1
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Costa-Barbosa A, Pacheco MI, Carneiro C, Botelho C, Gomes AC, Real Oliveira MECD, Collins T, Vilanova M, Pais C, Correia A, Sampaio P. Design of a lipid nano-delivery system containing recombinant Candida albicans chitinase 3 as a potential vaccine against fungal infections. Biomed Pharmacother 2023; 166:115362. [PMID: 37633051 DOI: 10.1016/j.biopha.2023.115362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023] Open
Abstract
Opportunistic fungi cause lethal systemic infections and impose high medical costs to health systems. The World Health Organization has recognized the importance of fungal infections, including them in its global priority list guiding research, development, and discovery of new therapeutic approaches. Fungal vaccine development has been proposed as one of the treatment and prevention strategies in the last decade. In this study, we present the design of a lipid antigen delivery system based on Dioctadecyldimethylammonium bromide: Monoolein (DODAB: MO) containing recombinant Candida albicans Chitinase 3 (Cht3) for modulation the immune response against fungal infections. Several DODAB:MO liposomes containing Cht3 were prepared and those prepared by the incubation method and containing 5 µg/mL Cht3 were selected due to their favorable size, ζ-potential and stability, suited for antigen delivery applications. The encapsulation of Cht3 in these liposomes resulted in a significant increase in cellular uptake compared to empty liposomes, demonstrating their efficacy in delivering the antigen. Moreover, the liposomes proved to be safe for use in immunization procedures. Subcutaneous administration of Cht3 liposomes elicited a Th1/Th17 immune response profile, associated with the production of high levels of antibodies against Cht3. These antibodies recognized both the native and the recombinant forms of the protein, opsonizing mother-yeast at the cell scars, which has the potential to disrupt cell separation and hinder yeast growth. The findings suggest that the designed lipid antigen delivery system shows promise as a potential candidate for enhancing immune responses against fungal infections, offering a valuable strategy for future fungal vaccine development.
Collapse
Affiliation(s)
- Augusto Costa-Barbosa
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Inês Pacheco
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Catarina Carneiro
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cláudia Botelho
- Centre of Biological Engineering (CEB), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Elisabete C D Real Oliveira
- CF-UM-UP - Centro de Física das Universidades do Minho e Porto, Departamento de Física da Universidade do Minho, 4710-057 Braga, Portugal
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuel Vilanova
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Alexandra Correia
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute of Science and Innovation for Sustainability (IB-S), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
Correia A, Alves P, Fróis-Martins R, Teixeira L, Vilanova M. Protective Effect against Neosporosis Induced by Intranasal Immunization with Neospora caninum Membrane Antigens Plus Carbomer-Based Adjuvant. Vaccines (Basel) 2022; 10:vaccines10060925. [PMID: 35746533 PMCID: PMC9230871 DOI: 10.3390/vaccines10060925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Neospora caninum is an obligate intracellular protozoan responsible for abortion and stillbirths in cattle. We previously developed a mucosal vaccination approach using N. caninum membrane proteins and CpG adjuvant that conferred long-term protection against neosporosis in mice. Here, we have extended this approach by alternatively using the carbomer-based adjuvant Carbigen™ in the immunizing preparation. Immunized mice presented higher proportions and numbers of memory CD4+ and CD8+ T cells. Stimulation of spleen, lungs and liver leukocytes with parasite antigens induced a marked production of IFN-γ and IL-17A and, less markedly, IL-4. This balanced response was also evident in that both parasite-specific IgG1 and IgG2c were raised by immunization, together with specific intestinal IgA. Upon intraperitoneal infection with N. caninum, immunized mice presented lower parasitic burdens than sham-immunized controls. In the infected immunized mice, memory CD4+ T cells predominantly expressed T-bet and RORγt, and CD8+ T cells expressing T-bet were found increased. While spleen, lungs and liver leukocytes of both immunized and sham-immunized infected animals produced high amounts of IFN-γ, only the cells from immunized mice responded with high IL-17A production. Since in cattle both IFN-γ and IL-17A have been associated with protective mechanisms against N. caninum infection, the elicited cytokine profile obtained using CarbigenTM as adjuvant indicates that it could be worth exploring for bovine neosporosis vaccination.
Collapse
Affiliation(s)
- Alexandra Correia
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Pedro Alves
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland;
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luzia Teixeira
- UMIB—Unidade Multidisciplinar de Investigação Biomédica, ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 4050-313 Porto, Portugal;
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-290 Porto, Portugal
| | - Manuel Vilanova
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 4050-313 Porto, Portugal; (A.C.); (P.A.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
4
|
Débare H, Moiré N, Ducournau C, Schmidt J, Laakmann JD, Schwarz RT, Dimier-Poisson I, Debierre-Grockiego F. Neospora caninum glycosylphosphatidylinositols used as adjuvants modulate cellular immune responses induced in vitro by a nanoparticle-based vaccine. Cytokine 2021; 144:155575. [PMID: 34000479 DOI: 10.1016/j.cyto.2021.155575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/15/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022]
Abstract
Neospora caninum causes abortion in ruminants, leading to important economic losses and no efficient treatment or vaccine against neosporosis is available. Considering the complexity of the strategies developed by intracellular apicomplexan parasites to escape immune system, future vaccine formulations should associate the largest panel of antigens and adjuvants able to better stimulate immune responses than natural infection. A mucosal vaccine, constituted of di-palmitoyl phosphatidyl glycerol-loaded nanoparticles (DGNP) and total extract (TE) of soluble antigens of Toxoplasma gondii, has demonstrated its efficacy, decreasing drastically the parasite burden. Here, DGNP were loaded with N. caninum TE and glycosylphosphatidylinositol (GPI) of N. caninum as Toll-like receptor (TLR) adjuvant able to induce specific cellular and humoral immune responses. Activation of TLR2 and TLR4 signalling pathway in HEK reporter cells induced by GPI was abrogated after its incorporation into DGNP. However, in murine bone marrow-derived dendritic cells, an adjuvant effect of GPI was observed with higher levels of interleukin (IL)-1β, reduced levels of IL-6, IL-12p40 and IL-10, and decreased expression of major histocompatibility complex (MHC) molecules. GPI also modulated the responses of bovine peripheral blood mononuclear cells, by increasing the production of IFN-γ and by decreasing the expression of MHC molecules. Altogether, these results suggest that GPI delivered by the DGNP might modulate cell responses through the activation of an intracellular pathway of signalisation in a TLR-independent manner. In vivo experiments are needed to confirm the potent adjuvant properties of N. caninum GPI in a vaccine strategy against neosporosis.
Collapse
Affiliation(s)
| | | | | | - Jörg Schmidt
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Jan-David Laakmann
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Ralph T Schwarz
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043 Marburg, Germany; Univ. Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d'Ascq, France
| | | | | |
Collapse
|
5
|
Cabral MP, Correia A, Vilanova M, Gärtner F, Moscoso M, García P, Vallejo JA, Pérez A, Francisco-Tomé M, Fuentes-Valverde V, Bou G. A live auxotrophic vaccine confers mucosal immunity and protection against lethal pneumonia caused by Pseudomonas aeruginosa. PLoS Pathog 2020; 16:e1008311. [PMID: 32040500 PMCID: PMC7034913 DOI: 10.1371/journal.ppat.1008311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 02/21/2020] [Accepted: 01/06/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is one of the leading causes of nosocomial pneumonia and its associated mortality. Moreover, extensively drug-resistant high-risk clones are globally widespread, presenting a major challenge to the healthcare systems. Despite this, no vaccine is available against this high-concerning pathogen. Here we tested immunogenicity and protective efficacy of an experimental live vaccine against P. aeruginosa pneumonia, consisting of an auxotrophic strain which lacks the key enzyme involved in D-glutamate biosynthesis, a structural component of the bacterial cell wall. As the amounts of free D-glutamate in vivo are trace substances in most cases, blockage of the cell wall synthesis occurs, compromising the growth of this strain, but not its immunogenic properties. Indeed, when delivered intranasally, this vaccine stimulated production of systemic and mucosal antibodies, induced effector memory, central memory and IL-17A-producing CD4+ T cells, and recruited neutrophils and mononuclear phagocytes into the airway mucosa. A significant improvement in mice survival after lung infection caused by ExoU-producing PAO1 and PA14 strains was observed. Nearly one third of the mice infected with the XDR high-risk clone ST235 were also protected. These findings highlight the potential of this vaccine for the control of acute pneumonia caused by this bacterial pathogen. Pseudomonas aeruginosa is an opportunistic bacterium and one of the most common causes of healthcare-associated diseases, including acute pneumonia, causing high mortality within immunocompromised hosts. Most of these infections are strikingly difficult to treat using conventional antibiotic therapies, since this microorganism displays high intrinsic resistance to a wide range of antibiotics. Moreover, to date, no vaccine is available for prevention. Here we used a mutated bacterial strain, which is unable to replicate in vivo and to cause disease, as a live vaccine against acute pneumonia caused by this pathogen. When applied intranasally, this vaccine induced immunity both at local and distant body sites, activating immune cells which were recruited into the airway mucosa. This evoked immune response reduced the number of non-surviving mice after infection with two cytotoxic P. aeruginosa strains causing acute lung infection. Some protection was also observed against an internationally disseminated cytotoxic strain. These data indicate that this is a promising vaccine candidate against P. aeruginosa-pneumonia.
Collapse
Affiliation(s)
- Maria P. Cabral
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Alexandra Correia
- i3S –Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Manuel Vilanova
- i3S –Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Fátima Gärtner
- i3S –Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Miriam Moscoso
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Patricia García
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Juan A. Vallejo
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Astrid Pérez
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Mónica Francisco-Tomé
- Department of Microbiology, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - Víctor Fuentes-Valverde
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
| | - Germán Bou
- Department of Microbiology, University Hospital A Coruña (CHUAC)–Biomedical Research Institute A Coruña (INIBIC), A Coruña, Spain
- * E-mail:
| |
Collapse
|
6
|
Débare H, Schmidt J, Moiré N, Ducournau C, Acosta Paguay YD, Schwarz RT, Dimier-Poisson I, Debierre-Grockiego F. In vitro cellular responses to Neospora caninum glycosylphosphatidylinositols depend on the host origin of antigen presenting cells. Cytokine 2019; 119:119-128. [PMID: 30909148 DOI: 10.1016/j.cyto.2019.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 01/12/2023]
Abstract
Neosporosis due to Neospora caninum causes abortions in farm animals such as cattle. No treatment and vaccine exist to fight this disease, responsible for considerable economic losses. It is thus important to better understand the immune responses occurring during the pathogenesis to control them in a global strategy against the parasite. In this context, we studied the roles of N. caninum glycosylphosphatidylinositols (GPIs), glycolipids defined as toxins in the related parasite Plasmodium falciparum. We demonstrated for the first time that GPIs could be excreted in the supernatant of N. caninum culture and trigger cell signalling through the Toll-like receptors 2 and 4. In addition, antibodies specific to N. caninum GPIs were detected in the serum of infected mice. As shown for other protozoan diseases, they could play a role in neutralizing GPIs. N. caninum GPIs were able to induce the production of tumour necrosis factor-α, interleukin(IL)-1β and IL-12 cytokines by murine macrophages and dendritic cells. Furthermore, GPIs significantly reduced expression of major histocompatibility complex (MHC) molecules of class I on murine dendritic cells. In contrast to murine cells, bovine blood mononuclear cells produced increased levels of IFN-γ and IL-10, but reduced levels of IL-12p40 in response to GPIs. On these bovine cells, GPI had the tendency to up-regulate MHC class I, but to down-regulate MHC class II. Altogether, these results suggest that N. caninum GPIs might differentially participate in the responses of antigen presenting cells induced by the whole parasite in mouse models of neosporosis and in the natural cattle host.
Collapse
Affiliation(s)
| | - Jörg Schmidt
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043 Marburg, Germany
| | | | | | - Yoshuá D Acosta Paguay
- Laboratorio de Virología-inmunología de la carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, 171103 Sangolquí, Ecuador
| | - Ralph T Schwarz
- Institut für Virologie, AG Parasitologie, Philipps-Universität Marburg, 35043 Marburg, Germany; Univ. Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, 59655 Villeneuve d'Ascq, France
| | | | | |
Collapse
|
7
|
Fereig RM, Shimoda N, Abdelbaky HH, Kuroda Y, Nishikawa Y. Neospora GRA6 possesses immune-stimulating activity and confers efficient protection against Neospora caninum infection in mice. Vet Parasitol 2019; 267:61-68. [PMID: 30878088 DOI: 10.1016/j.vetpar.2019.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/06/2019] [Accepted: 02/09/2019] [Indexed: 10/27/2022]
Abstract
Vaccination has the potential to be the most cost-effective control measure for reducing the economic burden of neosporosis in cattle. In this study, the immune-stimulatory effect of recombinant Neospora caninum dense granule protein 6 (NcGRA6) was confirmed via its triggering of IL-12p40 production in murine macrophages. BALB/c mice were immunized with recombinant NcGRA6 fused with glutathione S-transferase (GST) protein with or without oligomannose-coated-liposomes (OMLs) as the potential adjuvant. Specific IgG1 antibody production was observed from 21 and 35 days after the first immunization in NcGRA6+GST- and NcGRA6+GST-OML-immunized mice, respectively. However, specific IgG2a was detected 1 week after the infection, and IgG2a levels of the NcGRA6+GST- group were higher than those of the NcGRA6+GST-OML-group. Moreover, spleen cell proliferation with concomitant interferon-gamma production was detected in mice immunized with NcGRA6+GST, indicating that a significant cellular immune response was induced. Mouse survival rates against N. caninum challenge infection were 91.7% for NcGRA6+GST and 83.3% for NcGRA6+GST-OML, which were significantly higher than those of control groups (GST-OML: 25%, phosphate-buffered saline: 16.7%). This indicates that naked NcGRA6+GST induced protective immunity. Thus, our findings highlight the immune-stimulating potential of NcGRA6 and the ability to induce protective immunity against N. caninum infection in mice.
Collapse
Affiliation(s)
- Ragab M Fereig
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Hanan H Abdelbaky
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Yasuhiro Kuroda
- Department of Applied Biochemistry, Tokai University, Kita-kaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
8
|
Shukla G, Kamboj S, Sharma B. Comparative Analysis of Antigiardial Potential of Heat Inactivated and Probiotic Protein of Probiotic Lactobacillus rhamnosus GG in Murine Giardiasis. Probiotics Antimicrob Proteins 2019; 12:271-279. [DOI: 10.1007/s12602-018-9506-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Interferon-γ-dependent protection against Neospora caninum infection conferred by mucosal immunization in IL-12/IL-23 p40-deficient mice. Vaccine 2018; 36:4890-4896. [DOI: 10.1016/j.vaccine.2018.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/17/2018] [Accepted: 06/27/2018] [Indexed: 01/09/2023]
|
10
|
Aguado-Martínez A, Basto AP, Leitão A, Hemphill A. Neospora caninum in non-pregnant and pregnant mouse models: cross-talk between infection and immunity. Int J Parasitol 2017; 47:723-735. [DOI: 10.1016/j.ijpara.2017.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 12/14/2022]
|
11
|
Ferreirinha P, Correia A, Teixeira-Coelho M, Osório H, Teixeira L, Rocha A, Vilanova M. Mucosal immunization confers long-term protection against intragastrically established Neospora caninum infection. Vaccine 2016; 34:6250-6258. [PMID: 27814932 DOI: 10.1016/j.vaccine.2016.10.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/07/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022]
Abstract
Neospora caninum is an obligate intracellular protozoan parasite responsible for heavy economic losses in dairy and beef cattle farms worldwide. Although vaccination is widely regarded as the preferable strategy to prevent neosporosis no commercial vaccine is currently available. We have previously shown that intranasal immunization with an N. caninum antigen extract enriched in hydrophobic proteins plus CpG adjuvant protected mice against intragastrically established neosporosis. Nevertheless, the antigen specificity as well as the long-term protective effect of this immunization strategy were not determined. Here, we show that the protective effect of this intranasal immunization procedure lasted for at least 20weeks. Protection was accompanied by long-lasting elevated levels of parasite-specific serum IgG and intestinal IgA. Moreover, spleen and mesenteric lymph node cells obtained from non-infected long-term immunized mice responded by producing interferon-γ following in vitro parasite-antigen recall. Analysis of serum IgG and intestinal IgA antibody reactivity in immunized mice identified dense granule antigen 7 (NcGRA7) and microneme associated protein 1 (NcMIC1) as immunodominant antigens respectively recognized by those antibody fractions. In summary, this work shows that a previously reported mucosal immunization strategy against N. caninum infection established through the gastrointestinal tract is effective in the long term.
Collapse
Affiliation(s)
- Pedro Ferreirinha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Correia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Maria Teixeira-Coelho
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Hugo Osório
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Luzia Teixeira
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal; UMIB - Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Portugal
| | - António Rocha
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal
| | - Manuel Vilanova
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313 Porto, Portugal.
| |
Collapse
|
12
|
Carneiro C, Correia A, Lima T, Vilanova M, Pais C, Gomes AC, Real Oliveira MEC, Sampaio P. Protective effect of antigen delivery using monoolein-based liposomes in experimental hematogenously disseminated candidiasis. Acta Biomater 2016; 39:133-145. [PMID: 27150234 DOI: 10.1016/j.actbio.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/22/2016] [Accepted: 05/01/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED We evaluated the potential of a liposomal antigen delivery system (ADS) containing Candida albicans cell wall surface proteins (CWSP) in mediating protection against systemic candidiasis. Treatment of bone-marrow-derived dendritic cells with CWSP-loaded dioctadecyldimethylammonium bromide:monoolein (DODAB:MO) liposomes enhanced and prolonged their activation comparatively to free antigen, indicating that liposome-entrapped CWSP were released more sustainable. Therefore, we immunized mice with CWSP either in a free form or loaded into two different DODAB:MO liposome formulations, respectively designated as ADS1 and ADS2, prior to intravenous C. albicans infection. Immunization with ADS1, but not with ADS2, conferred significant protection to infected mice, comparatively to immunization with CWSP or empty liposomes as control. ADS1-immunized mice presented significantly higher serum levels of C. albicans-specific antibodies that enhanced phagocytosis of this fungus. In these mice, a mixed cytokine production profile was observed encompassing IFN-γ, IL-4, IL-17A and IL-10. Nevertheless, only production of IL-4, IL-17 and IL-10 was higher than in controls. In this study we demonstrated that DODAB:MO liposomes enhance the immunogenicity of C. albicans antigens and host protection in a murine model of systemic candidiasis. Therefore, this liposomal adjuvant could be a promising candidate to assess in vaccination against this pathogenic fungus. STATEMENT OF SIGNIFICANCE This work describes the immunomodulation capacity of the previously validated antigen delivery system (ADS) composed by dioctadecyldimethylammonium bromide (DODAB) and monoolein (MO) lipids incorporating the cell wall surface proteins (CWSP) from C. albicans. Here, we not only present the ability of this system in facilitating antigen uptake by DCs in vitro, but also that this system induces higher levels of pro-inflammatory cytokines and opsonizing specific IgG antibodies in serum of mice immunized subcutaneously. We show that the ADS are efficient nanocarrier and modulate the immune response against intravenous C. albicans infection favoring mouse protection. In sum, we show that the incorporation of C. albicans antigens in DODAB:MO nanocarries are a promising vaccine strategy against C. albicans fungal infection.
Collapse
|
13
|
Carneiro C, Correia A, Collins T, Vilanova M, Pais C, Gomes AC, Real Oliveira MEC, Sampaio P. DODAB:monoolein liposomes containing Candida albicans cell wall surface proteins: A novel adjuvant and delivery system. Eur J Pharm Biopharm 2015; 89:190-200. [DOI: 10.1016/j.ejpb.2014.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 11/26/2022]
|
14
|
Goodswen SJ, Kennedy PJ, Ellis JT. Discovering a vaccine against neosporosis using computers: is it feasible? Trends Parasitol 2014; 30:401-11. [PMID: 25028089 DOI: 10.1016/j.pt.2014.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/31/2022]
Abstract
A vaccine is urgently needed to prevent cattle neosporosis. This infectious disease is caused by the parasite Neospora caninum, a complex biological system with multifaceted life cycles. An in silico vaccine discovery approach attempts to transform digital abstractions of this system into adequate knowledge to predict candidates. Researchers need current information to implement such an approach, such as understanding evasion mechanisms of the immune system, type of immune response to elicit, availability of data and prediction programs, and statistical models to analyze predictions. Taken together, an in silico approach involves assembly of an intricate jigsaw of interdisciplinary and interdependent knowledge. In this review, we focus on the approach influencing vaccine development against Neospora caninum, which can be generalized to other pathogenic apicomplexans.
Collapse
Affiliation(s)
- Stephen J Goodswen
- School of Medical and Molecular Biosciences at the University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Paul J Kennedy
- School of Software, Faculty of Engineering and Information Technology and the Centre for Quantum Computation and Intelligent Systems at the University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - John T Ellis
- School of Medical and Molecular Biosciences at the University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia.
| |
Collapse
|