmVg transcription factors by identifying the corresponding cis-regulatory elements (CREs). We prepared transgenic B. mori, in which DsRed was driven by various lengths of BmVg promoter. qRT-PCR analysis showed that DsRed expression driven by a 1.0-kb BmVg promoter (VgP1.0K) was consistent with endogenous BmVg. VgP1.0K specificity was closer to the endogenous BmVg promoter than that of VgP0.8K. These results suggest that CREs affecting stage-specific BmVg expression were localized to the 1.0-kb BmVg promoter. We investigated the effects of certain CREs that could influence the stage specificity of BmVg promoter on BmVg expression in transgenic B. mori. The relative DsRed expression was significantly reduced in transgenic female B. mori and the peak in DsRed expression was delayed after E-box CRE mutation. These results demonstrate that the E-box element enhanced BmVg expression and also affected stage-specific BmVg expression. Moreover, the relative DsRed expression was significantly increased in transgenic female of B. mori after 3×BD CRE mutation in BmVg promoter. However, the stage specificity of the mutated promoter was consistent with that of the endogenous BmVg promoter. The 3×BD element downregulated BmVg but had no effect on stage-specific BmVg expression. The present study promoted the process of elucidating the regulatory network for stage-specific BmVg expression and furnished a theoretical basis for the application of BmVg promoter.
Collapse
Affiliation(s)
- Guanwang Shen
- Biological Science Research Center of Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - Hongling Liu
- Biological Science Research Center of Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - Ying Lin
- Biological Science Research Center of Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - Dongxu Xing
- Sericulture and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yujing Zhang
- Biological Science Research Center of Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center of Southwest University, Chongqing, China
- Chongqing Key Laboratory of Sericulture Science, Chongqing, China
| |
Collapse
|
6
|
Asad M, Munir F, Xu X, Li M, Jiang Y, Chu L, Yang G. Functional characterization of the cis-regulatory region for the vitellogenin gene in Plutella xylostella. INSECT MOLECULAR BIOLOGY 2020; 29:137-147. [PMID: 31850544 DOI: 10.1111/imb.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The vitellogenin gene promoter (VgP) is an essential cis-regulatory element that plays a significant role in transcription of the vitellogenin (Vg) gene, leading to the production of yolk protein in insects, including lepidopterans. However, the function of VgP is still not clear in Plutella xylostella. Here, we cloned a 5.1 kb DNA fragment of the cis-regulatory region adjacent to the 5' end of the Vg gene of P. xylostella (PxVg). We identified two promoter sites in that 5' upstream sequence of PxVg and performed in vitro analysis of two promoter sequences (PxVgP1, 4.9 kb, and PxVgP2, 2.9 kb) in the embryonic cell line of P. xylostella. PxVgP2 exhibited higher enhanced green fluorescent protein (EGFP) expression, so PxVgP2 was used for in vivo analysis. Strong EGFP fluorescence was observed in adult females and the fat body of females, with low expression in embryos. Our results suggest that PxVgP is an important stage-, tissue- and sex-specific endogenous cis-regulatory element in P. xylostella.
Collapse
Affiliation(s)
- M Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - F Munir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - X Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - M Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Y Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - L Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - G Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
7
|
Yu Y, Liu X, Ma X, Zhang Z, Wang T, Sun F, Hou C, Li M. A palmitoyltransferase Approximated gene Bm-app regulates wing development in Bombyx mori. INSECT SCIENCE 2020; 27:2-13. [PMID: 29943911 PMCID: PMC7379679 DOI: 10.1111/1744-7917.12629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/21/2018] [Accepted: 05/27/2018] [Indexed: 05/08/2023]
Abstract
The silkworm Bombyx mori is an important lepidopteran model insect in which many kinds of natural mutants have been identified. However, molecular mechanisms of most of these mutants remain to be explored. Here we report the identification of a gene Bm-app is responsible for the silkworm minute wing (mw) mutation which exhibits exceedingly small wings during pupal and adult stages. Compared with the wild type silkworm, relative messenger RNA expression of Bm-app is significantly decreased in the u11 mutant strain which shows mw phenotype. A 10 bp insertion in the putative promoter region of the Bm-app gene in mw mutant strain was identified and the dual luciferase assay revealed that this insertion decreased Bm-app promoter activity. Furthermore, clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases-mediated depletion of the Bm-app induced similar wing defects which appeared in the mw mutant, demonstrating that Bm-app controls wing development in B. mori. Bm-app encodes a palmitoyltransferase and is responsible for the palmitoylation of selected cytoplasmic proteins, indicating that it is required for cell mitosis and growth during wing development. We also discuss the possibility that Bm-app regulates wing development through the Hippo signaling pathway in B. mori.
Collapse
Affiliation(s)
- Ye Yu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Xiao‐Jing Liu
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Xiao Ma
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Zhong‐Jie Zhang
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
| | - Tai‐Chu Wang
- Sericultural Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Fan Sun
- Sericultural Research InstituteAnhui Academy of Agricultural SciencesHefeiChina
| | - Cheng‐Xiang Hou
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangJiangsuChina
| | - Mu‐Wang Li
- School of BiotechnologyJiangsu University of Science and TechnologyZhenjiangJiangsuChina
- Sericultural Research InstituteChinese Academy of Agricultural SciencesZhenjiangJiangsuChina
| |
Collapse
|
8
|
Xu J, Chen RM, Chen SQ, Chen K, Tang LM, Yang DH, Yang X, Zhang Y, Song HS, Huang YP. Identification of a germline-expression promoter for genome editing in Bombyx mori. INSECT SCIENCE 2019; 26:991-999. [PMID: 30549429 DOI: 10.1111/1744-7917.12657] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Identification of stage- and tissue-specific cis-regulatory elements will enable more precise genomic editing. In previous studies of the silkworm Bombyx mori, we identified and characterized several tissue- and sex-specific cis-regulatory elements using transgenic technology, including a female- and fat body-specific promoter, vitellogenin, testis-specific promoters, Radial spoke head 1 (BmR1) and beta-tubulin 4 (Bmβ4). Here we report a cis-regulatory element specific for a somatic and germ cell-expressed promoter, nanos (Bmnos). We investigated activities of three truncated promoter sequences upstream of the transcriptional initiation site sequences of Bmnos in vitro (nos-0.6kb, nos-1kb and nos-2kb) and in vivo (nos-2kb). In BmN cultured cells, all three lengths drove expression of the gene encoding enhanced green fluorescence protein (EGFP), although nos-2kb had the highest fluorescence activity. In transgenic silkworms, nos-2kb drove EGFP expression at the early embryonic stage, and fluorescence was concentrated in the gonads at later embryonic stages. In addition, this cis-regulatory element was not sex differentiated. The fluorescence intensity gradually weakened following the larval developmental stage in the gonads and were broadly expressed in the whole body. The nos-2kb promoter drove the Cas9 system with efficiency comparable to that of the broad-spectrum strong IE1 promoter. These results indicate that Bmnos is an effective endogenous cis-regulatory element in the early embryo and in the gonad that can be used in applications involving the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system.
Collapse
Affiliation(s)
- Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Rong-Mei Chen
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Shu-Qing Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Kai Chen
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin-Meng Tang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - De-Hong Yang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Yang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Nevada, USA
| | - Hong-Sheng Song
- College of Life Sciences, Shanghai University, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Zhang Z, Niu B, Ji D, Li M, Li K, James AA, Tan A, Huang Y. Silkworm genetic sexing through W chromosome-linked, targeted gene integration. Proc Natl Acad Sci U S A 2018; 115:8752-8756. [PMID: 30104361 PMCID: PMC6126770 DOI: 10.1073/pnas.1810945115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sex separation methods are critical for genetic sexing systems in commercial insect production and sterile insect techniques. Integration of selectable marker genes into a sex chromosome is particularly useful in insects with a heterogametic sex determination system. Here, we describe targeted gene integration of fluorescent marker expression cassettes into a randomly amplified polymorphic DNA (RAPD) marker region in the W chromosome of the lepidopteran model insect Bombyx mori using transcriptional activator-like effector nuclease (TALEN)-mediated genome editing. This silkworm strain shows ubiquitous female-specific red or green fluorescence from the embryonic to adult stages. Furthermore, we developed a binary, female-specific, embryonic lethality system combining the TALEN and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology. This system includes one strain with TALEN-mediated, W-specific Cas9 expression driven by the silkworm germ cell-specific nanos (nos) promoter and another strain with U6-derived single-guide RNA (sgRNA) expression targeting transformer 2 (tra2), an essential gene for silkworm embryonic development. Filial 1 (F1) hybrids exhibit complete female-specific lethality during embryonic stages. Our study provides a promising approach for B. mori genetic sexing and sheds light on developing sterile insect techniques in other insect species, especially in lepidopteran pests with WZ/ZZ sex chromosome systems.
Collapse
Affiliation(s)
- Zhongjie Zhang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Baolong Niu
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Dongfeng Ji
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, 310021 Hangzhou, China
| | - Muwang Li
- Sericultural Research Institute, Jiangsu University of Science and Technology, 212018 Zhenjiang, China
| | - Kai Li
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92697-3900;
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697-3900
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032 Shanghai, China;
| |
Collapse
|
10
|
Shen G, Wu J, Han C, Liu H, Xu Y, Zhang H, Lin Y, Xia Q. Oestrogen-related receptor reduces vitellogenin expression by crosstalk with the ecdysone receptor pathway in female silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2018; 27:454-463. [PMID: 29603466 DOI: 10.1111/imb.12385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oestrogen-related receptor (ERR) is involved in oestrogen receptor (ER) signalling pathways owing to its similarity to ER in terms of domain structure and co-activator and response elements. Although insects lack ER, they harbour an ERR gene that is thought to modulate metabolism and energy conversion via an unknown mechanism. The present study investigated the function of ERR in insects using female silkworm (Bombyx mori, Bm). We found that the expression of B. mori vitellogenin (BmVg) and B. mori ERR (BmERR) in the fat bodies of female silkworms at different stages of development exhibited alternating patterns, and RNA interference of BmERR in females induced BmVg transcription, resulting in an increase in egg weight relative to the control. Furthermore, BmERR was found to be involved in regulating the transcription of BmVg through an oestrogen-related receptor response element (ERRE) in the promoter of the BmVg gene, as demonstrated by electrophoretic mobility shift assay, cell transfection assay and chromatin immunoprecipitation. In summary, our results indicate that BmERR bound to the ERRE motif in the BmVg promoter reducing the expression of BmVg in the fat body of the female silkworm. To our surprise, the ERRE also showed the ability to bind the ecdysone receptor (BmEcR) and ultraspiracle complex. Thus, we surmise that ERR participates in steroid hormone signalling by engaging in crosstalk with the ER pathway in vertebrates and with the EcR pathway in insects.
Collapse
Affiliation(s)
- G Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - J Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - C Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - H Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Y Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - H Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Y Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| | - Q Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, China
| |
Collapse
|
11
|
Cui GZ, Zhu JJ. Pheromone-Based Pest Management in China: Past, Present, and Future Prospects. J Chem Ecol 2016; 42:557-70. [DOI: 10.1007/s10886-016-0731-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/14/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
|
12
|
Smykal V, Raikhel AS. Nutritional Control of Insect Reproduction. CURRENT OPINION IN INSECT SCIENCE 2015; 11:31-38. [PMID: 26644995 PMCID: PMC4669899 DOI: 10.1016/j.cois.2015.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The amino acid-Target of Rapamycin (AA/TOR) and insulin pathways play a pivotal role in reproduction of female insects, serving as regulatory checkpoints that guarantee the sufficiency of nutrients for developing eggs. Being evolutionary older, the AA/TOR pathway functions as an initial nutritional sensor that not only activates nutritional responses in a tissue-specific manner, but is also involved in the control of insect insulin-like peptides (ILPs) secretion. Insulin and AA/TOR pathways also assert their nutritionally linked influence on reproductive events by contributing to the control of biosynthesis and secretion of juvenile hormone and ecdysone. This review covers the present status of our understanding of the contributions of AA/TOR and insulin pathways in insect reproduction.
Collapse
Affiliation(s)
| | - Alexander S. Raikhel
- Corresponding author. Department of Entomology, University of California Riverside, Riverside, CA 92521, USA. Tel.: 951 827 2129
| |
Collapse
|
13
|
Xu J, Bi H, Chen R, Aslam AFM, Li Z, Ling L, Zeng B, Huang Y, Tan A. Transgenic characterization of two testis-specific promoters in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2015; 24:183-190. [PMID: 25387604 DOI: 10.1111/imb.12144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sex-specific regulatory elements are key components for developing insect genetic sexing systems. The current insect genetic sexing system mainly uses a female-specific modification system whereas little success was reported on male-specific genetic modification. In the silkworm Bombyx mori, a lepidopteran model insect with economic importance, a transgene-based, female-specific lethality system has been established based on sex-specific alternative splicing factors and a female-specific promoter BmVgp (vitellogenin promoter) has been identified. However, no male-specific regulatory elements have yet been identified. Here we report the transgenic identification of two promoters that drive reporter gene expression in a testis-specific manner in B. mori. Putative promoter sequences from the B. mori Radial spoke head 1 gene (BmR1) and beta-tubulin 4 gene (Bmβ4) were introduced using piggybac-based germline transformation. In transgenic silkworms, expression of the reporter gene enhanced green fluorescent protein (EGFP) directed by either BmR1 promoter (BmR1p) or Bmβ4p showed precisely testis-specific manners from the larval to adult stage. Furthermore, EGFP expression of these two transgenic lines showed different localization in the testis, indicating that BmR1p or Bmβ4p might be used as distinct regulatory elements in directing testis-specific gene expression. Identification of these testis-specific promoters not only contributes to a better understanding of testis-specific gene function in insects, but also has potential applications in sterile insect techniques for pest management.
Collapse
Affiliation(s)
- J Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Shen G, Lin Y, Yang C, Xing R, Zhang H, Chen E, Han C, Liu H, Zhang W, Xia Q. Vertebrate estrogen regulates the development of female characteristics in silkworm, Bombyx mori. Gen Comp Endocrinol 2015; 210:30-7. [PMID: 25285397 DOI: 10.1016/j.ygcen.2014.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 09/01/2014] [Accepted: 09/20/2014] [Indexed: 11/30/2022]
Abstract
The vertebrate estrogens include 17-β-estradiol (E2), which has an analog in silkworm ovaries. In this study, the Bombyx mori vitellogenin gene (BmVg) was used as a biomarker to analyze the function of the E2 in silkworm. In most oviparous animals, Vg has female-specific expression. However, BmVg expression was also detected in B. mori males. Stage specific fluctuation of BmVg expression was similar in males and females, but expression levels in males were lower than in females. E2 treatment by injection or feeding of male larvae in the final instar stage induced and stimulated male BmVg transcription and protein synthesis. When silkworm ovary primordia were transplanted into males, BmVg was induced in male fat bodies. Transplanted ovaries primordia were also able to develop into ovaries and produce mature eggs. When females were treated with E2 promoted BmVg/BmVn protein accumulation in hemolymph, ovaries and eggs. However, BmVg transcription was decreased in female fat bodies. An E2 analog was identified in the hemolymph of day 3 wandering silkworms using high-performance liquid chromatography. Estradiol titers from fifth late-instar larvae to pupal stage were determined by enzyme-linked immunosorbent assay. The results suggested that silkworms synthesized a vertebrate E2 analog. This study found that E2 promoted the synthesis of BmVg, a female typical protein in silkworms.
Collapse
Affiliation(s)
- Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Congwen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Runmiao Xing
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Haiyan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Enxiang Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Chaoshan Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Hongling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Weiwei Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.
| |
Collapse
|