1
|
Negi N, Selvamani SB, Ramasamy GG, Nagarjuna Reddy KV, Pathak J, Thiruvengadam V, Mohan M, Dubey VK, Sushil SN. Identification and expression dynamics of CYPome across different developmental stages of Maconellicoccus hirsutus (Green). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101305. [PMID: 39128380 DOI: 10.1016/j.cbd.2024.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Maconellicoccus hirsutus is a highly polyphagous insect pest, posing a substantial threat to various crop sp., especially in the tropical and sub-tropical regions of the world. While extensive physiological and biological studies have been conducted on this pest, the lack of genetic information has hindered our understanding of the molecular mechanisms underlying its growth, development, and xenobiotic metabolism. The Cytochrome P450 gene, a member of the CYP gene superfamily ubiquitous in living organisms is associated with growth, development, and the metabolism of both endogenous and exogenous substances, contributing to the insect's adaptability in diverse environments. To elucidate the specific role of the CYP450 gene family in M. hirsutus which has remained largely unexplored, a de novo transcriptome assembly of the pink mealybug was constructed. A total of 120 proteins were annotated as CYP450 genes through homology search of the predicted protein sequences across different databases. Phylogenetic studies resulted in categorizing 120 CYP450 genes into four CYP clans. A total of 22 CYP450 families and 30 subfamilies were categorized, with CYP6 forming the dominant family. The study also revealed five genes (Halloween genes) associated with the insect hormone biosynthesis pathway. Further, the expression of ten selected CYP450 genes was studied using qRT-PCR across crawler, nymph, and adult stages, and identified genes that were expressed at specific stages of the insects. Thus, the findings of this study reveal the expression dynamics and possible function of the CYP450 gene family in the growth, development, and adaptive strategies of M. hirsutus which can be further functionally validated.
Collapse
Affiliation(s)
- Nikita Negi
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India; Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur - 492012, India. https://twitter.com/NegiNikita92892
| | - Selva Babu Selvamani
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India. https://twitter.com/MithranSelva
| | - Gandhi Gracy Ramasamy
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India.
| | - K V Nagarjuna Reddy
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India; Department of Entomology, School of Agriculture, Lovely Professional University, Punjab - 144411, India. https://twitter.com/arjun06001332
| | - Jyoti Pathak
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Venkatesan Thiruvengadam
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Muthugounder Mohan
- Division of Genomic Resources, ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| | - Vinod Kumar Dubey
- Department of Entomology, Indira Gandhi Krishi Vishwavidyalaya, Raipur - 492012, India
| | - Satya N Sushil
- ICAR - National Bureau of Agricultural Insect Resources, Bangalore - 560024, India
| |
Collapse
|
2
|
Vafopoulou X, Steel CGH. Halloween genes are expressed with a circadian rhythm during development in prothoracic glands of the insect RHODNIUS PROLIXUS. Comp Biochem Physiol A Mol Integr Physiol 2024; 290:111588. [PMID: 38242349 DOI: 10.1016/j.cbpa.2024.111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
We analyse the developmental and circadian profiles of expression of the genes responsible for ecdysteroidogenesis (Halloween genes) in the PGs of Rhodnius prolixus throughout larval-adult development. Extensive use of in vitro techniques enabled multiple different parameters to be measured in individual PGs. Expression of disembodied and spook closely paralleled the ecdysteroid synthesis of the same PGs, and the ecdysteroid titre in vivo, but with functionally significant exceptions. Various tissues other than PGs expressed one, both or neither genes. Both gonads express both genes in pharate adults (larvae close to ecdysis). Both genes were expressed at low, but significant, levels in UF Rhodnius, raising questions concerning how developmental arrest is maintained in UF animals. IHC confirmed the subcellular localisation of the coded proteins. Gene knockdown suppressed transcription of both genes and ecdysteroid synthesis, with spook apparently regulating the downstream gene disembodied. Transcription of both genes occurred with a daily rhythm (with peaks at night) that was confirmed to be under circadian control using aperiodic conditions. The complex behaviour of the rhythm in LL implied two anatomically distinct oscillators regulate this transcription rhythm. First, the circadian clock in the PGs and second, the circadian rhythm of of Rhodnius PTTH which is released rhythmically from the brain under control of the circadian clock therein, both of which were described previously. We conclude ecdysteroidogenesis in Rhodnius PGs employs a similar pathway as other insects, but its control is complex, involving mechanisms both within and outside the PGs.
Collapse
Affiliation(s)
| | - Colin G H Steel
- Department of Biology, York University, Toronto M3J 1P3, Canada.
| |
Collapse
|
3
|
Hull JJ, Heu CC, Gross RJ, LeRoy DM, Schutze IX, Langhorst D, Fabrick JA, Brent CS. Doublesex is essential for masculinization but not feminization in Lygus hesperus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 166:104085. [PMID: 38307215 DOI: 10.1016/j.ibmb.2024.104085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
In most holometabolous insects, sex differentiation occurs via a hierarchical cascade of transcription factors, with doublesex (dsx) regulating genes that control sex-specific traits. Although less is known in hemimetabolous insects, early evidence suggests that substantial differences exist from more evolutionarily advanced insects. Here, we identified and characterized dsx in Lygus hesperus (western tarnished plant bug), a hemipteran pest of many agricultural crops in western North America. The full-length transcript for L. hesperus dsx (Lhdsx) and several variants encode proteins with conserved DNA binding and oligomerization domains. Transcript profiling revealed that Lhdsx is ubiquitously expressed, likely undergoes alternative pre-mRNA splicing, and, unlike several model insects, is sex-biased rather than sex-specific. Embryonic RNA interference (RNAi) of Lhdsx only impacted sex development in adult males, which lacked both internal reproductive organs and external genitalia. No discernible impacts on adult female development or reproductivity were observed. RNAi knockdown of Lhdsx in nymphs likewise only affected adult males, which lacked the characteristic dimorphic coloration but had dramatically elevated vitellogenin transcripts. Gene knockout of Lhdsx by CRISPR/Cas9 editing yielded only females in G0 and strongly biased heterozygous G1 offspring to females with the few surviving males showing severely impaired genital development. These results indicate that L. hesperus male development requires Lhdsx, whereas female development proceeds via a basal pathway that functions independently of dsx. A fundamental understanding of sex differentiation in L. hesperus could be important for future gene-based management strategies of this important agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Chan C Heu
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Roni J Gross
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Dannialle M LeRoy
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Inana X Schutze
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Daniel Langhorst
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| | - Colin S Brent
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA
| |
Collapse
|
4
|
Long GY, Gong MF, Yang H, Yang XB, Zhou C, Jin DC. Buprofezin affects the molting process by regulating nuclear receptors SfHR3 and SfHR4 in Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105695. [PMID: 38072550 DOI: 10.1016/j.pestbp.2023.105695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
Nuclear receptors play a crucial role in various signaling and metabolic pathways, such as insect molting and development. Buprofezin (2-tert-butylimino-3-isopropyl-5-phenyl-perhydro-1, 3, 5-thiadiazin-4-one), a chitin synthesis inhibitor, causes molting deformities and slow death in insects by inhibiting chitin synthesis and interfering with their metabolism. This study investigated whether buprofezin affects insect ecdysteroid signaling pathway. The treatment of buprofezin significantly suppressed the transcription levels of SfHR3 and SfHR4, two nuclear receptor genes, in third-instar nymphs of Sogatella furcifera. Meanwhile, the transcription levels of SfHR3 and SfHR4 in first-day fifth-instar nymphs were induced at 12 h after 20E treatment. In addition, the silencing of SfHR3 and SfHR4 genes in first-day fifth-instar nymphs caused severe developmental delay and molting failure, resulting in a significant reduction of survival rates at 7.36% and 2.99% on the eighth day, respectively. Further analysis showed that the silencing SfHR3 and SfHR4 significantly inhibited the transcription levels of chitin synthesis and degradation-related genes. These results indicate that buprofezin can inhibits chitin synthesis and degradation by suppressing the signal transduction of 20E through SfHR3 and SfHR4, leading to molting failure and death. This study not only expands our understanding of the molecular mechanism of buprofezin in pest control but also lays a foundation for developing new control strategies of RNAi by targeting SfHR3 and SfHR4.
Collapse
Affiliation(s)
- Gui-Yun Long
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Key Laboratory of Guizhou Ethnic Medicine Resource Development and Utilization in Guizhou Minzu University, State Ethnic Affairs Commission, Guiyang, China
| | - Ming-Fu Gong
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| | - Xi-Bin Yang
- Plant Protection and Quarantine Station, Department of Agriculture and Rural Affairs of Guizhou Province, Guiyang, China
| | - Cao Zhou
- Chongqing Key Laboratory of Vector Insects, Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, China.
| | - Dao-Chao Jin
- Institute of Entomology, Guizhou University, Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, China
| |
Collapse
|
5
|
Wu L, Li L, Xu Y, Li Q, Liu F, Zhao H. Identification and characterization of CYP307A1 as a molecular target for controlling the small hive beetle, Aethina tumida. PEST MANAGEMENT SCIENCE 2023; 79:37-44. [PMID: 36054776 DOI: 10.1002/ps.7146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The molting hormone 20-hydroxyecdysone (20E) plays a key role in insect development, metamorphosis, and reproduction. Previous studies have shown that ecdysteroid metabolism is regulated by a series of CYP genes in most of the insect species. However, the roles of these CYP genes in a Coleopteran beetle, Aethina tumida (small hive beetle, SHB) have not yet been explored. RESULTS In the current study, we identified seven CYP genes (six Halloween genes and one AtCYP18A1 gene) related to 20E metabolism. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) showed that AtCYP307A1 and AtCYP307B1 were primarily expressed in the embryonic stage and in the cephalothorax of larvae. RNA interference (RNAi) screening revealed that suppression of AtCYP307A1 expression caused a lethal phenotype during the larval-pupal metamorphosis. Furthermore, Hematoxylin and Eosin staining of the integument showed that the RNAi of AtCYP307A1 inhibited the apolysis and degradation of the old cuticle. In addition, silencing of AtCYP307A1 resulted in significant down-regulation of 20E titers and the expression levels of 20E signaling pathway genes. Finally, the AtCYP307A1 RNAi phenotype was rescued by topical application of 20E. CONCLUSION Our studies suggest that AtCYP307A1 involved in 20E synthesis is indispensable during the larval-pupal metamorphosis of beetles, which could serve as a putative insecticide target for pest control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixian Wu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Liangbin Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yajing Xu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Fang Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Hull JJ, Brent CS, Fu T, Wang G, Christie AE. Mining Lygus hesperus (western tarnished plant bug) transcriptomic data for transient receptor potential channels: Expression profiling and functional characterization of a Painless homolog. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101027. [PMID: 36242802 DOI: 10.1016/j.cbd.2022.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/05/2022]
Abstract
The transient receptor potential (TRP) family of cation channels are evolutionarily conserved proteins with critical roles in sensory physiology. Despite extensive studies in model species, knowledge of TRP channel functional diversity and physiological impact remains limited in many non-model insect species. To assess the TRP channel repertoire in a non-model agriculture pest species (Lygus hesperus), publicly available transcriptomic datasets were mined for potential homologs. Among the transcripts identified, 30 are predicted to encompass complete open reading frames that encode proteins representing each of the seven TRP channel subfamilies. Although no homologs were identified for the Pyrexia and Brivido channels, the TRP complement in L. hesperus exceeded the 13-16 channels reported in most insects. This diversity appears to be driven by a combination of alternative splicing, which impacted members of six subfamilies, and gene expansion of the TRPP subfamily. To validate the in silico data and provide more detailed analyses of L. hesperus TRP functionality, the putative Painless homolog was selected for more in depth analysis and its functional role in thermosensation examined in vitro. RT-PCR expression profiling revealed near ubiquitous expression of the Painless transcript throughout nymphal and adult development. Electrophysiological data generated using a Xenopus oocyte recombinant expression system indicated activation parameters for L. hesperus Painless homolog that are consistent with a role in noxious heat (40°-45 °C) thermosensation.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Ting Fu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Bureau of Agriculture and Rural Affairs, Shandong 276200, China
| | - Guirong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
7
|
Brent CS, Heu CC, Gross RJ, Fan B, Langhorst D, Hull JJ. RNAi-Mediated Manipulation of Cuticle Coloration Genes in Lygus hesperus Knight (Hemiptera: Miridae). INSECTS 2022; 13:986. [PMID: 36354810 PMCID: PMC9698757 DOI: 10.3390/insects13110986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Cuticle coloration in insects is a consequence of the accumulation of pigments in a species-specific pattern. Numerous genes are involved in regulating the underlying processes of melanization and sclerotization, and their manipulation can be used to create externally visible markers of successful gene editing. To clarify the roles for many of these genes and examine their suitability as phenotypic markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for six genes (aaNAT, black, ebony, pale, tan, and yellow) were identified, with two variants for black. Sequence and phylogenetic analyses supported preliminary annotations as cuticle pigmentation genes. In accord with observable difference in color patterning, expression varied for each gene by developmental stage, adult age, body part, and sex. Knockdown by injection of dsRNA for each gene produced varied effects in adults, ranging from the non-detectable (black 1, yellow), to moderate decreases (pale, tan) and increases (black 2, ebony) in darkness, to extreme melanization (aaNAT). Based solely on its expression profile and highly visible phenotype, aaNAT appears to be the best marker for tracking transgenic L. hesperus.
Collapse
|
8
|
Zhang XY, He QH, Zhang TT, Wu HH, Zhang JZ, Ma EB. Characteristics of Halloween genes and RNA interference-mediated functional analysis of LmCYP307a2 in Locusta migratoria. INSECT SCIENCE 2022; 29:51-64. [PMID: 33634599 DOI: 10.1111/1744-7917.12907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Halloween genes are involved in the biosynthesis of the molting hormone, which plays a key role in insect ecdysis, development, metamorphosis, and reproduction. Our previous work identified five Halloween genes from Locusta migratoria, but their functions are currently unknown. In this study, the sequences of these five Halloween genes were analyzed and characterized. LmCYP307a2, LmCYP306a1, LmCYP302a1, and LmCYP315a1 were primarily expressed in the prothoracic glands, while LmCYP314a1 was universally expressed in peripheral tissues, especially in the ovaries and Malpighian tubules. All five Halloween genes were mainly expressed from the 5th to the 7th d in 5th-instar nymphs. RNA interference (RNAi) silencing of LmCYP307a2 resulted in severe molting delays and molting failure, which could be rescued by supplementary 20-hydroxyecdysone. A hematoxylin and eosin staining analysis suggested that the RNAi of LmCYP307a2 inhibited the ecdysis process by inhibiting the apolysis and degradation of the old cuticle, and by promoting the synthesis of a new cuticle. Quantitative reverse transcription polymerase chain reaction results showed that the expressions of LmE74, LmCht5, and LmCht10 were dramatically down-regulated, while that of LmChsI was substantially up-regulated, after knockdown of LmCYP307a2. The results suggest that LmCYP307a2 is related to the molt process via regulation of chitin synthesis and degradation.
Collapse
Affiliation(s)
- Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Qi-Hui He
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Hai-Hua Wu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - En-Bo Ma
- Research Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
9
|
Torres-Banda V, Obregón-Molina G, Viridiana Soto-Robles L, Albores-Medina A, Fernanda López M, Zúñiga G. Gut transcriptome of two bark beetle species stimulated with the same kairomones reveals molecular differences in detoxification pathways. Comput Struct Biotechnol J 2022; 20:3080-3095. [PMID: 35782727 PMCID: PMC9233182 DOI: 10.1016/j.csbj.2022.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Dendroctonus bark beetles are the most destructive agents in coniferous forests. These beetles come into contact with the toxic compounds of their host's chemical defenses throughout their life cycle, some of which are also used by the insects as kairomones to select their host trees during the colonization process. However, little is known about the molecular mechanisms by which the insects counteract the toxicity of these compounds. Here, two sibling species of bark beetles, D. valens and D. rhizophagus, were stimulated with vapors of a blend of their main kairomones (α-pinene, β-pinene and 3-carene), in order to compare the transcriptional response of their gut. A total of 48 180 unigenes were identified in D. valens and 43 704 in D. rhizophagus, in response to kairomones blend. The analysis of differential gene expression showed a transcriptional response in D. valens (739 unigenes, 0.58–10.36 Log2FC) related to digestive process and in D. rhizophagus (322 unigenes 0.87–13.08 Log2FC) related to xenobiotics metabolism. The expression profiles of detoxification genes mainly evidenced the up-regulation of COEs and GSTs in D. valens, and the up-regulation of P450s in D. rhizophagus. Results suggest that terpenes metabolism comes accompanied by an integral hormetic response, result of compensatory mechanisms, including the activation of other metabolic pathways, to ensure the supply of energy and the survival of organisms which is specific for each species, according to its life history and ecological strategy.
Collapse
Affiliation(s)
- Verónica Torres-Banda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Gabriel Obregón-Molina
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - L. Viridiana Soto-Robles
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
| | - Arnulfo Albores-Medina
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City, CP 07360, Mexico
| | - María Fernanda López
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Miguel Hidalgo, Mexico City, CP 11340, Mexico
- Corresponding authors.
| |
Collapse
|
10
|
Hu K, Fu B, Wang C, Liu J, Tang Y, Zhang W, Zhu J, Li Y, Pan Q, Liu F. The role of 20E biosynthesis relative gene Shadow in the reproduction of the predatory mirid bug, Cyrtorhinus lividipennis (Hemiptera: Miridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21854. [PMID: 34783381 DOI: 10.1002/arch.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Cytorhinus lividipennis is a natural enemy of rice planthoppers and leafhoppers. Improving the fecundity of C. lividipennis will be helpful to improve its control effect on pests. However, little is known about the hormonal regulatory mechanism of reproduction in C. lividipennis. In the current study, we examined the role of 20-hydroxyecdysone (20E) biosynthesis relative gene Shadow in the reproduction of C. lividipennis. The complementary DNA sequence of ClSad is 2018 -bp in length with an open reading frame of 1398-bp encoding 465 amino acid residues. ClSad was readily detected in nymphal and adult stages, and highly expressed in the adult stage. ClSad was highly expressed in the midgut and ovaries of adult females. Moreover, RNA interference-mediated knockdown of ClSad reduced the 20E titers and ClVg transcript level, resulting in fewer fully developed eggs and a decrease in the number of eggs laid by dsSad-injected adult females within 15 days. These results suggest that ClSad plays a critical role in the reproduction of C. lividipennis. The present study provides insights into the molecular mechanism of the ClSad gene for the reproduction of C. lividipennis.
Collapse
Affiliation(s)
- Kui Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baobao Fu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuchu Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wendan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qinjian Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
11
|
Zhou X, Ye YZ, Ogihara MH, Takeshima M, Fujinaga D, Liu CW, Zhu Z, Kataoka H, Bao YY. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103428. [PMID: 32553573 DOI: 10.1016/j.ibmb.2020.103428] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids, insect steroid hormones, play key roles in regulating insect development and reproduction. Hemipteran insects require ecdysteroids for egg production; however, ecdysteroid synthesis (ecdysteroidogenesis) details have not been elucidated. We identified all known genes encoding ecdysteroidogenic enzymes in Nilaparvata lugens and clarified their necessity during nymphal and ovarian development. We confirmed that N. lugens utilized 20-hydroxyecdysone as an active hormone. Assays using heterologous expression of enzymes in Drosophila S2 cells showed conserved functions of enzymes Neverland, CYP306A2, CYP314A1 and CYP315A1, but not CYP302A1. RNA interference and rescue analysis using 20-hydroxyecdysone demonstrated that most of the genes were necessary for nymphal development. The identified N. lugens enzymes showed conserved functions and pathways for ecdysteroidogenesis. Knockdown of ecdysteroidogenic enzyme genes in newly molted females caused failure of egg production: less vitellogenic and mature eggs in ovaries, fewer laid eggs and embryonic development deficiency of laid eggs. Considering the high expressions of ecdysteroidogenic enzyme genes in adults and ovaries, ecdysteroidogenesis in ovaries was critical for N. lugens ovarian development. Our study presents initial evidence that hemipteran insects require ecdysteroidogenesis for ovarian development.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Zhou Ye
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan; Present Address: Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Mika Takeshima
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
12
|
Sun Y, Wang P, Abouzaid M, Zhou H, Liu H, Yang P, Lin Y, Hull JJ, Ma W. Nanomaterial-wrapped dsCYP15C1, a potential RNAi-based strategy for pest control against Chilo suppressalis. PEST MANAGEMENT SCIENCE 2020; 76:2483-2489. [PMID: 32061016 DOI: 10.1002/ps.5789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 01/26/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Although the utility of double-stranded RNA (dsRNA)-mediated knockdown as an environmentally friendly pest management strategy has gained traction in recent years, its overall efficacy has been limited by poor stability and limited cellular uptake. Encapsulation of dsRNAs with various nanomaterials, however, has shown promise in overcoming these limitations. This study sought to investigate the biological efficacy of an oral dsRNA nanomaterial mixture targeting the CYP15C1 gene product in the economically important rice pest, Chilo suppressalis. RESULTS A putative CYP15C1 ortholog was cloned from C. suppressalis midguts. The transcript is downregulated in fifth-instar larvae and is most highly expressed in heads. RNA interference (RNAi)-mediated knockdown of CsCYP15C1 was associated with significantly increased mortality. More importantly, feeding a dsRNA-nanomaterial mixture significantly increased larval mortality compared with feeding dsRNA alone. CONCLUSION A critical role for CsCYP15C1 function in molting is supported by sequence similarity with known juvenile hormone epoxidases, its expression profile, and abnormal molting phenotypes associated with RNA-mediated knockdown. CsCYP15C1 is thus a prime target for controlling C. suppressalis. Furthermore, RNAi-mediated characterization of candidate gene function can be enhanced by incorporating an enveloping nanomaterial. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajie Sun
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peipei Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mostafa Abouzaid
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
| | - J Joe Hull
- U.S. Arid Land Agricultural Research Center, U.S. Agricultural Research Service, Department of Agriculture, Maricopa, AZ, USA
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Miao LJ, Zhang N, Jiang H, Dong F, Yang XM, Xu X, Qian K, Meng XK, Wang JJ. Molecular characterization and functional analysis of the vitellogenin receptor in the rice stem borer, Chilo suppressalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21636. [PMID: 31612557 DOI: 10.1002/arch.21636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a member of the low-density lipoprotein receptor (LDLR) superfamily, vitellogenin (Vg) receptor (VgR) is responsible for the uptake of Vg into developing oocytes and is a potential target for pest control. Here, a full-length VgR complementary DNA (named as CsVgR) was isolated and characterized in the rice stem borer, Chilo suppressalis. The composite CsVgR gene contained an open reading frame of 5,484 bp encoding a protein of 1,827 amino acid residues. Structural analysis revealed that CsVgR contained two ligand-binding domains (LBDs) with four Class A (LDLRA ) repeats in LBD1 and seven in LBD2, which was structurally different from most non-Lepidopteran insect VgRs having five repeats in LBD1 and eight in LBD2. The developmental expression analysis showed that CsVgR messenger RNA expression was first detectable in 3-day-old pupae, sharply increased in newly emerged female adults, and reached a peak in 2-day-old female adults. Consistent with most other insects VgRs, CsVgR was exclusively expressed in the ovary. Notably, injection of dsCsVgR into late pupae resulted in fewer follicles in the ovarioles as well as reduced fecundity, suggesting a critical role of CsVgR in female reproduction. These results may contribute to the development of RNA interference-mediated disruption of reproduction as a control strategy of C. suppressalis.
Collapse
Affiliation(s)
- Li-Jun Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fan Dong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xue-Mei Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiang-Kun Meng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jian-Jun Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Brent CS, Hull JJ. RNA interference-mediated knockdown of eye coloration genes in the western tarnished plant bug (Lygus hesperus Knight). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 100:e21527. [PMID: 30588650 DOI: 10.1002/arch.21527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insect eye coloration arises from the accumulation of various pigments. A number of genes that function in the biosynthesis (vermilion, cinnabar, and cardinal) and importation (karmoisin, white, scarlet, and brown) of these pigments, and their precursors, have been identified in diverse species and used as markers for transgenesis and gene editing. To examine their suitability as visible markers in Lygus hesperus Knight (western tarnished plant bug), transcriptomic data were screened for sequences exhibiting homology with the Drosophila melanogaster proteins. Complete open reading frames encoding putative homologs for all seven genes were identified. Bioinformatic-based sequence and phylogenetic analyses supported initial annotations as eye coloration genes. Consistent with their proposed role, each of the genes was expressed in adult heads as well as throughout nymphal and adult development. Adult eyes of those injected with double-stranded RNAs (dsRNAs) for karmoisin, vermilion, cinnabar, cardinal, and scarlet were characterized by a red band along the medial margin extending from the rostral terminus to the antenna. In contrast, eyes of insects injected with dsRNAs for both white and brown were a uniform light brown. White knockdown also produced cuticular and behavioral defects. Based on its expression profile and robust visible phenotype, cardinal would likely prove to be the most suitable marker for developing gene editing methods in Lygus species.
Collapse
Affiliation(s)
- Colin S Brent
- USDA-ARS Arid Land Agricultural Center, Maricopa, Arizona
| | - J Joe Hull
- USDA-ARS Arid Land Agricultural Center, Maricopa, Arizona
| |
Collapse
|