1
|
Léger A, Cormier SB, Blanchard A, Menail HA, Pichaud N. Investigating the thermal sensitivity of key enzymes involved in the energetic metabolism of three insect species. J Exp Biol 2024; 227:jeb247221. [PMID: 38680096 DOI: 10.1242/jeb.247221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.
Collapse
Affiliation(s)
- Adèle Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Simon B Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Arianne Blanchard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Hichem A Menail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| |
Collapse
|
2
|
Cruz-Moreno DG, Valenzuela-Soto EM, Peregrino-Uriarte AB, Leyva-Carrillo L, Soñanez-Organis JG, Yepiz-Plascencia G. The pyruvate kinase of the whiteleg shrimp Litopenaeus vannamei: Gene structure and responses to short term hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2023:111468. [PMID: 37355162 DOI: 10.1016/j.cbpa.2023.111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
The shrimp Litopenaeus vannamei is the main farmed crustaceans worldwide. This crustacean suffers environmental changes in oxygen availability that affect its energy metabolism. Pyruvate kinase (PK) catalyzes the last reaction of glycolysis and is key for the regulation of glycolysis and gluconeogenesis. There is ample knowledge about mammalian PK, but in crustaceans, the information is very scarce. In this study, we analyzed in silico the structures of the PK gene and protein. Also, the effects of hypoxia on gene expression, enzymatic activity, glucose, and lactate in hepatopancreas and muscle were analyzed. The PK gene is 15,103 bp and contains 11 exons and 10 introns, producing four mRNA variants by alternative splicing and named PK1, PK2, PK3 and PK4, and two proteins with longer C-terminus and two with a 12 bp insertion. The promoter contains putative binding sites for transcription factors (TF) that are typically involved in stress responses. The deduced amino acid sequences contain the classic domains, binding sites for allosteric effectors and potential reversible phosphorylation residues. Protein modeling indicates a homotetramer with highly conserved structure. The effect of hypoxia for 6 and 12 h showed tissue-specific patterns, with higher expression, enzyme activity and lactate in muscle, but higher glucose in hepatopancreas. Changes in response to hypoxia were detected at 12 h in expression with induction in muscle and reduction in hepatopancreas, while enzyme activity was maintained, and glucose and lactate decreased. These results show rapid changes in expression and metabolites, while enzyme activity was maintained to cope with short-term hypoxia.
Collapse
Affiliation(s)
- Dalia G Cruz-Moreno
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Elisa M Valenzuela-Soto
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico
| | - Jose G Soñanez-Organis
- Universidad de Sonora Unidad Regional Sur, Departamento de Ciencias Químico-Biológicas y Agropecuarias, Navojoa, Sonora CP. 85880, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera Gustavo Enrique, Astiazarán Rosas, No. 46, Col. La Victoria, CP. 83304 Hermosillo, Sonora, Mexico.
| |
Collapse
|
3
|
Varma A, Storey KB. Freeze-induced suppression of pyruvate kinase in liver of the wood frog (Rana sylvatica). Adv Biol Regul 2023; 88:100944. [PMID: 36542984 DOI: 10.1016/j.jbior.2022.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 05/22/2023]
Abstract
The wood frog (Rana sylvatica) undergoes physiological and metabolic changes to withstand subzero temperatures and whole body freezing during the winter months. Along with metabolic rate depression, high concentrations of glucose are produced as a cryoprotectant by liver and distributed to all other tissues. Pyruvate kinase (PK; EC:2.7.1.40), the final enzyme of glycolysis, plays an important role in the modulation of glucose metabolism and, therefore, overall metabolic regulation. The present study investigated the functional and kinetic properties of purified PK from liver of control (5 °C acclimated) and frozen (-2.5 °C for 24 h) wood frogs. Liver PK was purified to homogeneity by a two-step chromatographic process, followed by analysis of enzyme properties. A significant decrease in the affinity of PK for its substrates, phosphoenolpyruvate (PEP) and adenosine diphosphate (ADP) at 22 °C and 5 °C was noted in liver from frozen frogs, as compared with controls. Immunoblotting also revealed freeze-responsive changes in posttranslational modifications with a significant increase in serine and threonine phosphorylation by 1.46-fold and 1.73- fold for PK from frozen frogs as compared with controls. Furthermore, a test of thermal stability showed that PK from liver of frozen wood frogs showed greater stability as compared with PK from control animals. Taken together, these results suggest that PK is negatively regulated, and glycolysis is suppressed, during freezing. This response acts as an important survival strategy for maintaining continuously elevated levels of cryoprotectant in frogs while they remain in a hypometabolic frozen state.
Collapse
Affiliation(s)
- Anchal Varma
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, 1125 Colonel by Drive, Ottawa, Ontario, K1S 5B6, Canada.
| |
Collapse
|
4
|
Tian H, Liu SQ, Jing WH, Hao ZH, Li YH, Lu ZH, Ding ZK, Huang SL, Xu YS, Wang HB. Imaginal disc growth factor is involved in melanin synthesis and energy metabolism in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21995. [PMID: 36575612 DOI: 10.1002/arch.21995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The imaginal disc growth factor (IDGF), belonging to the glycoside hydrolase 18 family, plays an important role in various physiological processes in insects. However, the detail physiological function of IDGF is still unclear. In this study, transcriptome analysis was performed on the fatbody isolated from staged control and BmIDGF mutant silkworm larvae. Transcriptional profiling revealed that the absence of BmIDGF significantly affected differentially expressed genes involved in tyrosine and purine metabolism, as well as multiple energy metabolism pathways, including glycolysis, galactose, starch, and sucrose metabolism. The interruption of BmIDGF caused similar and specific gene expression changes to male and female fatbody. Furthermore, a genome-scale metabolic network integrating metabolomic and transcriptomic datasets revealed 11 pathways significantly altered at the transcriptional and metabolic levels, including amino acid, carbohydrate, uric acid metabolism pathways, insect hormone biosynthesis, and ABC transporters. In conclusion, this multiomics analysis suggests that IDGF is involved in gene-metabolism interactions, revealing its unique role in melanin synthesis and energy metabolism. This study provides new insights into the physiological function of IDGF in insects.
Collapse
Affiliation(s)
- Huan Tian
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai-Qi Liu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Hui Jing
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhi-Hua Hao
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying-Hui Li
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhe-Hao Lu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ze-Kai Ding
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shao-Li Huang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Bing Wang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Zhang A, Xu L, Liu Z, Zhang J, Han L, Zhao K. The effects of acetamiprid multigeneration stress on metabolism and physiology of Aphis glycines Matsumura (Hemiptera: Aphididae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21903. [PMID: 35416322 DOI: 10.1002/arch.21903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Aphis glycines Matsumura (Hemiptera: Aphididae) is a major soybean pest that often poses a serious threat to soybean production. In this study, we checked the effects of acetamiprid on redox, energy metabolism, and hormone expression in A. glycines. The LC50 and LC30 of acetamiprid were used to treat the fourth instar nymphs in each generation from F0 to F4 to measure the activity of peroxidase, pyruvate kinase, and trehalase using a microassays approach. The peroxidase activity was significantly higher than control when treated with the LC30 of acetamiprid in F2-F5 generations. The activity of pyruvate kinase was significantly higher, while trehalase activity was substantially lower than control in each generation. Besides, we monitored molting and juvenile hormone expression in soybean aphids using enzyme-linked immunosorbent assay. The juvenile hormone titer of third instar nymphs was significantly higher in the treatment group (F1, F2, F4, and F5), while no effects were noted in the F3 generation. Taken together, the activity of peroxidase and pyruvate kinase in soybean aphid first increased to the peak and then decreased, while the trehalase activity continuously decreased in all generations following exposure to acetamiprid. The juvenile hormone titer was significantly higher, while the molting hormone titer was significantly lower in LC50 -treated aphids than in control. Moreover, the LC30 of acetamiprid increased the molting hormone expression in soybean aphids. These findings indicated a baseline for the effective use of acetamiprid in controlling soybean aphids.
Collapse
Affiliation(s)
- Aonan Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ling Xu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ziqi Liu
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jiabo Zhang
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lanlan Han
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Kuijun Zhao
- College of Agriculture, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Shen Y, Lu JB, Chen YZ, Ye YX, Qi ZH, Zhang CX. Lateral oviduct-secreted proteins in the brown planthopper. J Proteomics 2022; 266:104670. [PMID: 35788410 DOI: 10.1016/j.jprot.2022.104670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/30/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Oviducts are the "traffic hubs" of the female reproductive system, serving as the crucial conduits for egg transportation. By performing LC-MS/MS proteomic detection together with transcriptomic analysis, 80 lateral oviduct-secreted proteins were identified, and 5 genes (NlOdsp, NlOdsp1, NlOdsp2, NlOdsp3 and NlOdsp4) specifically expressed in the oviducts of the brown planthopper Nilaparvata lugens, the most destructive rice pest, were authenticated. qRT-PCR analysis revealed that these genes and proteins were mainly/specifically expressed in the female reproductive system in adulthood. RNA interference (RNAi) against the 5 NlOdsp genes significantly affected the survival rates (3.4% - 68.7% of the control) and fecundities of female adults (3.9% - 57.6% of the control) at 8 d post injection (p.i.). In addition, the lack of NlOdsp1 caused decreases in the gel-like brown secretions inside the lateral oviducts, while increased secretions were found in the dsNlOdsp2-treated groups. In addition, NlOdsp3 is a pleiotropic gene involved in both oocyte development and egg movement through the lateral oviducts, similar to the role of NlOdsp in egg transportation. The results deepen our understanding of oviduct-secreted proteins in female insects and provide novel target genes for RNAi-based insect pest control. SIGNIFICANCE: Oviduct plays a vital role in animal reproductive processes and it serves as the crucial conduit for egg transportation. Though oviduct secretes have been well documented in high animals, the proteomic information of insect oviduct secretes remains poorly understood. The present study revealed 80 oviduct secreted proteins, including 19 unknown proteins, from the rice planthopper, the most destructive rice pest which lay eggs in plant tissues. Five of the 19 proteins were further functionally characterized. The results not only deepen our understanding of the oviduct secreted proteins in insect reproductive biology, but also provide basis for interaction between insects and host plants, and provide novel target genes for RNAi-based insect pest control.
Collapse
Affiliation(s)
- Yan Shen
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuan-Zhi Chen
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Zhou-Hui Qi
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Identification and characterization of phosphoproteins in the striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis. Food Chem 2022; 372:131242. [PMID: 34818726 DOI: 10.1016/j.foodchem.2021.131242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/08/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022]
Abstract
Many proteins are known to be phosphorylated, affecting important regulatory factors of muscle quality in the aquatic animals. The striated and smooth adductor muscles of Yesso scallop Patinopecten yessoensis were used to investigate muscle texture and identify phosphoproteins by histological methods and phosphoproteomic analysis. Our present study reveals that muscle fiber density is in relation to meat texture of the striated and smooth adductor muscles. The phosphoproteomic analysis has identified 764 down-regulated and 569 up-regulated phosphosites on 743 phosphoproteins in the smooth muscle compared to the striated part. The identification of unique phosphorylation sites in glycolytic enzymes may increase the activity of glycolytic enzymes and the rate of glycolysis in the striated adductor muscle. The present findings will provide new evidences on the role of muscle structure and protein phosphorylation in scallop muscle quality and thus help to develop strategies for improving meat quality of scallop products.
Collapse
|