1
|
Ikegaya M, Park EY, Miyazaki T. Structure-function analysis of bacterial GH31 α-galactosidases specific for α-(1→4)-galactobiose. FEBS J 2023; 290:4984-4998. [PMID: 37438884 DOI: 10.1111/febs.16904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Glycoside hydrolase family 31 (GH31) contains α-glycoside hydrolases with different substrate specificities involved in various physiological functions. This family has recently been classified into 20 subfamilies using sequence similarity networks. An α-galactosidase from the gut bacterium Bacteroides salyersiae (BsGH31_19, which belongs to GH31 subfamily 19) was reported to have hydrolytic activity against the synthetic substrate p- nitrophenyl α-galactopyranoside, but its natural substrate remained unknown. BsGH31_19 shares low sequence identity (around 20%) with other reported GH31 α-galactosidases, PsGal31A from Pseudopedobacter saltans and human myogenesis-regulating glycosidase (MYORG), and was expected to have distinct specificity. Here, we characterized BsGH31_19 and its ortholog from a soil Bacteroidota bacterium, Flavihumibacter petaseus (FpGH31_19), and demonstrated that they showed high substrate specificity against α-(1→4)-linkages in α-(1→4)-galactobiose and globotriose [α-Gal-(1→4)-β-Gal-(1→4)-Glc], unlike PsGal31A and MYORG. The crystallographic analyses of BsGH31_19 and FpGH31_19 showed that their overall structures resemble those of MYORG and form a dimer with an interface different from that of PsGal31A and MYORG dimers. The structures of FpGH31_19 complexed with d-galactose and α-(1→4)-galactobiose revealed that amino acid residues that recognize a galactose residue at subsite +1 are not conserved between FpGH31_19 and BsGH31_19. The tryptophan (Trp153) that recognizes galactose at subsite -1 is homologous to the tryptophan residues in MYORG and α-galactosidases belonging to GH27, GH36, and GH97, but not in the bacterial GH31 member PsGal31A. Our results provide structural insights into molecular diversity and evolutionary relationships in the GH31 α-galactosidase subfamilies and the other α-galactosidase families.
Collapse
Affiliation(s)
- Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Japan
| |
Collapse
|
2
|
Yi Z, Chen L, Jin Y, Shen Y, Liu N, Fang Y, Xiao Y, Wang X, Peng K, He K, Zhao H. Insight into broad substrate specificity and synergistic contribution of a fungal α-glucosidase in Chinese Nong-flavor daqu. Microb Cell Fact 2023; 22:114. [PMID: 37322438 DOI: 10.1186/s12934-023-02124-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Chinese Nong-favor daqu, the presentative liquor starter of Baijiu, has been enriched with huge amounts of enzymes in degrading various biological macromolecules by openly man-made process for thousand years. According to previous metatranscriptomics analysis, plenty of α-glucosidases were identified to be active in NF daqu and played the key role in degrading starch under solid-state fermentation. However, none of α-glucosidases was characterized from NF daqu, and their actual functions in NF daqu were still unknown. RESULTS An α-glucosidase (NFAg31A, GH31-1 subfamily), the second highest expressed α-glucosidases in starch degradation of NF daqu, was directly obtained by heterologous expression in Escherichia coli BL21 (DE3). NFAg31A exhibited the highest sequence identities of 65.8% with α-glucosidase II from Chaetomium thermophilum, indicating its origin of fungal species, and it showed some similar features with homologous α-glucosidase IIs, i.e., optimal activity at pH ~ 7.0 and litter higher temperature of 45 ℃, well stability at 41.3 ℃ and a broad pH range of pH 6.0 to pH 10.0, and preference on hydrolyzing Glc-α1,3-Glc. Besides this preference, NFAg31A showed comparable activities on Glc-α1,2-Glc and Glc-α1,4-Glc, and low activity on Glc-α1,6-Glc, indicating its broad specificities on α-glycosidic substrates. Additionally, its activity was not stimulated by any of those detected metal ions and chemicals, and could be largely inhibited by glucose under solid-state fermentation. Most importantly, it exhibited competent and synergistic effects with two characterized α-amylases of NF daqu on hydrolyzing starch, i.e., all of them could efficiently degrade starch and malto-saccharides, two α-amylases showed advantage in degrading starch and long-chain malto-saccharides, and NFAg31A played the competent role with α-amylases in degrading short-chain malto-saccharides and the irreplaceable contribution in hydrolyzing maltose into glucose, thus alleviating the product inhibitions of α-amylases. CONCLUSIONS This study provides not only a suitable α-glucosidase in strengthening the quality of daqu, but also an efficient way to reveal roles of the complicated enzyme system in traditional solid-state fermentation. This study would further stimulate more enzyme mining from NF daqu, and promote their actual applications in solid-state fermentation of NF liquor brewing, as well as in other solid-state fermentation of starchy industry in the future.
Collapse
Affiliation(s)
- Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Lanchai Chen
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, 610039, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yi Shen
- Sichuan Langjiu Co., Ltd, Gulin, 646523, China
| | - Nian Liu
- Sichuan Food and Fermentation Industry Research & Design Institute, Chengdu, 611130, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Xi Wang
- Sichuan Langjiu Co., Ltd, Gulin, 646523, China
| | - Kui Peng
- Sichuan Food and Fermentation Industry Research & Design Institute, Chengdu, 611130, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9 Section 4, Renmin Nan Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
3
|
Zhu K, Chen Y, Chen L, Xiang H. Comparative Silk Transcriptomics Illuminates Distinctive Impact of Artificial Selection in Silkworm Modern Breeding. INSECTS 2022; 13:1163. [PMID: 36555072 PMCID: PMC9784016 DOI: 10.3390/insects13121163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Early domestication and the following improvement are two important processes in the cocoon silk evolution of silkworms. In contrast to early domestication, understanding of the improvement process is still fuzzy. By systematically comparing the larval silk gland transcriptomes of the wild, early domestic, and improved silkworms, we highlighted a novel landscape of transcriptome in the silk glands of improved ones. We first clarified that silk cocoon protein genes were up-regulated in modern breeding but not in early domestication. Furthermore, we found that differentially expressed genes (DEGs) between improved and early domestic silkworms (2711), as well as between improved and wild silkworms (2264), were obviously more than those between the early domestic and wild silkworms (158), with 1671 DEGs specific in the improved silkworm (IS-DEGs). Hierarchical clustering of all the DEGs consistently indicated that improved silkworms were significantly diverged from the early domestic and wild silkworms, suggesting that modern breeding might cause prompt and drastic dynamic changes of gene expression in the silk gland. We further paid attention to these 1671 IS-DEGs and were surprised to find that down-regulated genes were enriched in basic organonitrogen compound biosynthesis, RNA biosynthesis, and ribosome biogenesis processes, which are generally universally expressed, whereas those up-regulated genes were enriched in organonitrogen compound catabolic processes and functions involving in the dynamic regulation of protein post-translation of modification. We finally highlighted one candidate improvement gene among these up-regulated IS-DEGs, i.e., GDAP2, which may play roles in silk behavior and the overall robustness of the improved silkworm. The findings strongly suggest that modern breeding may facilitate effective control of the basic consumption of nitrogen and a stronger switch of nitrogen resources from other tissues to the silk glands, for an efficient supply for silk production, and implies the importance of brain behavior and robustness in silk yield improvement of modern breeding.
Collapse
Affiliation(s)
- Kesen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University , Guangzhou 510631, China
- Laboratory for Lingnan Modern Agriculture, Institute of Insect Science and Technology, Guangzhou 510642, China
| | - Yanfei Chen
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 512000, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Xiang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, School of Life Sciences, South China Normal University , Guangzhou 510631, China
- Laboratory for Lingnan Modern Agriculture, Institute of Insect Science and Technology, Guangzhou 510642, China
| |
Collapse
|
4
|
Ikegaya M, Moriya T, Adachi N, Kawasaki M, Park EY, Miyazaki T. Structural basis of the strict specificity of a bacterial GH31 α-1,3-glucosidase for nigerooligosaccharides. J Biol Chem 2022; 298:101827. [PMID: 35293315 PMCID: PMC9061262 DOI: 10.1016/j.jbc.2022.101827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Carbohydrate-active enzymes are involved in the degradation, biosynthesis, and modification of carbohydrates and vary with the diversity of carbohydrates. The glycoside hydrolase (GH) family 31 is one of the most diverse families of carbohydrate-active enzymes, containing various enzymes that act on α-glycosides. However, the function of some GH31 groups remains unknown, as their enzymatic activity is difficult to estimate due to the low amino acid sequence similarity between characterized and uncharacterized members. Here, we performed a phylogenetic analysis and discovered a protein cluster (GH31_u1) sharing low sequence similarity with the reported GH31 enzymes. Within this cluster, we showed that a GH31_u1 protein from Lactococcus lactis (LlGH31_u1) and its fungal homolog demonstrated hydrolytic activities against nigerose [α-D-Glcp-(1→3)-D-Glc]. The kcat/Km values of LlGH31_u1 against kojibiose and maltose were 13% and 2.1% of that against nigerose, indicating that LlGH31_u1 has a higher specificity to the α-1,3 linkage of nigerose than other characterized GH31 enzymes, including eukaryotic enzymes. Furthermore, the three-dimensional structures of LlGH31_u1 determined using X-ray crystallography and cryogenic electron microscopy revealed that LlGH31_u1 forms a hexamer and has a C-terminal domain comprising four α-helices, suggesting that it contributes to hexamerization. Finally, crystal structures in complex with nigerooligosaccharides and kojibiose along with mutational analysis revealed the active site residues involved in substrate recognition in this enzyme. This study reports the first structure of a bacterial GH31 α-1,3-glucosidase and provides new insight into the substrate specificity of GH31 enzymes and the physiological functions of bacterial and fungal GH31_u1 members.
Collapse
Affiliation(s)
- Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), Tsukuba, Ibaraki, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Takatsugu Miyazaki
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.
| |
Collapse
|
5
|
Utomo DIS, Pambudi S, Park EY. Humoral immune response induced with dengue virus-like particles serotypes 1 and 4 produced in silkworm. AMB Express 2022; 12:8. [PMID: 35102445 PMCID: PMC8802989 DOI: 10.1186/s13568-022-01353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/22/2022] [Indexed: 11/12/2022] Open
Abstract
Dengue is an arboviral disease, which threatens almost half the global population, and has emerged as the most significant of current global public health challenges. In this study, we prepared dengue virus-like particles (DENV-LPs) consisting of Capsid-premembrane-envelope (CprME) and premembrane-envelope (prME) polypeptides from serotype 1 and 4, which were expressed in the silkworms using Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid. 1CprME, 1prME, 4CprME, and 4prME expressed proteins in hemolymph, and the molecular weight of the purified proteins was 55 kDa, respectively. The purified polypeptides formed spherical Dengue virus-like particles (DENV-LPs) with ~ 30–55 nm in diameter. The immunoelectron microscopy (IEM) images revealed antigens to the surface of a lipid bilayer of DENV-LPs. The heparin-binding assay shows a positive relationship between absorbance and E protein domain III (EDIII) quantity, which is supported by the isothermal titration calorimetry assay. This indicates a moderate binding affinity between heparin and DENV-LP. The high correlation between patient sera and DENV-LP reactivities revealed that these DENV-LPs shared similar epitopes with the natural dengue virus. IgG elicitation studies in mice have demonstrated that DENV-LPs/CPrMEs elicit a stronger immune response than DENV-LP/prMEs, which lends credence to this claim. Dengue virus-like particles for serotype 1 and serotype 4 (DENV-LPs/1 and DENV-LPs/4) were produced in silkworm. Heparin-binding assay by ELISA and ITC showed that DENV-LPs/1 and DENV-LPs/4 contain Envelope Domain III. DENV-LPs/1 and DENV-LPs/4 showed affinity to sera from human dengue patients and immunized mice.
Collapse
|
6
|
Miyazaki T, Ikegaya M, Alonso-Gil S. Structural and mechanistic insights into the substrate specificity and hydrolysis of GH31 α-N-acetylgalactosaminidase. Biochimie 2021; 195:90-99. [PMID: 34826537 DOI: 10.1016/j.biochi.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 11/02/2022]
Abstract
Glycoside hydrolase family 31 (GH31) is a diversified family of anomer-retaining α-glycoside hydrolases, such as α-glucosidase and α-xylosidase, among others. Recently, GH31 α-N-acetylgalactosaminidases (Nag31s) have been identified to hydrolyze the core of mucin-type O-glycans and the crystal structure of a gut bacterium Enterococcus faecalis Nag31 has been reported. However, the mechanisms of substrate specificity and hydrolysis of Nag31s are not well investigated. Herein, we show that E. faecalis Nag31 has the ability to release N-acetylgalactosamine (GalNAc) from O-glycoproteins, such as fetuin and mucin, but has low activity against Tn antigen. Mutational analysis and crystal structures of the Michaelis complexes reveal that residues of the active site work in concert with their conformational changes to act on only α-N-acetylgalactosaminides. Docking simulations using GalNAc-attached peptides suggest that the enzyme mainly recognizes GalNAc and side chains of Ser/Thr, but not strictly other peptide residues. Moreover, quantum mechanics calculations indicate that the enzyme preferred p-nitrophenyl α-N-acetylgalactosaminide to Tn antigen and that the hydrolysis progresses through a conformational itinerary, 4C1 → 1S3 → 4C1, in GalNAc of substrates. Our results provide novel insights into the diversification of the sugar recognition and hydrolytic mechanisms of GH31 enzymes.
Collapse
Affiliation(s)
- Takatsugu Miyazaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Marina Ikegaya
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Santiago Alonso-Gil
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|