1
|
Zhang C, He L, Ding B, Yang H. Identification and functional characterization of the chitinase and chitinase-like gene family in Myzus persicae (Sulzer) during molting. PEST MANAGEMENT SCIENCE 2025; 81:327-339. [PMID: 39319496 DOI: 10.1002/ps.8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The crucial role of insect chitinase in molting, pupation, and emergence renders it a promising target for pest control strategies. Despite the extensive investigation of chitinase genes in various pests, there is still a lack of systematic identification and functional analysis related to aphid chitinase. RESULTS We systematically identified a total of nine chitinase/chitinase-like genes and one ENGase gene, which included eight Cht genes, one IDGF gene, and one ENGase gene. Through phylogenetic analysis, the chitinase proteins were classified into nine distinct groups (I, II, III, V, VI, VIII, X, other, and ENGase). The expression profile revealed that the epidermis exhibited relatively high expression levels for three chitinase genes: MpCht5, MpCht7, and MpCht10. Furthermore, transcriptional levels of nine chitinase genes were up-regulated following treatment with 20-hydroxyecdysone (20E) hormone. Silencing MpCht3, MpCht5, MpCht7, MpCht10, and MpCht11-2 via RNA interference (RNAi) during the molting stage resulted in nymph shrinking, hindering normal molting and leading to death. Additionally, it was observed that silencing of MpIDGF induced the body color of the aphids to change from reddish brown to colorless after molting, culminating in eventual mortality. CONCLUSION Our findings suggest that chitinase/chitinase-like genes play a crucial role in the molting process of Myzus persicae. Utilizing RNAi technology, we aimed to elucidate the precise function of MpCht genes in the molting mechanism of M. persicae, this discovery establishes a significant theoretical foundation for future research on aphid control, with chitinase as the target. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Li He
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Forestry Development Centre, Zhenfeng County Forestry Bureau, Southwest Guizhou Buyi and Miao Autonomous Prefecture, Guizhou, P. R. China
| | - Bo Ding
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| | - Hong Yang
- Institute of Entomology, Guizhou University, Guiyang, P. R. China
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
- Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang, P. R. China
| |
Collapse
|
2
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2024. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Tao C, Li J, Du W, Qin X, Cao J, Liu C, Cheng T. Broad Complex-Z2 directly activates BmMBF2 to inhibit the silk protein synthesis in the silkworm, Bombyx mori. Int J Biol Macromol 2024; 277:134211. [PMID: 39069049 DOI: 10.1016/j.ijbiomac.2024.134211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Silk proteins, as natural macromolecules, have extensive applications in biomaterials and biomedicine. In the silkworm, the expression of silk protein genes is negatively associated with ecdysone during the molt stage, while it is positively correlated with juvenile hormone during the intermolt stage. In our previous study, overexpression of an isoform Z2 of Broad Complex (BmBrC-Z2), an ecdysone early response factor, significantly reduced the expression of silk protein genes. However, the underlying regulatory mechanism remains unclear. In this study, we conducted transcriptomic analysis and found that overexpressing BmBrC-Z2 significantly upregulated the expression level of multiprotein bridging factor 2 (BmMBF2), an inhibitor of fibroin heavy chain (FibH). Further investigations revealed that BmBrC-Z2 directly regulated BmMBF2 by binding to cis-regulatory elements, as demonstrated using Dual-Luciferase Reporter Gene Assay, EMSA, and ChIP-PCR assay. Additionally, when using the CRISPR/Cas9 system to knock out BmMBF2, silk protein genes were significantly upregulated during the molt stage of mutant larvae. These findings uncover the negative regulation of silk protein synthesis by the ecdysone signaling cascade, specifically through the manipulation of BmMBF2 expression during the molt stage. This study enhances to our understanding of the temporal regulatory mechanism governing silk protein synthesis and offers a potential strategy for improving silk yield.
Collapse
Affiliation(s)
- Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jiaojiao Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Wenjie Du
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Zhang ZL, Xu QY, Zhang R, Shen C, Bao HB, Luo GH, Fang JC. The irregular developmental duration mainly caused by the broad-complex in Chilo suppressalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106090. [PMID: 39277403 DOI: 10.1016/j.pestbp.2024.106090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Chilo suppressalis, a critical rice stem borer pest, poses significant challenges to rice production due to its overlapping generations and irregular developmental duration. These characteristics complicate pest management strategies. According to the dynamic analysis of the overwintering adults of C. suppressalis in fields, it indicates that the phenomenon of irregular development of C. suppressalis exists widely and continuously. This study delves into the potential role of the Broad-Complex (Br-C) gene in the developmental duration of C. suppressalis. Four isoforms of Br-C, named CsBr-C Z1, CsBr-C Z2, CsBr-C Z4, and CsBr-C Z7, were identified. After CsBr-Cs RNAi, the duration of larva development spans extended obviously. And, the average developmental duration of dsCsBr-Cs feeding individuals increased obviously. Meanwhile, the average developmental duration of the dsCsBr-C Z2 feeding group was the longest among all the RNAi groups. After dsCsBr-Cs feeding continuously, individuals pupated at different instars changed obviously: the proportion of individuals pupated at the 5th instar decreased and pupated at the 7th instar or higher increased significantly. Moreover, the pupation rate of dsCsBr-Cs (except dsCsBr-C Z7) were significantly lower than that of dsGFP. The same results were obtained from the mutagenesis in CsBr-C genes mediated by CRISPR/Cas9. The average developmental duration of CsBr-Cs knockout individuals was significantly prolonged. And, the instar of pupation in knockout individuals was also delayed significantly. In conclusion, this work showed that CsBr-Cs played a crucial role in pupal commitment and affected the developmental duration of C. suppressalis significantly.
Collapse
Affiliation(s)
- Zhi-Ling Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Qing-Yu Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Ru Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Chen Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Hai-Bo Bao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Guang-Hua Luo
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Ji-Chao Fang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences; Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| |
Collapse
|
5
|
Chen J, Guan Z, Ma Y, Shi Q, Chen T, Waris MI, Lyu L, Lu Y, Qi G. Juvenile hormone induces reproduction via miR-1175-3p in the red imported fire ant, Solenopsis invicta. INSECT SCIENCE 2024; 31:371-386. [PMID: 37933419 DOI: 10.1111/1744-7917.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Juvenile hormone (JH) acts in the regulation of caste differentiation between queens and workers (i.e., with or without reproductive capacity) during vitellin synthesis and oogenesis in social insects. However, the regulatory mechanisms have not yet been elucidated. Here, we identified a highly expressed microRNA (miRNA), miR-1175-3p, in the red imported fire ant, Solenopsis invicta. We found that miR-1175-3p is prominently present in the fat bodies and ovaries of workers. Furthermore, miR-1175-3p interacts with its target gene, broad-complex core (Br-C), in the fat bodies. By utilizing miR-1175-3p agomir, we successfully suppressed the expression of the Br-C protein in queens, resulting in reduced vitellogenin expression, fewer eggs, and poorly developed ovaries. Conversely, decreasing miR-1175-3p levels led to the increased expression of Br-C and vitellogenin in workers, triggering the "re-development" of the ovaries. Moreover, when queens were fed with JH, the expression of miR-1175-3p decreased, whereas the expression of vitellogenin-2 and vitellogenin-3 increased. Notably, the suppression of fertility in queens caused by treatment with agomir miR-1175-3p was completely rescued by the increased vitellogenin expression induced by being fed with JH. These results suggest the critical role of miR-1175-3p in JH-regulated reproduction, shedding light on the molecular mechanism underlying miRNA-mediated fecundity in social insects and providing a novel strategy for managing S. invicta.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ziying Guan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yunjie Ma
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qingxing Shi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ting Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Muhammad Irfan Waris
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lyu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
6
|
Barbole RS, Sharma S, Patil Y, Giri AP, Joshi RS. Chitinase inhibition induces transcriptional dysregulation altering ecdysteroid-mediated control of Spodoptera frugiperda development. iScience 2024; 27:109280. [PMID: 38444606 PMCID: PMC10914475 DOI: 10.1016/j.isci.2024.109280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Chitinases and ecdysteroid hormones are vital for insect development. Crosstalk between chitin and ecdysteroid metabolism regulation is enigmatic. Here, we examined chitinase inhibition effect on Spodoptera frugiperda ecdysteroid metabolism. In vitro studies suggested that berberine inhibits S. frugiperda chitinase 5 (SfCht5). The Berberine feeding resulted in defective S. frugiperda development. Berberine-fed insects showed higher SfCht5 and Chitinase 7 expression and cumulative chitinase activity. Chitinase inhibition led to overexpression of chitinases, ecdysteroid biosynthesis, and responsive genes. SfCht5 silencing and overexpression resulted in ecdysone receptor deregulation. Transcription factors, like Broad Complex Z4, regulate the ecdysteroid metabolism and showed high expression upon berberine ingestion. Broad Complex Z4 binding in 5' UTR of Ecdysone receptor, SfCht5, Chitinase 7, Phantom, Neverland, and other ecdysteroid biosynthesis genes might lead to their upregulation in berberine-fed insects. As a result, berberine-fed insects showed ecdysone overaccumulation. These findings underscore chitinase activity's impact on ecdysone biosynthesis and its transcriptional crosstalk.
Collapse
Affiliation(s)
- Ranjit S. Barbole
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shivani Sharma
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Yogita Patil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashok P. Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Rakesh S. Joshi
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Su Z, Zhao C, Huang X, Lv J, Zhao Z, Zheng K, Sun X, Qin S, Wang X, Jin BR, Wu Y. Bombyx mori Ecdysone Receptor B1 May Inhibit BmNPV Infection by Triggering Apoptosis. INSECTS 2023; 14:505. [PMID: 37367321 DOI: 10.3390/insects14060505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a serious threat to sericulture. Nevertheless, no effective control strategy is currently available. The innate immunity of silkworm is critical in the antiviral process. Exploring its molecular mechanism provides theoretical support for the prevention and treatment of BmNPV. Insect hormone receptors play an essential role in regulating host immunity. We found a correlation between Bombyx mori ecdysone receptor B1 (BmEcR-B1) and BmNPV infection, whereas the underlying mechanism remains unclear. In this study, the expression patterns and sequence characteristics of BmEcR-B1 and its isoform, BmEcR-A, were initially analyzed. BmEcR-B1 was found to be more critical than BmEcR-A in silkworm development and responses to BmNPV. Moreover, RNAi and an overexpression in BmN cells showed BmEcR-B1 had antiviral effects in the presence of 20-hydroxyecdysone (20E); Otherwise, it had no antiviral activity. Furthermore, BmEcR-B1 was required for 20E-induced apoptosis, which significantly suppressed virus infection. Finally, feeding 20E had no significant negative impacts on larval growth and the cocoon shell, suggesting the regulation of this pathway has practical value in controlling BmNPV in sericulture. The findings of this study provide important theoretical support for understanding the mechanism of the silkworm innate immune system in response to BmNPV infection.
Collapse
Affiliation(s)
- Zhihao Su
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Chunxiao Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xinming Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Junli Lv
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ziqin Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kaiyi Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Xueyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| | - Byung-Rae Jin
- College of Natural Resources and Life Science, Dong-A University, Busan 49315, Republic of Korea
| | - Yangchun Wu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212100, China
| |
Collapse
|
8
|
Li C, Ul Haq I, Khurshid A, Tao Y, Quandahor P, Zhou JJ, Liu CZ. Effects of abiotic stresses on the expression of chitinase-like genes in Acyrthosiphon pisum. Front Physiol 2022; 13:1024136. [PMID: 36505077 PMCID: PMC9727142 DOI: 10.3389/fphys.2022.1024136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect chitinases play a crucial part to digest chitin in the exoskeleton during the molting process. However, research on insect chitinase related to the environmental stress response is very limited. This study was the first conducted to expression analysis of chitinase- related genes in A. pisum under abiotic stresses. Here, we identified five chitinase-like proteins (ApIDGF, ApCht3, ApCht7, ApCht10 and ApENGase), and clustered them into five groups (group II, III, V, Ⅹ, and ENGase). Developmental expression analysis revealed that the five A. pisum chitinase-related genes were expressed at whole developmental stages with different relative expression patterns. When aphids were exposed to various abiotic stresses including temperature, insecticide and the stress 20-hydroxyecdysone (20E), all five chitinase genes were differentially expressed in A. pisum. The results showed that insecticide such as imidacloprid down-regulated the expression of these five Cht-related genes. Analysis of temperature stress of A. pisum chitinase suggested that ApCht7 expression was high at 10°C, which demonstrates its important role in pea aphids under low temperature. Conversely, ApCht10 was more active under high temperature stress, as it was significantly up-regulated at 30°C. Besides, 20E enhanced ApCht3 and ApCht10 expression in A. pisum, but reduced ApCht7 expression. These findings provide basic information and insights for the study of the role of these genes under abiotic stress, which advances our knowledge in the management of pea aphids under multiple stresses.
Collapse
Affiliation(s)
- Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Inzamam Ul Haq
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Aroosa Khurshid
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Yan Tao
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| | - Peter Quandahor
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- CSIR-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Jing-Jiang Zhou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, China
| | - Chang-Zhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
9
|
Wang X, Tang T. Effects of Polystyrene Diet on the Growth and Development of Tenebrio molitor. TOXICS 2022; 10:608. [PMID: 36287887 PMCID: PMC9610515 DOI: 10.3390/toxics10100608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the role of Tenebrio molitor in degrading polystyrene foam through its gut microbes has become the focus of research. However, little literature has reported the effect of feeding on polystyrene foam on the growth and development of Tenebrio molitor. In this study, we investigated the impacts of different polystyrene by evaluating the vital signs of Tenebrio molitor fed in the intestines and excrement fluids using RNA-Seq t.echnology and then verifying the transcriptome sequencing findings using qRT-PCR technology. The average weight of Tenebrio molitor larvae in the wheat bran group increased significantly. Tenebrio molitor larvae in the PS group, on the other hand, didn't grow as much and had a much lower average weight than those in the wheat bran group. Compared to the bran group, the excrement of Tenebrio molitor fed only on polystyrene foam was flaky and coarse, increased nitrogen and phosphorus atomic concentration ratios by about 50%, decreased potassium atomic concentration ratios by 63%, with the enterocytes and circular muscle of Tenebrio molitor falling as well. Kyoto Encyclopedia of Genes and Genomes enrichment indicated that the differential genes were mainly related to metabolic pathways. There was an agreement between qRT-PCR and RNA-Seq analyses for the growth and development genes chitinase, heat shock protein 70, and cytochrome P450. Only feeding polystyrene foam shall lead to the growth and development retardation of Tenebrio molitor.
Collapse
Affiliation(s)
- Xiaosu Wang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Tianle Tang
- School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
10
|
Wu ZZ, Zhang WY, Lin YZ, Li DQ, Shu BS, Lin JT. Genome-wide identification, characterization and functional analysis of the chitianse and chitinase-like gene family in Diaphorina citri. PEST MANAGEMENT SCIENCE 2022; 78:1740-1748. [PMID: 34997800 DOI: 10.1002/ps.6793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/14/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insect chitinases play vital roles in postembryonic development, especially during the molting process, and are potential targets for the RNA interference (RNAi)-based insecticidal strategy. Systematic functional analyses of chitinase genes have already been conducted on numerous insect pests, but similar analyses have not been carried out on Diaphorina citri. RESULTS Eleven chitinase/chitinase-like genes and one endo-β-N-acetylglucosaminidase (ENGase) gene were identified in the Diaphorina citri genome using various bioinformatic tools. Transcriptomes of the integument and midgut from fifth-instar nymphs and freshly-emerged adults of Diaphorina citri were generated and sequenced. Potential functions of 12 chitinase/chitinase-like genes were examined during nymph-adult transitions. Four chitinase genes, including DcCht5, DcCht7, DcCht10-1 and DcCht10-2, were mainly expressed in the integument of fifth-instar nymphs. These four genes were also up-regulated significantly under 20-hydroxyecdysone (20E) treatments. RNAi-mediated knockdown of these four genes suggests that they are essential for nymph-adult transition. CONCLUSION Our results demonstrated essential roles of the chitinase/chitinase-like genes during the nymph-adult transition in Diaphorina citri, which are potentially useful targets for controlling the Diaphorina citri pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhong-Zhen Wu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Wan-Ying Zhang
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Yi-Zhu Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Da-Qi Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan, P. R. China
| | - Ben-Shui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| | - Jin-Tian Lin
- Guangzhou City Key Laboratory of Subtropical Fruit Tree Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou, P. R. China
| |
Collapse
|
11
|
Wang Y, Zou H, Lai J, Zhang Z, Sun W. The miR-282-5p regulates larval moulting process by targeting chitinase 5 in Bombyx mori. INSECT MOLECULAR BIOLOGY 2022; 31:190-201. [PMID: 34862684 DOI: 10.1111/imb.12750] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Moulting is critical for growth, development and survival in insects. As the main components of cuticle, dynamic change of chitin is consistent with the moulting process. Chitinase is the main enzyme to mediate chitin metabolism in the old cuticle. To avoid over-degrading chitin from the new cuticle, the expression of chitinase must be precisely regulated. In this study, we performed microRNA-sequencing to investigate expression change of microRNAs in silkworm epidermis during the moulting process. A comparative microRNA transcriptomic analysis from different moulting stages and 20-hydroxyecdysone (20E) treatment identified bmo-miR-282-5p as a candidate. By the bioinformatic analysis, chitinase 5 (BmCht5) was predicted to be a target of bmo-miR-282-5p. Meanwhile, a temporal expression analysis revealed that BmCht5 only expressed at moulting D3 stage, whereas bmo-miR-282-5p showed a converse pattern, in which its transcript signal disappeared at this time point. Furthermore, a luciferase assay and agomir treatment demonstrated that bmo-miR-282-5p suppressed transcript of BmCht5 in vivo. As a result, injection of 282-5p agomir triggered 40% death due to moulting failure. In addition, RNA interference (RNAi)-mediated silencing of BmCht5 caused 30% developmental defect. Taken together, our data demonstrate the coordinated regulation of chitinase 5 by conserved miR-282-5p, and the 20E signalling pathway is essential for the normal moulting process in the domesticated silkworm.
Collapse
Affiliation(s)
- Yun Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongbin Zou
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Juan Lai
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
12
|
Hu K, Fu B, Wang C, Liu J, Tang Y, Zhang W, Zhu J, Li Y, Pan Q, Liu F. The role of 20E biosynthesis relative gene Shadow in the reproduction of the predatory mirid bug, Cyrtorhinus lividipennis (Hemiptera: Miridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21854. [PMID: 34783381 DOI: 10.1002/arch.21854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Cytorhinus lividipennis is a natural enemy of rice planthoppers and leafhoppers. Improving the fecundity of C. lividipennis will be helpful to improve its control effect on pests. However, little is known about the hormonal regulatory mechanism of reproduction in C. lividipennis. In the current study, we examined the role of 20-hydroxyecdysone (20E) biosynthesis relative gene Shadow in the reproduction of C. lividipennis. The complementary DNA sequence of ClSad is 2018 -bp in length with an open reading frame of 1398-bp encoding 465 amino acid residues. ClSad was readily detected in nymphal and adult stages, and highly expressed in the adult stage. ClSad was highly expressed in the midgut and ovaries of adult females. Moreover, RNA interference-mediated knockdown of ClSad reduced the 20E titers and ClVg transcript level, resulting in fewer fully developed eggs and a decrease in the number of eggs laid by dsSad-injected adult females within 15 days. These results suggest that ClSad plays a critical role in the reproduction of C. lividipennis. The present study provides insights into the molecular mechanism of the ClSad gene for the reproduction of C. lividipennis.
Collapse
Affiliation(s)
- Kui Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baobao Fu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chuchu Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqi Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wendan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qinjian Pan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Guo MP, Qian WL, He XC, Peng J, Wang P, Wang WN, Xia QY, Cheng DJ. Genome-wide identification of target genes for transcription factor BR-C in the silkworm, Bombyx mori. INSECT SCIENCE 2021; 28:1530-1540. [PMID: 33372405 DOI: 10.1111/1744-7917.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/23/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Transcription factor Broad Complex (BR-C) is an ecdysone primary response gene in insects and participates in the regulation of insect growth and development. In this study, we performed a genome-wide identification of BR-C target genes in silkworm (Bombyx mori) using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). As a result, a total of 1006 BR-C ChIP peaks were identified, and 15% of peaks were located in the promoter regions of 133 protein-coding genes. Functional annotation revealed that these ChIP peak-associated genes, as potential BR-C targets, were enriched in pathways related to biosynthetic process, metabolic process, and development. Transcriptome analysis and quantitative real-time polymerase chain reaction (PCR) examination revealed that developmental changes in expression patterns of a portion of potential BR-C targets, including HR96 and GC-α1, were similar to those of BR-C. ChIP-PCR examination confirmed that BR-C could directly bind to the promoters of potential targets. Further, dual luciferase assays demonstrated that HR96 promoter activity was significantly upregulated following BR-C overexpression, and this upregulation was abolished when the binding motif in the promoter was truncated. This study will be helpful for deciphering the regulatory roles of BR-C during insect growth and development.
Collapse
Affiliation(s)
- Meng-Pei Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wen-Liang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Xue-Chuan He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Peng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wei-Na Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| | - Dao-Jun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
14
|
Li P, Li X, Wang W, Tan X, Wang X, Yang X. Transcriptional identification of differentially expressed genes during the prepupal-pupal transition in the oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:485-498. [PMID: 33745467 DOI: 10.1017/s0007485321000171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.
Collapse
Affiliation(s)
- Peirong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xinru Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Wei Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xiaoling Tan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaoqi Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang110866, Liaoning, China
| |
Collapse
|
15
|
Zhang XJ, Li DD, Xu GF, Chen YQ, Zheng SC. Signal transducer and activator of transcription is involved in the expression regulation of ecdysteroid-induced insulin-like growth factor-like peptide in the pupal wing disc of silkworm, Bombyx mori. INSECT SCIENCE 2020; 27:1186-1197. [PMID: 31724818 DOI: 10.1111/1744-7917.12736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/15/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In insects, 20-hydroxyecdysone (20E) and insulin-like growth factor-like peptides (IGFLPs) regulate the development of imaginal discs. However, how IGFLPs are up-regulated to impact the development of the pupal wing disc is still unclear. In this study, we investigated the expression regulation of IGFLP in the pupal wing disc of silkworm, Bombyx mori. We confirmed that B. mori IGFLP (BmIGFLP) was mainly expressed in the pupal wing disc and the expression of BmIGFLP could be significantly induced by 20E. Bioinformatics analysis of BmIGFLP promoter sequence revealed three cis-regulation elements (CREs) of signal transducer and activator of transcription (STAT), which is a key component in the Janus-activated kinase / STAT pathway. Luciferase activity assays showed that two CREs enhanced the transcriptional activity of BmIGFLP. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that BmSTAT proteins in the nuclear extracts of B. mori pupal wing discs and BmN cells could only bind to the STAT CRE3, indicating that STAT CRE3 activated by BmSTAT enhances BmIGFLP expression at pupal stages. Although 20E could not enhance the expression of BmSTAT, 20E enhanced the nucleus translocation of BmSTAT to bind with the STAT CRE3 in the BmIGFLP promoter. The increase of transcriptional activity of the STAT CRE3 by overexpression of BmSTAT and addition of 20E in BmN cells confirmed this result. Taken together, all data indicate that BmSTAT is one of the transcription factors activating 20E-induced BmIGFLP expression in the pupal wing disc.
Collapse
Affiliation(s)
- Xiao-Juan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Dong-Dong Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Guan-Feng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ya-Qing Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Luo W, Huang LX, Qin SK, Zhang X, Feng QL, Gu J, Huang LH. Multiple microRNAs control ecdysone signaling in the midgut of Spodoptera litura. INSECT SCIENCE 2020; 27:1208-1223. [PMID: 31840397 DOI: 10.1111/1744-7917.12745] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Metamorphosis is one of the most important physiological processes in insects. It is regulated by a serial of ecdysone cascade genes. Recently, lots of microRNAs (miRNAs) were investigated in insects; however, their function in metamorphosis is largely unknown. In the present study, the dynamics of a small RNA population was investigated by RNA sequencing from the midgut of a lepidopteran pest Spodoptera litura during larval-pupal metamorphosis. A total of 101 miRNAs were identified, and 75 miRNAs were differentially expressed during the metamorphic process. The relationship between these differentially expressed miRNAs and 12 ecdysone cascade genes was analyzed by four classical software programs, and a multiple-to-multiple regulatory network was found to exist between these miRNAs and their targets. Among them, miR-14-3p and its two targets (EcR and E75) were chosen for further validation. MiR-14-3p had higher expression level in the 6th instar larvae as compared with either the prepupae or pupae, which was opposite to that of both EcR and E75, two ecdysone cascade genes. Luciferase reporter assay confirmed that both EcR and E75 were regulated by miR-14-3p. Interestingly, the 3' untranslated regions are nearly identical to each other among different transcript variants of the ecdysone cascade genes, including EcR, USP, E75, E74, E78, E93, Hr3, Hr4, Hr39, Krh1 and Ftzf1. Thus, different transcript variants of one ecdysone cascade gene could be regulated by the same miRNA. The above data suggest that the ecdysone signaling pathway is under the tight control of miRNA. These findings expand our understanding of the mechanism of insect metamorphosis and may also provide a novel possibility for the control of pest insects in the future.
Collapse
Affiliation(s)
- Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li-Xia Huang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Hubei Key Laboratory of Application of Plant-Cancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, China
| | - Shuang-Kang Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xian Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Gu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li-Hua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
17
|
Zhang N, Jiang H, Meng X, Qian K, Liu Y, Song Q, Stanley D, Wu J, Park Y, Wang J. Broad-complex transcription factor mediates opposing hormonal regulation of two phylogenetically distant arginine kinase genes in Tribolium castaneum. Commun Biol 2020; 3:631. [PMID: 33127981 PMCID: PMC7603314 DOI: 10.1038/s42003-020-01354-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/06/2020] [Indexed: 11/12/2022] Open
Abstract
The phosphoarginine-arginine kinase shuttle system plays a critical role in maintaining insect cellular energy homeostasis. Insect molting and metamorphosis are coordinated by fluctuations of the ecdysteroid and juvenile hormone. However, the hormonal regulation of insect arginine kinases remain largely elusive. In this report, we comparatively characterized two arginine kinase genes, TcAK1 and TcAK2, in Tribolium castaneum. Functional analysis using RNAi showed that TcAK1 and TcAK2 play similar roles in adult fertility and stress response. TcAK1 was detected in cytoplasm including mitochondria, whereas TcAK2 was detected in cytoplasm excluding mitochondria. Interestingly, TcAK1 expression was negatively regulated by 20-hydroxyecdysone and positively by juvenile hormone, whereas TcAK2 was regulated by the opposite pattern. RNAi, dual-luciferase reporter assays and electrophoretic mobility shift assay further revealed that the opposite hormonal regulation of TcAK1 and TcAK2 was mediated by transcription factor Broad-Complex. Finally, relatively stable AK activities were observed during larval-pupal metamorphosis, which was generally consistent with the constant ATP levels. These results provide new insights into the mechanisms underlying the ATP homeostasis in insects by revealing opposite hormonal regulation of two phylogenetically distant arginine kinase genes. Zhang et al. characterize the functions of two distinct arginine kinase genes in flour beetles. Using RNA interference and electophoretic mobility shift assays, they identify Broad-Complex transcription factor as the mediator of opposing hormonal regulation in these genes.
Collapse
Affiliation(s)
- Nan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China
| | - Heng Jiang
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China
| | - Xiangkun Meng
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China
| | - Kun Qian
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China
| | - Yaping Liu
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - David Stanley
- USDA/Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, MO, 65203, USA
| | - Jincai Wu
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianjun Wang
- College of Horticulture and Plant Protection, Yangzhou University, 225009, Yangzhou, China.
| |
Collapse
|
18
|
Cong J, Tao C, Zhang X, Zhang H, Cheng T, Liu C. Transgenic Ectopic Overexpression of Broad Complex ( BrC-Z2) in the Silk Gland Inhibits the Expression of Silk Fibroin Genes of Bombyx mori. INSECTS 2020; 11:insects11060374. [PMID: 32560131 PMCID: PMC7349191 DOI: 10.3390/insects11060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 11/23/2022]
Abstract
Bombyx mori silk protein genes are strictly turned on and off in different developmental stages under the hormone periodically change. The broad complex (BrC) is a transcription factor mediating 20-hydroxyecdysone action, which plays important roles during metamorphosis. Here, we observed that two isoforms of BmBrC (BmBrC-Z2 and BmBrC-Z4) exhibited contrasting expression patterns with fibroin genes (FibH, FibL and P25) in the posterior silk gland (PSG), suggesting that BmBrC may negatively regulate fibroin genes. Transgenic lines were constructed to ectopically overexpress BmBrC-Z2 in the PSG. The silk protein genes in the transgenic line were decreased to almost half of that in the wild type. The silk yield was decreased significantly. In addition, the expression levels of regulatory factors (BmKr-h1 and BmDimm) response to juvenile hormone (JH) signal were inhibited significantly. Then exogenous JH in the BmBrC-Z2 overexpressed lines can inhibit the expression of BmBrC-Z2 and activate the expression of silk protein genes and restore the silk yield to the level of the wild type. These results indicated that BmBrC may inhibit fibroin genes by repressing the JH signal pathway, which would assist in deciphering the comprehensive regulation mechanism of silk protein genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Liu
- Correspondence: ; Tel.: +86-23-68251753; Fax: 86-23-68251128
| |
Collapse
|
19
|
Zhang J, Xu G, Qiu B, Zhang X, Feng Q, Yang Q, Zheng S. BR-C Z4 and FoxJ interact to regulate expression of a chitin synthase gene CHSA-2b in the pupal wing discs of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103264. [PMID: 31707207 DOI: 10.1016/j.ibmb.2019.103264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Elaborate regulation of tissue- and stage-specific expression of genes is prerequisite for insect development. The hormone 20-hydroxyecdysone (20E) initiates metamorphosis by regulating the expression of a series of genes. However, how 20E orderly regulates the pupa-specific expression of genes remains unclear. In this study, we report a regulatory mechanism for the pupa-specific expression of chitin synthase A 2b (CHSA-2b) in Bombyx mori. We found that Broad-Complex Z4 (BR-C Z4) was up-regulated by 20E just before pupation, while transcription factor FoxJ and CHSA-2b were up-regulated during the pupal stage. There is a Fox cis-regulatory element in the CHSA-2b promoter region, and FoxJ protein bound to this element, enhancing the CHSA-2b transcription during the pupal stage. In addition to CHSA-2b, FoxJ also up-regulated the expression of 16 out of 19 pupa-specific genes tested. However, at the prepupal stage, 20E-induced BR-C Z4 inhibited the FoxJ transcription, indirectly inhibiting the CHSA-2b transcription. These data suggest that at the pre-pupation stage, 20E-induced BR-C Z4 inhibited the expression of pupa-stage genes like CHSA-2b by inhibiting the expression of FoxJ; by the pupal stage, the expression of BR-C Z4 decreased, releasing its inhibition on FoxJ, which then up-regulated the expression of the pupa-specific genes. This study explains the elaborate regulation of the pupa-specific gene expression during metamorphosis in B. mori.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Binbin Qiu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaojuan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qing Yang
- Department of Bioscience and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
20
|
Fujimori H, Zhou YJ, Fukumura K, Matsumoto S, Tukamoto Y, Nagata S. Specific distribution of expression and enzymatic activity of cholesterol biosynthetic enzyme DHCR24 orthologs in the phytophagous insect. Biosci Biotechnol Biochem 2019; 84:126-133. [PMID: 31538545 DOI: 10.1080/09168451.2019.1667221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Insects must intake sterol compounds because of their inability to synthesize cholesterol de novo. In phytophagous insects, enzymatic conversion of phytosterols to cholesterol involving 24-dehydrocholesterol reductase (DHCR24) exerts to acquire cholesterol. Here, we reported the presence of two DHCR24 homologs in the silkworm Bombyx mori, BmDHCR24-1 and -2, with several transcript variants. Consistent with the data of spatial expression analyses by RT-PCR, predominant enzymatic activity of DHCR24 was observed in B. mori larval midgut whereas weak activity was observed in the other tissues examined. In addition, BmDHCR24-1 expression in HEK293 cells showed an enzymatic activity, but BmDHCR24-2 did not, although both BmDHCR24s were localized in the endoplasmic reticulum, where the mammalian DHCR24s are located to exert their enzymatic activities. The present data indicated that BmDHCR24-1 but not BmDHCR24-2 contributes to conversion of phytosterols to cholesterol mainly in the midgut of the phytophagous lepidopteran larvae.
Collapse
Affiliation(s)
- Haruna Fujimori
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yi Jun Zhou
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Keisuke Fukumura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Sumihiro Matsumoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| | - Yusuke Tukamoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo, Japan
| | - Shinji Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa City, Chiba, Japan
| |
Collapse
|
21
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Isoform specific roles of Broad-Complex in larval development in Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2019; 28:420-430. [PMID: 30632239 DOI: 10.1111/imb.12563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Broad-Complex (BrC) is a downstream target of both 20-hydroxyecdysone and juvenile hormone signalling. BrC regulates morphogenetic changes between nymphal instars in hemimetabolans, whereas it controls pupal commitment, pupal morphogenesis and inhibits adult differentiation in holometabolans. Among five BrC cDNAs (Z1-Z4 and Z6) identified in the Colorado potato beetle, we found in this work that Z1, Z2 and Z6 were mainly expressed at the last (fourth) instar and prepupal stages, whereas the levels of Z3 and Z4 increased during the penultimate (third) instar stage, peaked at the last instar larval phase and gradually decreased at the prepupal and pupal periods. When knocking down all BrC isoforms by RNA interference (RNAi) at the penultimate instar stage, around 20% of the resultant larvae remained as moribund beetles. These moribund BrC RNAi larvae were completely or partially wrapped in old cuticle. Likewise, a portion of larvae treated for a single double-stranded RNA of Z3, Z4 or Z6 displayed a degree of similar aberrancies, increasing in the order of isoforms Z6 < Z3 < Z4. When silencing all BrC isoforms at the last instar period, most of the RNAi larvae did not normally pupate or emerge as adults. Separately silencing each of the five zinc finger domains revealed that approximately 70% of the Z1 RNAi larvae remained as prepupae, around 60% of the Z6 RNAi specimens formed aberrant prepupae or pupae and about 60% of the Z2 RNAi beetles became deformed pupae. After removal of the old exuviae, these deformed larvae in which either Z1, Z2 or Z6 was depleted possessed adult prothorax and mesothorax, developing antenna, mouthparts and wing discs. Moreover, less than 50% of the resultant pupae finally emerged as adults when either of Z1, Z2 or Z6 was knocked down. Therefore, our findings reveal, for the first time, that the two roles of BrC in insect groups (ie directing morphogenetic changes during juvenile development and regulating larval-pupal-adult metamorphosis) are played by different BrC isoforms in Leptinotarsa decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-W Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - P Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - W-C Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
22
|
Wang J, Lv Z, Lei Z, Chen Z, Lv B, Yang H, Wang Z, Song Q. Expression and functional analysis of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata under cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:19-25. [PMID: 30669070 DOI: 10.1016/j.ecoenv.2019.01.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Cytochrome P450 enzymes (CYPs), encoded by Halloween genes, mediate the biosynthesis of molting hormone, ecdysteroids, in arthropods. In this report, the effect of heavy metal cadmium (Cd) stress on the expression of cytochrome P450 genes in the wolf spider Pardosa pseudoannulata was analyzed. The results showed the expression levels of genes encoding for Cd transporters including ABC transporters, zinc transporters, calcium channel proteins and calcium binding proteins were inhibited or induced by Cd stress. In addition, the increase in metallothionein (MT) content and glutathione peroxidase (GPX) activity and decrease in total acetylcholine esterase (AChE) activity were also detected. Apparently, these detoxification methods did not completely protect the spider from the cytotoxicity of Cd stress. Increased mortality of P. pseudoannulata was observed when they were under Cd tress. In total 569 CYP genes belonging to 62 CYP subfamilies were obtained from P. pseudoannulata RNA-seq databases. BlaxtX analysis showed that 150, 161, 11, and 40 CYP genes were similar to the genes dib, phm, sad and shd, respectively, which are thought to catalyze the biosynthesis of ecdysteroids. Gene expression analysis suggested that 25 dib encoding genes, 27 phm encoding genes, 2 sad encoding genes, and 6 shd encoding genes were differentially expressed in TS2 vs. S2 comparison (Cd-treated 2nd instar spider vs. 2nd instar spider), respectively. There were 70 dib, 70 phm and 19 shd encoding genes either upregulated or downregulated, while 3 sad encoding genes were upregulated in TS5 vs. S5 (Cd-treated 5nd instar spider vs. 5nd instar spider). Genes related to heme binding and essential for activating the CYPs were also differentially expressed. Expression levels of cuticle related genes were significant differentially expressed, implying the changes in activities of chitin synthases and chitinase. Therefore we assume that unsuccessful molting process may occur on P. pseudoannulata due to influenced ecdysteroids levels, thus increasing mortality of spider.
Collapse
Affiliation(s)
- Juan Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China; College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080 China
| | - Ziyan Lei
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhaoyang Chen
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Bo Lv
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Huilin Yang
- College of Bioscience and Biotechnology, Hunan Agriculture University, Changsha, Hunan 410128, China
| | - Zhi Wang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
23
|
Zhang Z, Yan J, Liu Q, Zhang Y, Gong J, Hou Y. Genome-Wide Analysis and Hormone Regulation of Chitin Deacetylases in Silkworm. Int J Mol Sci 2019; 20:E1679. [PMID: 30987273 PMCID: PMC6480692 DOI: 10.3390/ijms20071679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 01/17/2023] Open
Abstract
Chitin deacetylases (CDAs) are a group of enzymes involved in chitin metabolism in insects; they play a critical role in molting, pupation, and the modification of chitin. In this study, we identified several CDAs in the silkworm, Bombyx mori (BmCDA), and investigated the effect of various hormones on their expression in B. mori larvae and embryo cell lines (BmE). Eight genes encoding BmCDAs were identified in the silkworm genome. They showed different expression patterns in different tissues, and were classified into three types based on where they were expressed: the exoskeleton, digestive organs, and genital organs. Moreover, we found that some BmCDAs showed upregulated expression during the molting period, especially during the fourth molting period in larvae. We also verified that the expression of BmCDA1-6 was upregulated by treatment with 20-hydroxyecdysone not only in larvae, but also in BmE cells. Interestingly, juvenile hormone analog treatment also upregulated the expression of some BmCDAs. The overexpression of several transcription factors revealed that the POU transcription factor POUM2 may play a major role in the regulation of BmCDA expression. Finally, the silencing of BmCDA1 and BmCDA2 did not lead to abnormal phenotypes or death, but may have led to delays in silkworm pupation. These results provide important information about lepidopteran insects in terms of chitin deacetylases and the regulation of their expression.
Collapse
Affiliation(s)
- Ziyu Zhang
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Jiamin Yan
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Qing Liu
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Yuhao Zhang
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Jing Gong
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Yong Hou
- College of Biotechnology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing 400715, China.
- Biological Science Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Chen S, Lu M, Zhang N, Zou X, Mo M, Zheng S. Nuclear factor erythroid-derived 2-related factor 2 activates glutathione S-transferase expression in the midgut of Spodoptera litura (Lepidoptera: Noctuidae) in response to phytochemicals and insecticides. INSECT MOLECULAR BIOLOGY 2018; 27:522-532. [PMID: 29749087 DOI: 10.1111/imb.12391] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Detoxication enzymes play an important role in insect resistance to xenobiotics such as insecticides and phytochemicals. We studied the pathway for activating the expression of glutathione S-transferases (GSTs) in response to selected xenobiotics. An assay of the promoter activity of GST epsilon 1 (Slgste1) of Spodoptera litura led to the discovery of a cis-regulating element. An antioxidant response element was activated in response to indole-3-carbinol (I3C) and chlorpyrifos (CPF) and was able to bind with the xenobiotic sensor protein nuclear factor erythroid-derived 2-related factor 2 (SlNrf2). SlNrf2 and Slgste1 were responsive to reactive oxygen species induced by I3C and CPF in a S. litura cell line, as well as in S. litura midguts. SlNrf2 RNA interference (RNAi) reduced the message RNA levels of Slgste1 and the peroxidase activity of GSTs in response to I3C, xanthotoxin, CPF and deltamethrin. SlNrf2 RNAi and inhibitor treatment of GST activity decreased the viability of I3C-treated cells. These results indicate that SlNrf2 activates the expression of GSTs in response to oxidative stresses caused by exposure to xenobiotics.
Collapse
Affiliation(s)
- S Chen
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - M Lu
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - N Zhang
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - X Zou
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - M Mo
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - S Zheng
- Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
25
|
Gouveia D, Chaumot A, Charnot A, Almunia C, François A, Navarro L, Armengaud J, Salvador A, Geffard O. Ecotoxico-Proteomics for Aquatic Environmental Monitoring: First in Situ Application of a New Proteomics-Based Multibiomarker Assay Using Caged Amphipods. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13417-13426. [PMID: 29068690 DOI: 10.1021/acs.est.7b03736] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As a proof of principle, a selected reaction monitoring (SRM) mass spectrometry-based methodology was applied to the simultaneous quantification of dozens of protein biomarkers in caged amphipods (Gammarus fossarum). We evaluated the suitability of the methodology to assess complex field contaminations through its application in the framework of a regional river monitoring network. Thanks to the high throughput acquisition of biomarker levels in G. fossarum exposed in four reference and 13 contaminated sites, we analyzed the individual responses of 38 peptides reporting for 25 proteins of interest in 170 organisms. Responses obtained in contaminated sites included inductions of vitellogenin-like proteins in male organisms, inductions of Na+K+/ATPases, and strong inhibitions of molt-related proteins such as chitinase and JHE-carboxylesterase. Proteins from detoxification and immunity processes were also found modulated in abundance. Summarizing, the results presented here show that the SRM strategy developed for multibiomarker measurement paves a very promising way to define multiple indicators of the health status of sentinel organisms for environmental hazard assessment.
Collapse
Affiliation(s)
- Duarte Gouveia
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory Innovative Technologies for Detection and Diagnostics , Bagnols-Sur-Cèze, F-30207, France
| | - Arnaud Chaumot
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
| | - Aurore Charnot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENS de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France
| | - Christine Almunia
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory Innovative Technologies for Detection and Diagnostics , Bagnols-Sur-Cèze, F-30207, France
| | - Adeline François
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
| | - Lionel Navarro
- Agence De L'Eau Rhone Mediterranée Corse , F-69363 Lyon, France
| | - Jean Armengaud
- CEA-Marcoule, DRF/Joliot/DMTS/SPI/Li2D, Laboratory Innovative Technologies for Detection and Diagnostics , Bagnols-Sur-Cèze, F-30207, France
| | - Arnaud Salvador
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENS de Lyon, Institut des Sciences Analytiques , UMR 5280, 5 rue de la Doua, F-69100 VILLEURBANNE, France
| | - Olivier Geffard
- Irstea, UR MALY, Laboratoire d'écotoxicologie , F-69625 Villeurbanne, France
| |
Collapse
|
26
|
Genome-wide open chromatin regions and their effects on the regulation of silk protein genes in Bombyx mori. Sci Rep 2017; 7:12919. [PMID: 29018289 PMCID: PMC5635003 DOI: 10.1038/s41598-017-13186-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/19/2017] [Indexed: 11/15/2022] Open
Abstract
Nucleosome-depleted open chromatin regions (OCRs) often harbor transcription factor (TF) binding sites that are associated with active DNA regulatory elements. To investigate the regulation of silk-protein genes, DNA molecules isolated from the silk glands of third-day fifth-instar silkworm larvae and embryo-derived (BmE) cells were subjected to formal dehyde-assisted isolation of regulatory elements (FAIRE) and high-throughput sequencing. In total, 68,000 OCRs were identified, and a number of TF-binding motifs were predicted. In particular, OCRs located near silk-protein genes contained potential binding sites for functional TFs. Moreover, many TFs were found to bind to clusters of OCRs upstream of silk-protein genes, and to regulate the expression of these genes. The expression of silk protein genes may be related not only to regulating TFs (such as fkh, Bmdimm, and Bmsage), but also to developmental and hormone-induced TFs (such as zen, eve, Br, and eip74ef). Elucidation of genome-wide OCRs and their regulatory motifs in silk protein genes will provide valuable data and clues for characterizing the mechanisms of transcriptional control of silk protein genes.
Collapse
|