1
|
Moscatelli OG, Russell AK, Henneken LM, Hardy MY, Mazarakis N, Higgins R, Ekin J, McLeod H, Simkin P, Licciardi PV, Bryant VL, Tye-Din JA. Impaired IgM Memory B Cell Function Is Common in Coeliac Disease but Conjugate Pneumococcal Vaccination Induces Robust Protective Immunity. Vaccines (Basel) 2024; 12:214. [PMID: 38400197 PMCID: PMC10891918 DOI: 10.3390/vaccines12020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Coeliac disease (CD) is associated with hyposplenism, an acquired impairment of spleen function associated with reduced IgM memory B cells and increased susceptibility to serious pneumococcal infection. Little is known about the immune implications of hyposplenism in CD or the optimal pneumococcal vaccination strategy. In this study, the immune effects of hyposplenism in CD, and the accuracy of screening approaches and protective responses induced by two different pneumococcal vaccines were examined. Active and treated CD cohorts, and healthy and surgically splenectomised controls underwent testing for the presence of Howell-Jolly bodies and pitted red cells, spleen ultrasound, and immune assessment of IgM memory B cell frequency and IgM memory B cell responses to T cell-dependent (TD) or T cell-independent (TI) stimulation. Responses following conjugate (TD) and polysaccharide (TI) pneumococcal vaccination were compared using ELISA and opsonophagocytic assays. Although hyposplenism is rare in treated CD (5.1%), functional B cell defects are common (28-61%) and are not detected by current clinical tests. Conjugate pneumococcal vaccination induced superior and sustained protection against clinically relevant serotypes. Clinical practice guidelines in CD should recommend routine pneumococcal vaccination, ideally with a conjugate vaccine, of all patients in lieu of hyposplenism screening.
Collapse
Affiliation(s)
- Olivia G. Moscatelli
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Amy K. Russell
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Lee M. Henneken
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Melinda Y. Hardy
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Nadia Mazarakis
- The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Rachel Higgins
- The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
| | - Jesse Ekin
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Harry McLeod
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul Simkin
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Paul V. Licciardi
- The Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Vanessa L. Bryant
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Clinical Immunology, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| | - Jason A. Tye-Din
- Immunology Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (O.G.M.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
- Department of Gastroenterology, The Royal Melbourne Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
2
|
Farchione AJ, Cheon H, Hodgkin PD, Bryant VL. Quantifying Human Naïve B Cell Proliferation Kinetics and Differentiation in Controlled In Vitro Cell Culture. Methods Mol Biol 2024; 2826:167-187. [PMID: 39017893 DOI: 10.1007/978-1-0716-3950-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Division tracking dyes like Cell Trace Violet (CTV) enable the quantification of cell proliferation, division, and survival kinetics of human naïve B cell responses in vitro. Human naïve B cells exhibit distinct responses to different stimuli, with CpG and anti-Ig inducing a T cell-independent (TI) response, while CD40L and IL-21 promote a T cell-dependent (TD) response that induces isotype switching and differentiation into antibody-secreting cells (ASCs). Both stimulation methods yield valuable insights into the intrinsic programming of B cell health within individuals, making them useful for clinical investigations. For instance, quantitative analysis from these B cell populations could reveal biologically meaningful measurements such as the average number of division rounds and the time to cells' fate. Here, we describe a novel in vitro culture setup for CTV-labelled human naïve B cells and a method for obtaining precise time-based data on proliferation, division-linked isotype switching, and differentiation.
Collapse
Affiliation(s)
- Anthony J Farchione
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - HoChan Cheon
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Philip D Hodgkin
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Vanessa L Bryant
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
- Department Clinical Immunology and Allergy, The Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Verdikt R, Armstrong AA, Cheng J, Hwang YS, Clark AT, Yang X, Allard P. Metabolic memory of Δ9-tetrahydrocannabinol exposure in pluripotent stem cells and primordial germ cells-like cells. eLife 2023; 12:RP88795. [PMID: 38150302 PMCID: PMC10752584 DOI: 10.7554/elife.88795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures the early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naive mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los AngelesLos AngelesUnited States
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility, University of California, Los AngelesLos AngelesUnited States
| | - Jenny Cheng
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los AngelesLos AngelesUnited States
| | - Young Sun Hwang
- Department of Molecular Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
- Center for Reproductive Science, Health and Education, University of California, Los AngelesLos AngelesUnited States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los AngelesLos AngelesUnited States
| | - Xia Yang
- Integrative Biology and Physiology Department, University of California, Los AngelesLos AngelesUnited States
- Department of Molecular and Medical Pharmacology, University of California, Los AngelesLos AngelesUnited States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los AngelesLos AngelesUnited States
- Molecular Biology Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
4
|
Verdikt R, Armstrong AA, Cheng J, Hwang YS, Clark AT, Yang X, Allard P. Metabolic memory of Δ9-tetrahydrocannabinol exposure in pluripotent stem cells and primordial germ cells-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.531968. [PMID: 36993751 PMCID: PMC10054962 DOI: 10.1101/2023.03.13.531968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naïve mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abigail A. Armstrong
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, USA
| | - Jenny Cheng
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Young Sun Hwang
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amander T. Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Integrative Biology and Physiology Department, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
Jasinski J, Völkl M, Hahn J, Jérôme V, Freitag R, Scheibel T. Polystyrene microparticle distribution after ingestion by murine macrophages. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131796. [PMID: 37307726 DOI: 10.1016/j.jhazmat.2023.131796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
The impact of microplastic particles on organisms is currently intensely researched. Although it is well established that macrophages ingest polystyrene (PS) microparticles, little is known about the subsequent fate of the particles, such as entrapment in organelles, distribution during cell division, as well as possible mechanisms of excretion. Here, submicrometer (0.2 and 0.5 µm) and micron-sized (3 µm) particles were used to analyze particle fate upon ingestion of murine macrophages (J774A.1 and ImKC). Distribution and excretion of PS particles was investigated over cycles of cellular division. The distribution during cell division seems cell-specific upon comparing two different macrophage cell lines, and no apparent active excretion of microplastic particles could be observed. Using polarized cells, M1 polarized macrophages show higher phagocytic activity and particle uptake than M2 polarized ones or M0 cells. While particles with all tested diameters were found in the cytoplasm, submicron particles were additionally co-localized with the endoplasmic reticulum. Further, 0.5 µm particles were occasionally found in endosomes. Our results indicate that a possible reason for the previously described low cytotoxicity upon uptake of pristine PS microparticles by macrophages may be due to the preferential localization in the cytoplasm.
Collapse
Affiliation(s)
- Julia Jasinski
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Matthias Völkl
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Jonas Hahn
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Valérie Jérôme
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Sciences, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Material Science (BayMAT), University of Bayreuth, Bayreuth, Germany; Bavarian Polymer Institute (BPI), University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
6
|
Ma CS, Freeman AF, Fleisher TA. Inborn Errors of Immunity: A Role for Functional Testing and Flow Cytometry in Aiding Clinical Diagnosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1579-1591. [PMID: 37054882 PMCID: PMC10330903 DOI: 10.1016/j.jaip.2023.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
With the exponential discovery of new inborn errors of immunity (IEI), it is becoming increasingly difficult to differentiate between a number of the more recently defined disorders. This is compounded by the fact that although IEI primarily present with immunodeficiency, the spectrum of disease is broad and often extends to features typical of autoimmunity, autoinflammation, atopic disease, and/or malignancy. Here we use case studies to discuss the laboratory and genetic tests used that ultimately led to the specific diagnoses.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Program, Garvan Institute of Medical Research, Sydney, NSW, Australia; School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Thomas A Fleisher
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Md
| |
Collapse
|
7
|
Activated T cell therapy targeting glioblastoma cancer stem cells. Sci Rep 2023; 13:196. [PMID: 36604465 PMCID: PMC9814949 DOI: 10.1038/s41598-022-27184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Naïve T cells become effector T cells following stimulation by antigen-loaded dendritic cells (DCs) and sequential cytokine activation. We aimed to develop procedures to efficiently activate T cells with tumor-associated antigens (TAAs) to glioblastoma (GBM) stem cells. To remove antigen presentation outside of the immunosuppressive tumor milieu, three different glioma stem cell (GSC) specific antigen sources to load DCs were compared in their ability to stimulate lymphocytes. An activated T cell (ATC) protocol including cytokine activation and expansion in culture to target GSCs was generated and optimized for a planned phase I clinical trial. We compared three different antigen-loading methods on DCs to effectively activate T cells, which were GBM patient-derived GSC-lysate, acid-eluate of GSCs and synthetic peptides derived from proteins expressed in GSCs. DCs derived from HLA-A2 positive blood sample were loaded with TAAs. Autologous T cells were activated by co-culturing with loaded DCs. Efficiency and cytotoxicity of ATCs were evaluated by targeting TAA-pulsed DCs or T2 cells, GSCs, or autologous PHA-blasts. Characteristics of ATCs were evaluated by Flow Cytometry and ELISpot assay, which showed increased number of ATCs secreting IFN-γ targeting GSCs as compared with non-activated T cells and unloaded target cells. Neither GSC-lysate nor acid-eluate loading showed enhancement in response of ATCs but the synthetic peptide pool showed significantly increased IFN-γ secretion and increased cytotoxicity towards target cells. These results demonstrate that ATCs activated using a TAA synthetic peptide pool efficiently enhance cytotoxicity specifically to target cells including GSC.
Collapse
|
8
|
Kong IY, Trezise S, Light A, Todorovski I, Arnau GM, Gadipally S, Yoannidis D, Simpson KJ, Dong X, Whitehead L, Tempany JC, Farchione AJ, Sheikh AA, Groom JR, Rogers KL, Herold MJ, Bryant VL, Ritchie ME, Willis SN, Johnstone RW, Hodgkin PD, Nutt SL, Vervoort SJ, Hawkins ED. Epigenetic modulators of B cell fate identified through coupled phenotype-transcriptome analysis. Cell Death Differ 2022; 29:2519-2530. [PMID: 35831623 PMCID: PMC9751284 DOI: 10.1038/s41418-022-01037-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/31/2023] Open
Abstract
High-throughput methodologies are the cornerstone of screening approaches to identify novel compounds that regulate immune cell function. To identify novel targeted therapeutics to treat immune disorders and haematological malignancies, there is a need to integrate functional cellular information with the molecular mechanisms that regulate changes in immune cell phenotype. We facilitate this goal by combining quantitative methods for dissecting complex simultaneous cell phenotypic effects with genomic analysis. This combination strategy we term Multiplexed Analysis of Cells sequencing (MAC-seq), a modified version of Digital RNA with perturbation of Genes (DRUGseq). We applied MAC-seq to screen compounds that target the epigenetic machinery of B cells and assess altered humoral immunity by measuring changes in proliferation, survival, differentiation and transcription. This approach revealed that polycomb repressive complex 2 (PRC2) inhibitors promote antibody secreting cell (ASC) differentiation in both murine and human B cells in vitro. This is further validated using T cell-dependent immunization in mice. Functional dissection of downstream effectors of PRC2 using arrayed CRISPR screening uncovered novel regulators of B cell differentiation, including Mybl1, Myof, Gas7 and Atoh8. Together, our findings demonstrate that integrated phenotype-transcriptome analyses can be effectively combined with drug screening approaches to uncover the molecular circuitry that drives lymphocyte fate decisions.
Collapse
Affiliation(s)
- Isabella Y. Kong
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephanie Trezise
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Amanda Light
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Izabela Todorovski
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Gisela Mir Arnau
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - Sreeja Gadipally
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - David Yoannidis
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia
| | - Kaylene J. Simpson
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia ,grid.1055.10000000403978434Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Xueyi Dong
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Lachlan Whitehead
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Jessica C. Tempany
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Anthony J. Farchione
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Amania A. Sheikh
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia
| | - Joanna R. Groom
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Kelly L. Rogers
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Marco J. Herold
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Vanessa L. Bryant
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Matthew E. Ritchie
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Simon N. Willis
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Ricky W. Johnstone
- grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Philip D. Hodgkin
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephen L. Nutt
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| | - Stephin J. Vervoort
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia ,grid.1055.10000000403978434Peter MacCallum Cancer Centre, Melbourne, 3000 VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Edwin D. Hawkins
- grid.1042.70000 0004 0432 4889Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052 VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, The University of Melbourne, Parkville, 3010 VIC Australia
| |
Collapse
|
9
|
Shemesh A, Pickering H, Roybal KT, Lanier LL. Differential IL-12 signaling induces human natural killer cell activating receptor-mediated ligand-specific expansion. J Exp Med 2022; 219:e20212434. [PMID: 35758909 PMCID: PMC9240274 DOI: 10.1084/jem.20212434] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022] Open
Abstract
IL-12 is an essential cytokine involved in the generation of memory or memory-like NK cells. Mouse cytomegalovirus infection triggers NK receptor-induced, ligand-specific IL-12-dependent NK cell expansion, yet specific IL-12 stimulation ex vivo leading to NK cell proliferation and expansion is not established. Here, we show that IL-12 alone can sustain human primary NK cell survival without providing IL-2 or IL-15 but was insufficient to promote human NK cell proliferation. IL-12 signaling analysis revealed STAT5 phosphorylation and weak mTOR activation, which was enhanced by activating NK receptor upregulation and crosslinking leading to STAT5-dependent, rapamycin-sensitive, or TGFβ-sensitive NK cell IL-12-dependent expansion, independently of IL-12 receptor upregulation. Prolonged IL-2 culture did not impair IL-12-dependent ligand-specific NK cell expansion. These findings demonstrate that activating NK receptor stimulation promotes differential IL-12 signaling, leading to human NK cell expansion, and suggest adopting strategies to provide IL-12 signaling in vivo for ligand-specific IL-2-primed NK cell-based therapies.
Collapse
Affiliation(s)
- Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
- Gladstone University of California, San Francisco Institute for Genetic Immunology, San Francisco, CA
- University of California, San Francisco Cell Design Institute, San Francisco, CA
| | - Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA
| |
Collapse
|
10
|
Chan S, Godsell J, Horton M, Farchione A, Howson LJ, Margetts M, Jin C, Chatelier J, Yong M, Sasadeusz J, Douglass JA, Slade CA, Bryant VL. Case Report: Cytomegalovirus Disease Is an Under-Recognized Contributor to Morbidity and Mortality in Common Variable Immunodeficiency. Front Immunol 2022; 13:815193. [PMID: 35242131 PMCID: PMC8885594 DOI: 10.3389/fimmu.2022.815193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Common Variable Immunodeficiency (CVID) is classified as a ‘Predominantly Antibody Deficiency’ (PAD), but there is emerging evidence of cellular immunodeficiency in a subset of patients. This evidence includes CVID patients diagnosed with cytomegalovirus (CMV) infection, a hallmark of ‘combined immunodeficiency’. CMV infection also has the potential to drive immune dysregulation contributing to significant morbidity and mortality in CVID. We aim to determine the extent of cellular immune dysfunction in CVID patients, and whether this correlates with CMV infection status. Methods We conducted a single-center retrospective cohort study of individuals with CVID at the Royal Melbourne Hospital, and identified patients with and without CMV disease or viraemia. We then isolated T-cells from patient and healthy donor blood samples and examined T-cell proliferation and function. Results Six patients (7.6%, 6/79) had either CMV disease (pneumonitis or gastrointestinal disease), or symptomatic CMV viraemia. A high mortality rate in the cohort of patients with CVID and CMV disease was observed, with 4 deaths in the period of analysis (66.6%, 4/6). Individuals with CMV infection showed reduced T-cell division in response to T-cell receptor (TCR) stimulation when compared with CMV-negative patients. Discussion This study demonstrates the morbidity and mortality associated with CMV in CVID, and highlights the need for focused interventions for patients with CVID at risk of CMV disease.
Collapse
Affiliation(s)
- Samantha Chan
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Jack Godsell
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Miles Horton
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Farchione
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lauren J Howson
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mai Margetts
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Celina Jin
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Josh Chatelier
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Joseph Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jo A Douglass
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Charlotte A Slade
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Replicative history marks transcriptional and functional disparity in the CD8 + T cell memory pool. Nat Immunol 2022; 23:791-801. [PMID: 35393592 PMCID: PMC7612726 DOI: 10.1038/s41590-022-01171-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 02/24/2022] [Indexed: 12/16/2022]
Abstract
Clonal expansion is a core aspect of T cell immunity. However, little is known with respect to the relationship between replicative history and the formation of distinct CD8+ memory T cell subgroups. To address this issue, we developed a genetic-tracing approach, termed the DivisionRecorder, that reports the extent of past proliferation of cell pools in vivo. Using this system to genetically ‘record’ the replicative history of different CD8+ T cell populations throughout a pathogen-specific immune response, we demonstrate that the central memory T cell (TCM) pool is marked by a higher number of prior divisions than the effector memory T cell pool, due to the combination of strong proliferative activity during the acute immune response and selective proliferative activity after pathogen clearance. Furthermore, by combining DivisionRecorder analysis with single cell transcriptomics and functional experiments, we show that replicative history identifies distinct cell pools within the TCM compartment. Specifically, we demonstrate that lowly divided TCM display enriched expression of stem-cell-associated genes, exist in a relatively quiescent state, and are superior in eliciting a proliferative recall response upon activation. These data provide the first evidence that a stem cell like memory T cell pool that reconstitutes the CD8+ T cell effector pool upon reinfection is marked by prior quiescence.
Collapse
|
12
|
Stempels F, de Wit A, Swierstra M, Maassen S, Bianchi F, van den Bogaart G, Baranov M. A sensitive and less cytotoxic assay for identification of proliferating T cells based on bioorthogonally-functionalized uridine analogue. J Immunol Methods 2022; 502:113228. [DOI: 10.1016/j.jim.2022.113228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/09/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
|
13
|
Lemieszek MB, Findlay SD, Siegers GM. CellTrace™ Violet Flow Cytometric Assay to Assess Cell Proliferation. Methods Mol Biol 2022; 2508:101-114. [PMID: 35737236 DOI: 10.1007/978-1-0716-2376-3_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CellTrace™ Violet (CTV) is a powerful tool for tracking cell proliferation by permanently binding cellular proteins and rendering the cell fluorescent. After cell division, each daughter cell contains half of the parent cell's fluorescence, enabling quantification of proliferation via flow cytometry. This method enables monitoring of several generations of cell division and tracking of different cell populations in co-culture. Here we describe the use of CellTrace™ Violet in different cell types, and we share important observations we made during protocol optimization.
Collapse
Affiliation(s)
- Marina B Lemieszek
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
| | - Scott D Findlay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
14
|
Ooi SK, Jiang H, Kang Y, Allard P. Examining the Developmental Trajectory of an in Vitro Model of Mouse Primordial Germ Cells following Exposure to Environmentally Relevant Bisphenol A Levels. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97013. [PMID: 34585602 PMCID: PMC8480152 DOI: 10.1289/ehp8196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Animal-based studies indicate that bisphenol A (BPA) exposure is detrimental to reproductive health, but its impact on the earliest stages of germ cell development remains poorly defined. OBJECTIVES Using a murine in vitro model of early germ cell specification and differentiation, we sought to assess whether exposure to low levels of BPA prior to formation of primordial germ cells (PGCs) alters their differentiation trajectory and unique molecular program. METHODS We used an established method of in vitro differentiation of mouse embryonic stem cells (ESCs) into epiblast-like cells (EpiLCs) followed by PGC-like cells (PGCLCs), which together recapitulate defined stages of early germ cell development. Cellular consequences were determined using hemocytometer-based cell counting, fixation, and intracellular staining, followed by flow cytometry/fluorescence-activated cell sorting (FACS) of cells exposed to increasing concentrations (range: 1 nM-10 μM) of BPA. To interrogate and characterize gene expression differences resulting from BPA exposure, we also generated RNA-seq libraries from RNA extracted from FACS-purified PGCLCs and performed transcriptome analysis using bioinformatics-based approaches. RESULTS Exposure of EpiLCs to BPA resulted in higher numbers of cells that were associated with a higher proportion of cells in S-phase as well as a lower proportion undergoing apoptosis; this difference occurred in a concentration-dependent manner. Exposure also resulted in a greater fraction of EpiLCs showing signs of DNA damage. Remarkably, EpiLC exposure did not negatively affect PGC specification and resulted in a concentration-dependent effect on PGCLC proliferation in XX but not XY cells. PGCLC transcriptome analysis revealed an aberrant program with significant deregulation of X-linked genes and retrotransposon expression. Differential gene expression analysis also revealed the deregulation of genes associated with lipid metabolism as well as deregulated expression of genes associated with later stages of gametogenesis. CONCLUSIONS To the best of our knowledge our findings represent the first characterization of the consequences of early BPA exposure on a model of mammalian PGC development, highlighting altered cell behavior, altered underlying pathways, and altered molecular processes. https://doi.org/10.1289/EHP8196.
Collapse
Affiliation(s)
- Steen K.T. Ooi
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Hui Jiang
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Yanyuan Kang
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Patrick Allard
- UCLA Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
15
|
Okunuki Y, Tabor SJ, Lee MY, Connor KM. CD47 Deficiency Ameliorates Ocular Autoimmune Inflammation. Front Immunol 2021; 12:680568. [PMID: 34093583 PMCID: PMC8174453 DOI: 10.3389/fimmu.2021.680568] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune uveitis is a sight-threatening ocular inflammatory condition in which the retina and uveal tissues become a target of autoreactive immune cells. The CD47 is a ubiquitously expressed transmembrane protein which plays multiple roles in fundamental cellular functions including phagocytosis, proliferation, and adhesion. Signal regulatory protein alpha (SIRPα), one of the CD47 ligands, is predominantly expressed in myeloid lineage cells such as dendritic cells (DCs) or macrophages, and CD47-SIRPα signaling pathway is implicated in the development of autoimmune diseases. Our current study demonstrates how CD47 depletion is effective in the prevention of experimental autoimmune uveitis (EAU), an animal model of human autoimmune uveitis, in animals deficient of CD47 (CD47-/- ). Systemic suppression of SIRPα+ DCs in animals deficient in CD47 resulted in the inability of autoreactive CD4+ T cells to develop, which is crucial to induction of EAU. Of interest, retinal microglia, the resident immune cell of the retina, express SIRPα, however these cells were not operative in EAU suppression in response to CD47 depletion. These results identify CD47 as a significant regulator in the development of SIRPα+ DCs that is vital to disease induction in EAU.
Collapse
Affiliation(s)
| | | | | | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
J Lacy K, Parlane NA, Riley CB, Gee EK, Roberts JM, McIlwraith CW. CellTrace Violet™ inhibits equine lymphocyte proliferation. Vet Immunol Immunopathol 2020; 223:110037. [PMID: 32229340 DOI: 10.1016/j.vetimm.2020.110037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 01/23/2023]
Abstract
CellTrace Violet™ is a commonly used fluorescent dye used with flow cytometry to identify cell proliferation. Activated equine lymphocytes were examined using flow cytometry, microscopy and tritiated thymidine proliferation assays. CellTrace Violet™ was incorporated into the equine lymphocytes effectively. Equine lymphocytes proliferated when activated with pokeweed mitogen, but did not proliferate when previously stained with CellTrace Violet™. Serial dilutions of CellTrace Violet™ did not eliminate the inhibition of activated lymphocytes. Equine lymphocyte viability was greater than 90 % for both stained and unstained cells. Based on these data, CellTrace Violet™ is not recommended for the assessment of lymphocyte proliferation in equine cells. The mechanism of inhibition of equine lymphocyte proliferation by CellTrace Violet™ is unknown.
Collapse
Affiliation(s)
- Kamm J Lacy
- Massey University, Tennent Drive, Palmerston North, 4474, New Zealand.
| | - Natalie A Parlane
- AgResearch, University and Library Rd, Massey University, Palmerston North, 4472, New Zealand
| | | | - Erica K Gee
- Massey University, Tennent Drive, Palmerston North, 4474, New Zealand
| | - Joanna M Roberts
- Flowjoanna Tapui Ltd, 429 No 1 Line, Palmerston North, 4475, New Zealand
| | - C Wayne McIlwraith
- Colorado State University Veterinary Teaching Hospital, 300 W Drake Rd Fort Collins, CO, 80523, USA
| |
Collapse
|
17
|
Chen Y, Aslanoglou S, Gervinskas G, Abdelmaksoud H, Voelcker NH, Elnathan R. Cellular Deformations Induced by Conical Silicon Nanowire Arrays Facilitate Gene Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904819. [PMID: 31599099 DOI: 10.1002/smll.201904819] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Engineered cell-nanostructured interfaces generated by vertically aligned silicon nanowire (SiNW) arrays have become a promising platform for orchestrating cell behavior, function, and fate. However, the underlying mechanism in SiNW-mediated intracellular access and delivery is still poorly understood. This study demonstrates the development of a gene delivery platform based on conical SiNW arrays for mechanical cell transfection, assisted by centrifugal force, for both adherent and nonadherent cells in vitro. Cells form focal adhesions on SiNWs within 6 h, and maintain high viability and motility. Such a functional and dynamic cell-SiNW interface features conformational changes in the plasma membrane and in some cases the nucleus, promoting both direct penetration and endocytosis; this synergistically facilitates SiNW-mediated delivery of nucleic acids into immortalized cell lines, and into difficult-to-transfect primary immune T cells without pre-activation. Moreover, transfected cells retrieved from SiNWs retain the capacity to proliferate-crucial to future biomedical applications. The results indicate that SiNW-mediated intracellular delivery holds great promise for developing increasingly sophisticated investigative and therapeutic tools.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Stella Aslanoglou
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
| | - Gediminas Gervinskas
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, 15 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Hazem Abdelmaksoud
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, 3168, Australia
- INM-Leibniz Institute for New Materials, Campus D2 2, Saarbrücken, 66123, Germany
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| |
Collapse
|
18
|
Ma CS, Tangye SG. Flow Cytometric-Based Analysis of Defects in Lymphocyte Differentiation and Function Due to Inborn Errors of Immunity. Front Immunol 2019; 10:2108. [PMID: 31552044 PMCID: PMC6737833 DOI: 10.3389/fimmu.2019.02108] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/21/2019] [Indexed: 12/13/2022] Open
Abstract
The advent of flow cytometry has revolutionized the way we approach our research and answer specific scientific questions. The flow cytometer has also become a mainstream diagnostic tool in most hospital and pathology laboratories around the world. In particular the application of flow cytometry has been instrumental to the diagnosis of primary immunodeficiencies (PIDs) that result from monogenic mutations in key genes of the hematopoietic, and occasionally non-hematopoietic, systems. The far-reaching applicability of flow cytometry is in part due to the remarkable sensitivity, down to the single-cell level, of flow-based assays and the extremely user-friendly platforms that enable comprehensive analysis, data interpretation, and importantly, robust and rapid methods for diagnosing PIDs. A prime example is the absence of peripheral blood B cells in patients with agammaglobulinemia due to mutations in BTK or related genes in the BCR signaling pathway. Similarly, the development of intracellular staining protocols to detect expression of SAP, XIAP, or DOCK8 expedites the rapid diagnosis of the X-linked lymphoproliferative diseases or an autosomal recessive form of hyper-IgE syndrome (HIES), respectively. It has also become evident that distinct cohorts of PID patients exhibit unique “lymphocyte phenotypic signatures” that are often diagnostic even prior to identifying the genetic lesion. Flow cytometry-based sorting provides a technique for separating specific subsets of immune cells such that they can be studied in isolation. Thus, flow-based assays can be utilized to measure immune cell function in patients with PIDs, such as degranulation by cytotoxic cells, cytokine expression by many immune cells (i.e., CD4+ and CD8+ T cells, macrophages etc.), B-cell differentiation, and phagocyte respiratory burst in vitro. These assays can also be performed using unfractionated PBMCs, provided the caveat that the composition of lymphocytes between healthy donors and the PID patients under investigation is recognized. These functional deficits can assist not only in the clinical diagnosis of PIDs, but also reveal mechanisms of disease pathogenesis. As we move into the next generation of multiparameter flow cytometers, here we review some of our experiences in the use of flow cytometry in the study, diagnosis, and unraveling the pathophysiology of PIDs.
Collapse
Affiliation(s)
- Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Clincial Immunogenomics Research Consortium Australia, Darlinghurst, NSW, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St. Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.,Clincial Immunogenomics Research Consortium Australia, Darlinghurst, NSW, Australia
| |
Collapse
|