1
|
Chen Y. Identification and Validation of Cuproptosis-Related Prognostic Signature and Associated Regulatory Axis in Uterine Corpus Endometrial Carcinoma. Front Genet 2022; 13:912037. [PMID: 35937995 PMCID: PMC9353190 DOI: 10.3389/fgene.2022.912037] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/13/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Uterine corpus endometrial carcinoma (UCEC) is a common gynecological malignancy globally with high recurrence and mortality rates. Cuproptosis is a new type of programmed cell death involved in tumor cell proliferation and growth, angiogenesis, and metastasis.Methods: The difference in cuproptosis-related genes (CRGs) between UCEC tissues and normal tissues deposited in The Cancer Genome Atlas database was calculated using the “limma” R package. LASSO Cox regression analysis was conducted to construct a prognostic cuproptosis–related signature. Kaplan–Meier analysis was conducted to compare the survival of UCEC patients. A ceRNA network was constructed to identify the lncRNA–miRNA–mRNA regulatory axis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was performed to verify CRG expression in UCEC.Results: The expression of FDX1, LIAS, DLAT, and CDKN2A were upregulated, whereas the expression of LIPT1, DLD, PDHB, MTF1, and GLS were downregulated in UCEC versus normal tissues. The genetic mutation landscape of CRGs in UCEC was also summarized. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these CRGs were enriched in the tricarboxylic acid (TCA) cycle, glycolysis, and HIF-1 signaling pathway. LASSO Cox regression analysis was performed and identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1). UCEC patients with high risk scores had a poor prognosis with an area under the curve of 0.782 and 0.764 on 3- and 5-year receiver operating characteristic curves. Further analysis demonstrated a significant correlation between CDKN2A and pTNM stage, tumor grade, immune cell infiltration, drug sensitivity, tumor mutational burden (TMB) score, and microsatellite instable (MSI) score. The data validation of qRT-PCR further demonstrated the upregulation of CDKN2A and the downregulation of LIPT1 and GLS in UCEC versus normal tissues. The ceRNA network also identified lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis for UCEC.Conclusion: The current study identified a cuproptosis-related prognostic signature including these three prognostic biomarkers (CDKN2A, GLS, and LIPT1) for UCEC. The ceRNA network also identified that lncRNA XIST/miR-125a-5p/CDKN2A regulatory axis may be involved in the progression of UCEC. Further in vivo and in vitro studies should be conducted to verify these results.
Collapse
|
2
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
3
|
Shah F, Patel S, Begum R, Dwivedi M. Emerging role of Tissue Resident Memory T cells in vitiligo: From pathogenesis to therapeutics. Autoimmun Rev 2021; 20:102868. [PMID: 34118458 DOI: 10.1016/j.autrev.2021.102868] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Vitiligo is an acquired depigmenting disorder which affects both skin and mucous membranes and autoimmunity has been strongly suggested to play a role in loss of melanocytes. The recurrence of skin macules at the same sites where they were observed prior to the treatment, suggests the existence of Tissue Resident Memory T cells (TRMs) that persist within the skin or peripheral tissues with a longer survivability. Emerging studies have shown that reactivation of these skin TRMs results into autoreactive TRM cells in various autoimmune diseases including vitiligo. This review focuses on different subsets (CD8+ TRMs and CD4+ TRMs) of TRM cells, their retention and survivability in the skin along with their pathomechanisms leading to melanocyte death and progression of vitiligo. In addition, the review describes the TRM cells as potential targets for developing effective therapeutics of vitiligo.
Collapse
Affiliation(s)
- Firdosh Shah
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat 394350, Gujarat, India
| | - Shivani Patel
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat 394350, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, Gujarat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat 394350, Gujarat, India.
| |
Collapse
|
4
|
Wu H, Tang X, Kim HJ, Jalali S, Pritchett JC, Villasboas JC, Novak AJ, Yang ZZ, Ansell SM. Expression of KLRG1 and CD127 defines distinct CD8 + subsets that differentially impact patient outcome in follicular lymphoma. J Immunother Cancer 2021; 9:jitc-2021-002662. [PMID: 34226281 PMCID: PMC8258669 DOI: 10.1136/jitc-2021-002662] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 11/15/2022] Open
Abstract
Background CD8+ T-lymphocyte subsets defined by killer lectin-like receptor G1 (KLRG1) and CD127 expression have been reported to have an important role in infection, but their role in the setting of lymphoid malignancies, specifically follicular lymphoma (FL), has not been studied. Methods To characterize the phenotype of KLRG1/CD127-defined CD8+ subsets, surface and intracellular markers were measured by flow cytometry and Cytometry by time of flight (CyTOF), and the transcriptional profile of these cells was determined by CITE-Seq (Cellular Indexing of Transcriptomes and Epitopes by Sequencing). The functional capacity of each subset was determined, as was their impact on overall survival (OS) and event-free survival (EFS) of patients with FL. Results We found that intratumoral CD8+ cells in FL are skewed toward effector cell subsets, particularly KLRG+CD127- and KLRG1-CD127- cells over memory cell subsets, such as KLRG1-CD127+ and KLRG1+CD127+ cells. While effector subsets exhibited increased capacity to produce cytokines/granules when compared with memory subsets, their proliferative capacity and viability were found to be substantially inferior. Clinically, a skewed distribution of intratumoral CD8+ T cells favoring effector subtypes was associated with an inferior outcome in patients with FL. Increased numbers of CD127+KLRG1- and CD127+KLRG1+ were significantly associated with a favorable OS and EFS, while CD127-KLRG1- correlated with a poor EFS and OS in patients with FL. Furthermore, we demonstrated that interleukin (IL)-15 promotes CD127-KLRG1+ cell development in the presence of dendritic cells via a phosphoinositide 3-kinase (PI3K)-dependent mechanism, and treatment of CD8+ T cells with a PI3K inhibitor downregulated the transcription factors responsible for CD127-KLRG1+ differentiation. Conclusions Taken together, these results reveal not only a biological and prognostic role for KLRG1/CD127-defined CD8+ subsets in FL but also a potential role for PI3K inhibitors to manipulate the differentiation of CD8+ T cells, thereby promoting a more effective antitumor immune response.
Collapse
Affiliation(s)
- Hongyan Wu
- Department of Immunology, Medical College, China Three Gorges University, Yichang, Hubei, People's Republic of China
| | - Xinyi Tang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hyo Jin Kim
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrzad Jalali
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joshua C Pritchett
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jose C Villasboas
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Anne J Novak
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zhi-Zhang Yang
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology and Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Yang W, Zhang A, Han Y, Su X, Chen Y, Zhao W, Yang K, Jin W. Cyclin-Dependent Kinase Inhibitor 2b Controls Fibrosis and Functional Changes in Ischemia-Induced Heart Failure via the BMI1-p15-Rb Signalling Pathway. Can J Cardiol 2021; 37:655-664. [PMID: 32428618 DOI: 10.1016/j.cjca.2020.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cardiac fibrosis is an important cause of heart failure (HF) after myocardial infarction (MI). Cyclin-dependent kinase inhibitor 2b (CDKN2b) regulates the cell cycle by encoding the p15 protein and participates in the development of various tumours. However, the role of CDKN2b/p15 in cardiac fibrosis and HF after MI remains unclear. METHODS Lentivirus was used to induce the silence and overexpression of CDKN2b. Cardiac function was detected with the use of echocardiography. Immunohistochemistry, immunofluorescence, Western blotting, Cell Counting Kit 8, and wound healing assay were used to illustrate the potential mechanism associated with CDKN2b. RESULTS The p15 protein expression was significantly down-regulated in both human and mouse failing hearts. Cardiac down-regulation of CDKN2b promoted myocardial fibrosis and worsened cardiac function in MI mice, while systemic CDKN2b silencing induced diastolic dysfunction in vivo. In addition, cardiac overexpression of CDKN2b ameliorated cardiac fibrosis and improved cardiac function in MI mice. Mechanistically, silencing CDKN2b gene enhanced the phosphorylation of retinoblastoma (Rb) protein and reinforced the migration and proliferation capabilities of cardiac fibroblasts. B Lymphoma Mo-MLV insertion region 1 homolog (BMI1) was up-regulated in failing heart and inversely regulated the expression of CDKN2b/p15 and the phosphorylation of Rb protein. The BMI1-p15-Rb signalling pathway is a potential mechanism of ischemia-induced cardiac fibrosis and HF. CONCLUSIONS Cardiac fibrosis and heart function could be worsened by the down-regulation and relieved by the up-regulation of CDKN2b/p15 in ischemia-induced HF via regulating the proliferation and migration capabilities of cardiac fibroblasts. These effects could be partially explained by the regulation of the BMI1-p15-Rb signalling pathway.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxin Han
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuxiu Su
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjia Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weilin Zhao
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Yang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Jin
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Saleh R, Sasidharan Nair V, Murshed K, Abu Nada M, Elkord E, Shaheen R. Transcriptome of CD8 + tumor-infiltrating T cells: a link between diabetes and colorectal cancer. Cancer Immunol Immunother 2021; 70:2625-2638. [PMID: 33582867 DOI: 10.1007/s00262-021-02879-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
There is an increased risk of colorectal cancer (CRC) development in patients with non-insulin-dependent type 2 diabetes. CD8+ T cells have been implicated in diabetes and are crucial for anti-tumor immunity. However, transcriptomic profiling for CD8+ T cells from CRC diabetic patients has not been explored. We performed RNA sequencing and compared transcriptomic profiles of CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) in CRC diabetic patients with CRC nondiabetic patients. We found that genes associated with ribogenesis, epigenetic regulations, oxidative phosphorylation and cell cycle arrest were upregulated in CD8+ TILs from diabetic patients, while genes associated with PI3K signaling pathway, cytokine response and response to lipids were downregulated. Among the significantly deregulated 1009 genes, 342 (186 upregulated and 156 downregulated) genes were selected based on their link to diabetes, and their associations with the presence of specific CRC pathological parameters were assessed using GDC TCGA colon database. The 186 upregulated genes were associated with the presence of colon polyps history (P = 0.0007) and lymphatic invasion (P = 0.0025). Moreover, CRC patients with high expression of the 186 genes were more likely to have poorer disease-specific survival (DSS) (Mantel-Cox log-rank P = 0.024) than those with low score. Our data provide novel insights into molecular pathways and biological functions, which could be altered in CD8+ TILs from CRC diabetic versus nondiabetic patients, and reveal candidate genes linked to diabetes, which could predict DSS and pathological parameters associated with CRC progression. However, further investigations using larger patient cohorts and functional studies are required to validate these findings.
Collapse
Affiliation(s)
- Reem Saleh
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Khaled Murshed
- Department of Pathology, Hamad Medical Corporation, Doha, Qatar
| | | | - Eyad Elkord
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK.
| | - Ranad Shaheen
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), P.O. Box: 34110, Doha, Qatar.
| |
Collapse
|
7
|
Foley CL, Al Remeithi SS, Towe CT, Dauber A, Backeljauw PF, Tyzinski L, Kumar AR, Hwa V. Developmental Adaptive Immune Defects Associated with STAT5B Deficiency in Three Young Siblings. J Clin Immunol 2021; 41:136-146. [PMID: 33090292 PMCID: PMC7854992 DOI: 10.1007/s10875-020-00884-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/02/2020] [Indexed: 01/06/2023]
Abstract
Patients with rare homozygous mutations in signal transducer and activator of transcription 5B (STAT5B) develop immunodeficiency resulting in chronic eczema, chronic infections, autoimmunity, and chronic lung disease. STAT5B-deficient patients are typically diagnosed in the teenage years, limiting our understanding of the development of associated phenotypic immune abnormalities. We report the first detailed chronological account of post-natal immune dysfunction associated with STAT5B deficiency in humans. Annual immunophenotyping of three siblings carrying a novel homozygous nonsense mutation in STAT5B was carried out over 4 years between the ages of 7 months to 8 years. All three siblings demonstrated consistent B cell hyperactivity including elevated IgE levels and autoantibody production, associated with diagnoses of atopy and autoimmunity. Total T cell levels in each sibling remained normal, with regulatory T cells decreasing in the oldest sibling. Interestingly, a skewing toward memory T cells was identified, with the greatest changes in CD8+ effector memory T cells. These results suggest an importance of STAT5B in B cell function and naïve versus memory T cell survival. Progressive dysregulation of FOXP3+ regulatory T cells and CD8+ memory T cell subsets reveal a crucial role of STAT5B in T cell homeostasis. The early diagnosis and focused immune evaluations of these three young STAT5B-deficient siblings support an important role of STAT5B in adaptive immune development and function.
Collapse
Affiliation(s)
- Corinne L Foley
- Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sareea S Al Remeithi
- Division of Endocrinology, Department of PediatricsSheikh Khalifa Medical City, Abu Dhabi, UAE
| | - Christopher T Towe
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Department of Pediatrics, George Washington School of Medicine and Health Sciences, Washington, DC, USA
| | - Philippe F Backeljauw
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Tyzinski
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashish R Kumar
- Bone Marrow Transplantation & Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Vivian Hwa
- Cincinnati Center for Growth Disorders, Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Structure-Activity Relationship Analysis of Benzotriazine Analogues as HIV-1 Latency-Reversing Agents. Antimicrob Agents Chemother 2020; 64:AAC.00888-20. [PMID: 32482680 PMCID: PMC7526807 DOI: 10.1128/aac.00888-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
“Shock and kill” therapeutic strategies toward HIV eradication are based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) and the consequent killing of the reactivated cell by either the cytopathic effect of HIV or an arm of the immune system. We have recently found several benzotriazole and benzotriazine analogues that have the ability to reactivate latent HIV by inhibiting signal transducer and activator of transcription 5 (STAT5) SUMOylation and promoting STAT5 binding to the HIV long terminal repeat and increasing its transcriptional activity. “Shock and kill” therapeutic strategies toward HIV eradication are based on the transcriptional activation of latent HIV with a latency-reversing agent (LRA) and the consequent killing of the reactivated cell by either the cytopathic effect of HIV or an arm of the immune system. We have recently found several benzotriazole and benzotriazine analogues that have the ability to reactivate latent HIV by inhibiting signal transducer and activator of transcription 5 (STAT5) SUMOylation and promoting STAT5 binding to the HIV long terminal repeat and increasing its transcriptional activity. To understand the essential structural groups required for biological activity of these molecules, we performed a systematic analysis of >40 analogues. First, we characterized the essential motifs within these molecules that are required for their biological activity. Second, we identified three benzotriazine analogues with similar activity. We demonstrated that these three compounds are able to increase STAT5 phosphorylation and transcriptional activity. All active analogues reactivate latent HIV in a primary cell model of latency and enhance the ability of interleukin-15 to reactivate latent HIV in cells isolated from aviremic participants. Third, this family of compounds also promote immune effector functions in vitro in the absence of toxicity or global immune activation. Finally, initial studies in mice suggest lack of acute toxicity in vivo. A better understanding of the biological activity of these compounds will help in the design of improved LRAs that work via inhibition of STAT5 SUMOylation.
Collapse
|
9
|
Targeting STAT3 and STAT5 in Tumor-Associated Immune Cells to Improve Immunotherapy. Cancers (Basel) 2019; 11:cancers11121832. [PMID: 31766350 PMCID: PMC6966642 DOI: 10.3390/cancers11121832] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Oncogene-induced STAT3-activation is central to tumor progression by promoting cancer cell expression of pro-angiogenic and immunosuppressive factors. STAT3 is also activated in infiltrating immune cells including tumor-associated macrophages (TAM) amplifying immune suppression. Consequently, STAT3 is considered as a target for cancer therapy. However, its interplay with other STAT-family members or transcription factors such as NF-κB has to be considered in light of their concerted regulation of immune-related genes. Here, we discuss new attempts at re-educating immune suppressive tumor-associated macrophages towards a CD8 T cell supporting profile, with an emphasis on the role of STAT transcription factors on TAM functional programs. Recent clinical trials using JAK/STAT inhibitors highlighted the negative effects of these molecules on the maintenance and function of effector/memory T cells. Concerted regulation of STAT3 and STAT5 activation in CD8 T effector and memory cells has been shown to impact their tumor-specific responses including intra-tumor accumulation, long-term survival, cytotoxic activity and resistance toward tumor-derived immune suppression. Interestingly, as an escape mechanism, melanoma cells were reported to impede STAT5 nuclear translocation in both CD8 T cells and NK cells. Ours and others results will be discussed in the perspective of new developments in engineered T cell-based adoptive therapies to treat cancer patients.
Collapse
|
10
|
Chen L, Shen Z. Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol 2019; 17:64-75. [PMID: 31595056 DOI: 10.1038/s41423-019-0291-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 08/25/2019] [Indexed: 11/09/2022] Open
Abstract
The skin is the largest organ of the body. The establishment of immunological memory in the skin is a crucial component of the adaptive immune response. Once naive T cells are activated by antigen-presenting cells, a small fraction of them differentiate into precursor memory T cells. These precursor cells ultimately develop into several subsets of memory T cells, including central memory T (TCM) cells, effector memory T (TEM) cells, and tissue resident memory T (TRM) cells. TRM cells have a unique transcriptional profile, and their most striking characteristics are their long-term survival (longevity) and low migration in peripheral tissues, including the skin. Under physiological conditions, TRM cells that reside in the skin can respond rapidly to pathogenic challenges. However, there is emerging evidence to support the vital role of TRM cells in the recurrence of chronic inflammatory skin disorders, including psoriasis, vitiligo, and fixed drug eruption, under pathological or uncontrolled conditions. Clarifying and characterizing the mechanisms that are involved in skin TRM cells will help provide promising strategies for reducing the frequency and magnitude of skin inflammation recurrence. Here, we discuss recent insights into the generation, homing, retention, and survival of TRM cells and share our perspectives on the biological characteristics of TRM cells in the recurrence of inflammatory skin disorders.
Collapse
Affiliation(s)
- Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital; School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
11
|
Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2. Proc Natl Acad Sci U S A 2018; 115:E9802-E9811. [PMID: 30279181 DOI: 10.1073/pnas.1801471115] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although many long noncoding RNAs (lncRNAs) have been identified in muscle, their physiological function and regulatory mechanisms remain largely unexplored. In this study, we systematically characterized the expression profiles of lncRNAs during C2C12 myoblast differentiation and identified an intronic lncRNA, SYISL (SYNPO2 intron sense-overlapping lncRNA), that is highly expressed in muscle. Functionally, SYISL promotes myoblast proliferation and fusion but inhibits myogenic differentiation. SYISL knockout in mice results in significantly increased muscle fiber density and muscle mass. Mechanistically, SYISL recruits the enhancer of zeste homolog 2 (EZH2) protein, the core component of polycomb repressive complex 2 (PRC2), to the promoters of the cell-cycle inhibitor gene p21 and muscle-specific genes such as myogenin (MyoG), muscle creatine kinase (MCK), and myosin heavy chain 4 (Myh4), leading to H3K27 trimethylation and epigenetic silencing of target genes. Taken together, our results reveal that SYISL is a repressor of muscle development and plays a vital role in PRC2-mediated myogenesis.
Collapse
|
12
|
Suen H, Brown R, Yang S, Weatherburn C, Ho PJ, Woodland N, Nassif N, Barbaro P, Bryant C, Hart D, Gibson J, Joshua D. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia 2016; 30:1716-24. [PMID: 27102208 DOI: 10.1038/leu.2016.84] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/09/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
Tumour-induced dysfunction of cytotoxic T cells in patients with multiple myeloma (MM) may contribute to immune escape and be responsible for the lack of therapeutic efficacy of immune checkpoint blockade. We therefore investigated dysfunctional clonal T cells in MM and demonstrated immunosenescence but not exhaustion as a predominant feature. T-cell clones were detected in 75% of MM patients and their prognostic significance was revalidated in a new post-immunomodulatory drug cohort. The cells exhibited a senescent secretory effector phenotype: KLRG-1+/CD57+/CD160+/CD28-. Normal-for-age telomere lengths indicate that senescence is telomere independent and potentially reversible. p38-mitogen-activated protein kinase, p16 and p21 signalling pathways known to induce senescence were not elevated. Telomerase activity was found to be elevated and this may explain how normal telomere lengths are maintained in senescent cells. T-cell receptor signalling checkpoints were normal but elevated SMAD levels associated with T-cell inactivation were detected and may provide a potential target for the reversal of clonal T-cell dysfunction in MM. Low programmed death 1 and cytotoxic T-lymphocyte-associated antigen 4 expression detected on T-cell clones infers that these cells are not exhausted but suggests that there would be a suboptimal response to immune checkpoint blockade in MM. Our data suggest that other immunostimulatory strategies are required in MM.
Collapse
Affiliation(s)
- H Suen
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - R Brown
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - S Yang
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - C Weatherburn
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - P J Ho
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - N Woodland
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - N Nassif
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - P Barbaro
- Children's Medical Research Institute, Sydney, New South Wales, Australia
| | - C Bryant
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia.,Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - D Hart
- Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia.,Dendritic Cell Research, ANZAC Research Institute, Sydney, New South Wales, Australia
| | - J Gibson
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - D Joshua
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.,Sydney University Medical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|