1
|
Chen TY, Chen KC, Zhang YH, Lin CA, Hsu WY, Lin NY, Lai PS. Development of a dexamethasone-hyaluronic acid conjugate with selective targeting effect for acute lung injury therapy. Int J Biol Macromol 2024; 280:136149. [PMID: 39353517 DOI: 10.1016/j.ijbiomac.2024.136149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Acute lung injury (ALI), a critical complication of COVID-19, is characterized by widespread inflammation and severe pulmonary damage, necessitating intensive care for those affected. Although glucocorticoids (GCs), such as dexamethasone (Dex), have been employed clinically to lower mortality, their nonspecific systemic distribution has led to significant side effects, limiting their use in ALI treatment. In this study, we explored the conjugation of Dex to hyaluronic acid (HA) to achieve targeted delivery to inflamed lung tissues. We achieved a conjugation efficiency exceeding 98 % using a cosolvent system, with subsequent ester bond cleavage releasing the active Dex, as verified by liquid chromatography. Biodistribution and cellular uptake studies indicated the potential of the HA conjugate for cluster of differentiation 44 (CD44)-mediated targeting and accumulation. In a lipopolysaccharide-induced ALI mouse model, intravenous (IV) HA-Dex administration showed superior anti-inflammatory effects compared to free Dex administration. Flow cytometry analysis suggested that the HA conjugate preferentially accumulated in lung macrophages, suggesting the possibility of reducing clinical Dex dosages through this targeted delivery approach.
Collapse
Affiliation(s)
- Tzu-Yang Chen
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Basic Research Division, Holy Stone Healthcare Co., Ltd., 114 Taipei, Taiwan
| | - Ke-Cheng Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Han Zhang
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-An Lin
- Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wan-Yun Hsu
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan; Ph.D. Program of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
2
|
He H, Sun S, Xu W, Zhang M. Network Pharmacology Followed by Experimental Validation to Explore the Mechanism of Stigmasterol in Sangbaipi Decoction Regulating PI3K/Akt Signaling to Alleviate Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2024; 19:1819-1834. [PMID: 39140079 PMCID: PMC11319098 DOI: 10.2147/copd.s459814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Purpose Sangbaipi decoction (SBPD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat acute exacerbation of chronic obstructive pulmonary disease (AECOPD), while the underlying pharmacological mechanism remains unclear due to the complexity of composition. Methods A TCM-active ingredient-drug target network of SBPD was constructed utilizing the TCM-Systems-Pharmacology database. AECOPD-relevant proteins were gathered from Gene Cards and the Online-Mendelian-Inheritance-in-Man database. Protein-protein interaction, GO and KEGG enrichment analyses of the targets from the intersection of SBPD and AECOPD targets were performed to identify the core signaling pathway, followed by molecular docking verification of its interaction with active ingredients. The network pharmacology results were checked using in-vivo experiments. To induce AECOPD, rats were exposure to combined tobacco smoke and lipopolysaccharide (LPS). Then rats underwent gavage with stigmasterol (SM) after successful modeling. The involvement of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling was investigated using its inhibitor, LY294002. Lung function and histopathology were examined. The levels of inflammatory cytokines in the lung and serum were assessed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot and/or Enzyme-linked immunosorbent assay (ELISA). Results SM was recognized as an active ingredient of SBPD and stably bound to Akt1. SM improved lung function and histological abnormalities, concomitant with suppressed PI3K/Akt signaling, downregulated lung and serum Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels and serum transforming growth factor-β (TGF-β) levels and upregulated lung and serum Interleukin 10 (IL-10) levels in AECOPD rats. In AECOPD rats, LY294002 restored lung function, and it also improved lung histological abnormalities and inflammation, which was found to be potentiated by SM. Conclusion SM targets PI3K/Akt signaling to reduce lung injury and inflammation in AECOPD rats.
Collapse
Affiliation(s)
- Haidong He
- Department of Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Shuihua Sun
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Weihua Xu
- Department of Pulmonary and Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| | - Mingwan Zhang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, People’s Republic of China
| |
Collapse
|
3
|
Hamed M, Kotob MH, Abou Khalil NS, Anwari EA, El Gazzar WB, Idriss SKA, Fakhry ME, Farag AA, Sabra MS, Salaah SM, Abdel-Zaher S, Yehia Saad FA, Naguib M, Lee JS, Sayed AEDH. Hyaluronic acid impacts hematological endpoints and spleen histological features in African catfish (Clarias gariepinus). BMC Vet Res 2024; 20:294. [PMID: 38970005 PMCID: PMC11225171 DOI: 10.1186/s12917-024-04113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/07/2024] Open
Abstract
Since its identification in the vitreous humour of the eye and laboratory biosynthesis, hyaluronic acid (HA) has been a vital component in several pharmaceutical, nutritional, medicinal, and cosmetic uses. However, little is known about its potential toxicological impacts on aquatic inhabitants. Herein, we investigated the hematological response of Clarias gariepinus to nominal doses of HA. To achieve this objective, 72 adult fish were randomly and evenly distributed into four groups: control, low-dose (0.5 mg/l HA), medium-dose (10 mg/l HA), and high-dose (100 mg/l HA) groups for two weeks each during both the exposure and recovery periods. The findings confirmed presence of anemia, neutrophilia, leucopoenia, lymphopenia, and eosinophilia at the end of exposure to HA. In addition, poikilocytosis and a variety of cytomorphological disturbances were observed. Dose-dependent histological alterations in spleen morphology were observed in the exposed groups. After HA removal from the aquarium for 2 weeks, the groups exposed to the two highest doses still exhibited a notable decline in red blood cell count, hemoglobin concentration, mean corpuscular hemoglobin concentration, and an increase in mean corpuscular volume. Additionally, there was a significant rise in neutrophils, eosinophils, cell alterations, and nuclear abnormalities percentages, along with a decrease in monocytes, coupled with a dose-dependent decrease in lymphocytes. Furthermore, only the highest dose of HA in the recovered groups continued to cause a significant increase in white blood cells. White blood cells remained lower, and the proportion of apoptotic RBCs remained higher in the high-dose group. The persistence of most of the haematological and histological disorders even after recovery period indicates a failure of physiological compensatory mechanisms to overcome the HA-associated problems or insufficient duration of recovery. Thus, these findings encourage the inclusion of this new hazardous agent in the biomonitoring program and provide a specific pattern of hematological profile in HA-challenged fish. Further experiments are highly warranted to explore other toxicological hazards of HA using dose/time window protocols.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| | - Mohamed H Kotob
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, 1090, Austria
| | - Nasser S Abou Khalil
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assuit, Egypt
- Department of Medical Physiology, Faculty of Medicine, Assuit University, Assiut, 71516, Egypt
| | - Esraa A Anwari
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, the Hashemite University, Zarqa, 13133, Jordan
- 9Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Shaimaa K A Idriss
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Michel E Fakhry
- Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Assiut University, Assiut, 71516, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, 13518, Egypt
| | - Mahmoud S Sabra
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
| | - Sally M Salaah
- Fresh Water Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Souzan Abdel-Zaher
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Fatma Alzahraa Yehia Saad
- Department of Biotechnology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt
| | - Mervat Naguib
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Department of Molecular Biology, Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
4
|
Zhou A, Li X, Zou J, Wu L, Cheng B, Wang J. Discovery of potential quality markers of Fritillariae thunbergii bulbus in pneumonia by combining UPLC-QTOF-MS, network pharmacology, and molecular docking. Mol Divers 2024; 28:787-804. [PMID: 36843054 PMCID: PMC9968501 DOI: 10.1007/s11030-023-10620-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
Fritillariae thunbergii bulbus (FTB) is a popular Chinese herbal medicine with various applications in respiratory diseases. The quality evaluation of FTB has been insufficient to date, as the active ingredients and mechanisms of action of FTB remain unclear. This study proposes a novel strategy for exploring the quality markers (Q-markers) of FTB based on UPLC-QTOF-MS analysis, network pharmacology, molecular docking, and molecular dynamics (MD) simulation. A total of 26 compounds in FTB were identified by UPLC-QTOF-MS. Ten of these compounds were screened as Q-markers based on network pharmacology for their anti-pneumonia effects, including imperialine, peimisine, peiminine, ebeiedinone, zhebeirine, puqiedine, 9-hydroxy-10,12-octadecadienoic acid, (9Z,12Z,15Z)-13-hydroxy-9,12,15-octadecatrienoic acid, 9,12,15-octadecatrienoic acid, and (2E,4Z,7Z,10Z,13Z,16Z,19Z)-2,4,7,10,13,16,19-docosaheptaenoic acid methyl ester (DAME). These Q-markers were predicted to act on multiple targets and pathways associated with pneumonia. Molecular docking results revealed that most of the Q-markers showed high affinity with at least one of the main targets of pneumonia, and the top ten complexes were confirmed with MD simulation. Network pharmacology indicated that FTB may act on the TNF signaling pathway, HIF-1 signaling pathway, JAK-STAT signaling pathway, etc. The results demonstrated that imperialine (P8), peimisine (P9), peiminine (P11), ebeiedine (P15), zhebeirine (P16), and puqiedine (P18) may be potential Q-markers of FTB, and AKT1, IL-6, VEGFA, TP53, EGFR, STAT3, PPARG, MMP9, and CASP3 may be promising therapeutic targets for pneumonia treatment that are worthy of further research.
Collapse
Affiliation(s)
- Aizhen Zhou
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China
| | - Xudong Li
- Ningbo Kunpeng Biotech Co., LTD, Ningbo, Zhejiang, People's Republic of China
| | - Jie Zou
- Ningbo Haishu Traditional Chinese Medicine Hospital, Ningbo, People's Republic of China
| | - Lingling Wu
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China.
| | - Juan Wang
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China.
| |
Collapse
|
5
|
Guo Y, Yang L, Qin X, Li Z. A strategy for deciphering the bioactive metabolites of Farfarae Flos by the inter-individual variability of the antitussive effect. J Pharm Biomed Anal 2024; 238:115856. [PMID: 37976986 DOI: 10.1016/j.jpba.2023.115856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Farfarae Flos is a commonly used traditional herb for the treatment of respiratory disorders. In this study, ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry combined with the mass defect filter method was used for the qualitative analysis of Farfarae Flos metabolites in the lung tissues. Then a method for the simultaneous determination of 14 Farfarae Flos metabolites was developed and validated in terms of specificity, linearity, precision and accuracy, matrix effect and recovery. The method was applied to compare the lung tissue of Farfarae Flos treated mice, and 10 caffeoylquinic acid metabolites were higher in the mice with better antitussive effect. Further network pharmacology analysis and molecular docking results showed that these metabolites played an important role in the antitussive effect of Farfarae Flos. This study presented a novel strategy for deciphering the active compounds of herbal medicine by inter-individual variability of bioactivities.
Collapse
Affiliation(s)
- Yaxuan Guo
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Linjiao Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Liang W, Yang Y, Gong S, Wei M, Ma Y, Feng R, Gao J, Liu X, Tu F, Ma W, Yi X, Liang Z, Wang F, Wang L, Chen D, Shu W, Miller BE, Tal-Singer R, Donaldson GC, Wedzicha JA, Singh D, Wilkinson TMA, Brightling CE, Chen R, Zhong N, Wang Z. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease. Cell Host Microbe 2023; 31:1054-1070.e9. [PMID: 37207649 DOI: 10.1016/j.chom.2023.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023]
Abstract
Progressive lung function decline is a hallmark of chronic obstructive pulmonary disease (COPD). Airway dysbiosis occurs in COPD, but whether it contributes to disease progression remains unknown. Here, we show, through a longitudinal analysis of two cohorts involving four UK centers, that baseline airway dysbiosis in COPD patients, characterized by the enrichment of opportunistic pathogenic taxa, associates with a rapid forced expiratory volume in 1 s (FEV1) decline over 2 years. Dysbiosis associates with exacerbation-related FEV1 fall and sudden FEV1 fall at stability, contributing to long-term FEV1 decline. A third cohort in China further validates the microbiota-FEV1-decline association. Human multi-omics and murine studies show that airway Staphylococcus aureus colonization promotes lung function decline through homocysteine, which elicits a neutrophil apoptosis-to-NETosis shift via the AKT1-S100A8/A9 axis. S. aureus depletion via bacteriophages restores lung function in emphysema mice, providing a fresh approach to slow COPD progression by targeting the airway microbiome.
Collapse
Affiliation(s)
- Weijie Liang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yuqiong Yang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Shenhai Gong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mingyuan Wei
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Yingfei Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
| | - Ruipei Feng
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xiaomin Liu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Fuyi Tu
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Wei Ma
- Institute of Statistics and Big Data, Renmin University of China, Beijing, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhenyu Liang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Fengyan Wang
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Lingwei Wang
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Dandan Chen
- Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Wensheng Shu
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | | | | | - Gavin C Donaldson
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester University NHS Foundation Trust, Manchester, UK
| | - Tom M A Wilkinson
- NIHR Southampton Respiratory Biomedical Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Christopher E Brightling
- Institute for Lung Health, Leicester NIHR Biomedical Research Centre, Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Rongchang Chen
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China; Pulmonary and Critical Care Department, Shenzhen Institute of Respiratory Diseases, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Nanshan Zhong
- First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Niemietz I, Brown KL. Hyaluronan promotes intracellular ROS production and apoptosis in TNFα-stimulated neutrophils. Front Immunol 2023; 14:1032469. [PMID: 36814915 PMCID: PMC9939446 DOI: 10.3389/fimmu.2023.1032469] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Background Hyaluronan (HA) is an important structural component of the extracellular matrix and has well-described roles in maintaining tissue integrity and homeostasis. With inflammation, HA metabolism (synthesis and degradation) increases and results in higher concentrations of soluble HA. Previously, we demonstrated that (soluble) HA primed resting neutrophils for the oxidative burst in response to a secondary stimulus. Notably, HA-mediated priming was not dependent on degranulation, which is a hallmark of priming by classical agents such as TNFα. In this study, we queried the ability of HA to prime neutrophils to different stimuli and its capacity to modulate neutrophil function in the presence of TNFα. Methods Blood neutrophils from healthy donors were stimulated ex vivo with HA in the absence and presence of classic neutrophil agonists, inclusive of TNFα. Western blotting was used to assess the activation (phosphorylation) of p38 MAPK, and key neutrophil functions associated with priming and activation, such as intracellular and extracellular ROS production, degranulation, and apoptosis, were evaluated by standard chemiluminescence assays (ROS) and flow cytometry. Results Hyaluronan is capable of atypical priming and, with TNFα, co-priming neutrophils for an enhanced (rate and/or magnitude) oxidative burst to various secondary stimuli. In addition, HA can augment intracellular ROS production that is directly induced by TNFα in resting neutrophils, which coincided with the activation of p38 MAPK and apoptosis. Conclusions These data demonstrate that the extracellular matrix component HA is a key modulator of neutrophil function(s) in the presence of inflammatory agents such as TNFα. Moreover, it provides additional evidence for the diversity and complexity of neutrophil priming and activation during inflammation.
Collapse
Affiliation(s)
- Iwona Niemietz
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada.,BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Kelly L Brown
- BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Pediatrics, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Zhao W, Song D, Wang P, Tian Y, Chang S, Li W. Mechanism and Experimental Verification of the Use of Rhodiola crenulata to Cytokine Storm Based on Network Pharmacology and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221142790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: To identify the potential biological mechanisms by which Rhodiola crenulata (RC) treats cytokine storm (CS) using network pharmacology, molecular docking, and experimental verification. Methods: The ingredients and targets of RC were collected from the Organchem database. CS-related genes were collected using the GeneCards and OMIM databases. Cytoscape 3.7.2 software was used to construct the RC-CS network diagram. These data were inputted into the STRING database to construct a protein–protein interaction network. we performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analysis using DAVID and R software. Molecular docking of the active ingredient and pathway-related targets was carried out using AutoDock Vina and PyMOL, and then a CS model was established in rats induced by lipopolysaccharide for in vivo experimental verification. Results: The network pharmacology results showed that kaempferol was the most important active component of RC in the treatment of CS, and IL6 and STAT3 were identified as key targets. Molecular docking results showed that RC active components kaempferol had a good binding ability to IL6/STAT3. At the same time, compared with the model group, different doses of kaempferol could down-regulate the expression of inflammatory factors ( P < .05), and protect against systemic inflammatory response multiple organ damage. Conclusion: This study preliminarily revealed that RC can prevent and treat CS by regulating the expression of inflammatory factors, inhibiting the systemic inflammatory response induced by lipopolysaccharide, and providing a theoretical basis for the study of its pharmacodynamic material basis and mechanism of action.
Collapse
Affiliation(s)
- Wanhua Zhao
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Dan Song
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Pingyi Wang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yu Tian
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Senhao Chang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Wenhua Li
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| |
Collapse
|
9
|
Ma Q, Zhang AN, Zhang CX. Exploration of the Pharmacological Mechanism of Bufei Nashen Pill in Treating Chronic Obstructive Pulmonary Disease Using Network Pharmacology Integrated Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Objective: Based on network pharmacological analysis and molecular docking verification, the therapeutic mechanism of Bufei Nashen Pill (BFNSP) in treating chronic obstructive pulmonary disease (COPD) is discussed. Methods: First, the active ingredients and therapeutic targets of BFNSP were determined based on literature and the Chinese medicine system pharmacology database. Relevant targets of COPD were determined using GeneCard, Therapeutic Target Database and Online Mendelian Inheritance in Man (OMIM). The con-targets of BFNSP and COPD were then obtained through the Veen platform, which were implemented in Cytoscape to build “Drug-Ingredients-Potential Target network.” Target gene function enrichment analysis and signal pathway analysis were performed based on STRING database, Database for Annotation, Visualization, and Integrated Discovery, and Kyoto Encyclopedia of Genes and Genomes Pathway database. Finally, SYBYL 2.2.1 software was used to finish docking. Results: In the Drug-Ingredients-Potential Targets network, 172 active ingredients and 183 potential targets were found. Enrichment analysis showed that potential targets mainly involve biological functions such as inflammation, reactive oxygen, and immunity. Molecular docking showed that the active ingredients of BFNSP had preferential interaction with interleukin 6, mitogen-activated protein kinase 1, SRC, epidermal growth factor receptor, and matrix metalloproteinase-9. Conclusion: BFNSP can be used to treat COPD by the regulation of inflammation, immunity, and hypoxia tolerance.
Collapse
Affiliation(s)
- Qin Ma
- Ningxia Medical University, Yinchuan, China
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - An-ni Zhang
- School of Medicine, Jinan University, Guangzhou, China
| | - Chang-xi Zhang
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| |
Collapse
|
10
|
Xiao S, Liu L, Sun Z, Liu X, Xu J, Guo Z, Yin X, Liao F, Xu J, You Y, Zhang T. Network Pharmacology and Experimental Validation to Explore the Mechanism of Qing-Jin-Hua-Tan-Decoction Against Acute Lung Injury. Front Pharmacol 2022; 13:891889. [PMID: 35873580 PMCID: PMC9304690 DOI: 10.3389/fphar.2022.891889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component–target–pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound–target–pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin–angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-β-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 μM, 1.303 μM, and 1.146 μM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.
Collapse
Affiliation(s)
- Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Xu
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| | - Tiejun Zhang
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| |
Collapse
|
11
|
Lung Hyaluronasome: Involvement of Low Molecular Weight Ha (Lmw-Ha) in Innate Immunity. Biomolecules 2022; 12:biom12050658. [PMID: 35625586 PMCID: PMC9138743 DOI: 10.3390/biom12050658] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hyaluronic acid (HA) is a major component of the extracellular matrix. It is synthesized by hyaluronan synthases (HAS) into high-molecular-weight chains (HMW-HA) that exhibit anti-inflammatory and immunomodulatory functions. In damaged, infected, and/or inflamed tissues, HMW-HA are degraded by hyaluronidases (HYAL) or reactive oxygen species (ROS) to give rise to low-molecular-weight HAs (LMW-HAs) that are potent pro-inflammatory molecules. Therefore, the size of HA regulates the balance of anti- or pro-inflammatory functions. The activities of HA depend also on its interactions with hyaladherins. HA synthesis, degradation, and activities through HA/receptors interactions define the hyaluronasome. In this review, a short overview of the role of high and low-molecular-weight HA polymers in the lungs is provided. The involvement of LMW-HA in pulmonary innate immunity via the activation of neutrophils, macrophages, dendritic cells, and epithelial cells is described to highlight LMW-HA as a therapeutic target in inflammatory respiratory diseases. Finally, the possibilities to counter LMW-HA’s deleterious effects in the lungs are discussed.
Collapse
|
12
|
Zhu H, Wang S, Shan C, Li X, Tan B, Chen Q, Yang Y, Yu H, Yang A. Mechanism of protective effect of xuan-bai-cheng-qi decoction on LPS-induced acute lung injury based on an integrated network pharmacology and RNA-sequencing approach. Respir Res 2021; 22:188. [PMID: 34183011 PMCID: PMC8237774 DOI: 10.1186/s12931-021-01781-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Xuan-bai-cheng-qi decoction (XCD), a traditional Chinese medicine (TCM) prescription, has been widely used to treat a variety of respiratory diseases in China, especially to seriously infectious diseases such as acute lung injury (ALI). Due to the complexity of the chemical constituent, however, the underlying pharmacological mechanism of action of XCD is still unclear. To explore its protective mechanism on ALI, firstly, a network pharmacology experiment was conducted to construct a component-target network of XCD, which identified 46 active components and 280 predicted target genes. Then, RNA sequencing (RNA-seq) was used to screen differentially expressed genes (DEGs) between ALI model rats treated with and without XCD and 753 DEGs were found. By overlapping the target genes identified using network pharmacology and DEGs using RNA-seq, and subsequent protein–protein interaction (PPI) network analysis, 6 kernel targets such as vascular epidermal growth factor (VEGF), mammalian target of rapamycin (mTOR), AKT1, hypoxia-inducible factor-1α (HIF-1α), and phosphoinositide 3-kinase (PI3K) and gene of phosphate and tension homology deleted on chromsome ten (PTEN) were screened out to be closely relevant to ALI treatment. Verification experiments in the LPS-induced ALI model rats showed that XCD could alleviate lung tissue pathological injury through attenuating proinflammatory cytokines release such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Meanwhile, both the mRNA and protein expression levels of PI3K, mTOR, HIF-1α, and VEGF in the lung tissues were down-regulated with XCD treatment. Therefore, the regulations of XCD on PI3K/mTOR/HIF-1α/VEGF signaling pathway was probably a crucial mechanism involved in the protective mechanism of XCD on ALI treatment.
Collapse
Affiliation(s)
- Huahe Zhu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shun Wang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cong Shan
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoqian Li
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bo Tan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Qilong Chen
- Center for Research and Interdisciplinary, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunxiang Yang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hongji Yu
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Aidong Yang
- School of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Comprehensive Analysis of Common Different Gene Expression Signatures in the Neutrophils of Sepsis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6655425. [PMID: 33959663 PMCID: PMC8077712 DOI: 10.1155/2021/6655425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
The central component of sepsis pathogenesis is inflammatory disorder, which is related to dysfunction of the immune system. However, the specific molecular mechanism of sepsis has not yet been fully elucidated. The aim of our study was to identify genes that are significantly changed during sepsis development, for the identification of potential pathogenic factors. Differentially expressed genes (DEGs) were identified in 88 control and 214 septic patient samples. Gene ontology (GO) and pathway enrichment analyses were performed using David. A protein-protein interaction (PPI) network was established using STRING and Cytoscape. Further validation was performed using real-time polymerase chain reaction (RT-PCR). We identified 37 common DEGs. GO and pathway enrichment indicated that enzymes and transcription factors accounted for a large proportion of DEGs; immune system and inflammation signaling demonstrated the most significant changes. Furthermore, eight hub genes were identified via PPI analysis. Interestingly, four of the top five upregulated and all downregulated DEGs were involved in immune and inflammation signaling. In addition, the most intensive hub gene AKT1 and the top DEGs in human clinical samples were validated using RT-PCR. This study explored the possible molecular mechanisms underpinning the inflammatory, immune, and PI3K/AKT pathways related to sepsis development.
Collapse
|
14
|
Chen Z, Xu SL, Ge LY, Zhu J, Zheng T, Zhu Z, Zhou L. Sialic acid-binding immunoglobulin-like lectin 9 as a potential therapeutic target for chronic obstructive pulmonary disease. Chin Med J (Engl) 2021; 134:757-764. [PMID: 33595976 PMCID: PMC8104259 DOI: 10.1097/cm9.0000000000001381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) has become the third-leading cause of death worldwide, which is a severe economic burden to the healthcare system. Chronic bronchitis is the most common condition that contributes to COPD, both locally and systemically. Neutrophilic inflammation predominates in the COPD airway wall and lumen. Logically, repression of neutrophilia is an essential fashion to COPD treatment. However, currently available anti-neutrophilic therapies provide little benefit in COPD patients and may have serious side effects. Thus, there is an urgent need to explore an effective and safe anti-neutrophilic approach that might delay progression of the disease. Sialic acid-binding immunoglobulin-like lectin (Siglec)-9 is a member of the Siglec cell surface immunoglobulin family. It is noteworthy that Siglec-9 is highly expressed on human neutrophils and monocytes. Ligation of Siglec-9 by chemical compounds or synthetic ligands induced apoptosis and autophagic-like cell death in human neutrophils. Furthermore, administration of antibody to Siglec-E, mouse functional ortholog of Siglec-9, restrained recruitment and activation of neutrophils in mouse models of airway inflammation in vivo. Given the critical role that neutrophils play in chronic bronchitis and emphysema, targeting Siglec-9 could be beneficial for the treatment of COPD, asthma, fibrosis, and related chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuang-Lan Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin-Yang Ge
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jin Zhu
- Epidemiological Department, Huadong Medical Institute of Biotechniques, Nanjing, Jiangsu 210002, China
| | - Tao Zheng
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Zhou Zhu
- Department of Pediatrics and Department of Molecular Microbiology and Immunology, Brown University Warren Alpert Medical School, Providence, RI 02912, USA
| | - Linfu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
15
|
Gender Differences in Low-Molecular-Mass-Induced Acute Lung Inflammation in Mice. Int J Mol Sci 2021; 22:ijms22010419. [PMID: 33401552 PMCID: PMC7796370 DOI: 10.3390/ijms22010419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022] Open
Abstract
Gender differences in pulmonary inflammation have been well documented. Although low molecular mass hyaluronan (LMMHA) is known to trigger pulmonary lung inflammation, sex differences in susceptibility to LMMHA are still unknown. In this study, we test the hypothesis that mice may display sex-specific differences after LMMHA administration. After LMMHA administration, male mice have higher neutrophil, cytokine, and chemokine counts compared to that of their female counterparts. Additionally, Ovariectomized (OVX) mice show greater LMMHA-induced inflammation compared to that of mice with intact ovaries. Injections of OVX mice with 17β-estradiol can decrease inflammatory responses in the OVX mice. These results show that ovarian hormones regulate LMMHA induced lung inflammation.
Collapse
|
16
|
A novel derivative of valepotriate inhibits the PI3K/AKT pathway and causes Noxa-dependent apoptosis in human pancreatic cancer cells. Acta Pharmacol Sin 2020; 41:835-842. [PMID: 32047260 PMCID: PMC7470838 DOI: 10.1038/s41401-019-0354-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023] Open
Abstract
Natural compound valepotriate exhibits inhibitory activity against a number of cancers, but the effect of valepotriate against pancreatic cancer is unclear, and the structure–activity relationship of valepotriate has not been characterized. In this study, we performed a structure-based similarity search and found 16 hit compounds. Among the 16 hits, (1S,6S,7R)-6-(acetyloxy)-1-[(3-methylbutanoyl)oxy]-4a,5,6,7a-tetrahydro-1H-spiro[cyclopenta[c]pyran-7,2’-oxiran]-4-ylmethyl 3-methylbutanoate (denoted as Amcp) exhibited superior anticancer activity against human pancreatic cancer BxPC-3 and SW1990 cells. The anti-proliferation activity of Amcp was validated in human pancreatic cancer BxPC-3 and SW1990 cells in vitro. Amcp more effectively induced apoptosis in BxPC-3 and SW1990 cells than gemcitabine. At a concentration of 15 μM, Amcp significantly suppressed the PI3K/AKT pathway and disrupted the mitochondrial membrane equilibrium through modulation of Noxa and Mcl-1 balance in both cell lines. Meanwhile, knockdown of Noxa substantially attenuated Amcp-induced reduction of cell viability and anti-apoptotic protein Mcl-1 level in BxPC-3 cells. In addition, Amcp showed synergistic anticancer effects when combined with gemcitabine in BxPC-3 cells. To conclude, this work not only suggests that Amcp possesses a dual-inhibitory activity towards PI3K/AKT pathway and Mcl-1, but also enlightens further development of bioactive valepotriate derivatives.
Collapse
|
17
|
Effects of Endotoxin Tolerance Induced by Porphyromonas gingivalis Lipopolysaccharide on Inflammatory Responses in Neutrophils. Inflammation 2020; 43:1692-1706. [PMID: 32440987 DOI: 10.1007/s10753-020-01243-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Periodontitis is a dental plaque-induced chronic inflammatory disease. Long-term exposure of the host to periodontal pathogens leads to a hyporesponsive state to the following stimulations, which is described as endotoxin tolerance. Neutrophils are the most abundant innate immune cells in the body. To clarify the roles of endotoxin tolerance in periodontitis, inflammatory responses in Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS)-tolerized neutrophils were explored in this study. Here, apoptosis and respiratory burst in neutrophils upon single or repeated P. gingivalis LPS stimulations were explored by flow cytometry. Cytokine production (TNF-α, IL-8, and IL-10) in tolerized neutrophils or neutrophils co-cultured with peripheral blood mononuclear cells was determined by ELISA. Phagocytosis of P. gingivalis by tolerized neutrophils was also assayed by flow cytometry. In addition, quality and quantitation of neutrophil extracellular trap (NET) formation were detected using immunofluorescence microscope and microplate reader, respectively. The protein expressions of extracellular signal-regulated kinase1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) were examined to identify possible mechanisms for the abovementioned changes. Tolerance induced by P. gingivalis LPS significantly suppressed apoptosis, reactive oxygen species (ROS) generation, and phagocytosis in neutrophils (p < 0.05). In both neutrophils alone and co-culture system, repeated P. gingivalis LPS stimulations significantly decreased TNF-α production, but increased IL-10 secretion (p < 0.05). Moreover, in tolerized neutrophils, NET formations were strengthened and there were more released extracellular DNA (p < 0.05). In P. gingivalis LPS-tolerized neutrophils, phosphorylation of ERK1/2 was suppressed compared with that in non-tolerized cells. Taken together, immune responses in neutrophils were reprogrammed by P. gingivalis LPS-induced tolerance, which might be related with the development of inflammation in periodontal tissues. Moreover, ERK1/2 might play important roles in endotoxin tolerance triggered by P. gingivalis LPS.
Collapse
|
18
|
Yin K, Cui Y, Sun T, Qi X, Zhang Y, Lin H. Antagonistic effect of selenium on lead-induced neutrophil apoptosis in chickens via miR-16-5p targeting of PiK3R1 and IGF1R. CHEMOSPHERE 2020; 246:125794. [PMID: 31918102 DOI: 10.1016/j.chemosphere.2019.125794] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination by heavy metals, such as lead (Pb), can lead to severe immune dysfunction. MicroRNAs (miRNAs) are involved in regulating immunity. Whether Pb can regulate neutrophil apoptosis through miRNA, and whether selenium (Se) can antagonize this response are still unknown. We treated neutrophils with 12.5 μM (CH3OO)2Pb and 1 μM Na2SeO3 for 3 h, after which apoptosis was evaluated using acrideine orange/ethidium bromide (AO/EB) dual fluorescent staining and flow cytometry. The results showed that neutrophil apoptosis was significantly increased following Pb exposure, and that this response was prevented upon Se addition. Pb up-regulates miR-16-5p and leads to the subsequent down-regulation of the target genes phosphoinositide-3-kinase regulatory subunit 1 (PiK3R1), insulin-like growth factor 1 receptor (IGF1R), and phosphatidylinositol 3 kinase (Pi3K)-protein kinase B (AKT), followed by activation of the tumor protein P53 (P53)-B-cell lymphoma-2 (Bcl-2)/Bcl-2-Associated X protein (Bax)-cytochrome c (Cytc)-Caspase 9 (mitochondrial apoptotic pathway) and the tumor necrosis factor receptor superfamily member 6 (Fas)-Fas-associated death domain protein (Fadd)-Caspase 8 (death receptor pathway). Pb also triggered oxidative stress and indirectly activated the mitochondrial apoptotic pathway. We conclude that miR-16-5p plays a key role in the apoptosis of neutrophils exposed to Pb by down-regulating the expression of PiK3R1 and IGFR1, thereby activating the mitochondrial apoptotic pathway and death receptor pathway. Se can prevent Pb-induced apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Sun
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163002, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
19
|
He C, Zhang Y, Luo H, Luo B, He Y, Jiang N, Liang Y, Zeng J, Luo Y, Xian Y, Liu J, Zheng X. Identification of the key differentially expressed genes and pathways involved in neutrophilia. Innate Immun 2019; 26:270-284. [PMID: 31726910 PMCID: PMC7251796 DOI: 10.1177/1753425919887411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the most important determinants in the acute inflammatory response. Pathologically increased numbers of PMNs in the circulation or specific tissues (or both) lead to neutrophilia. However, the genes expressed and pathways involved in neutrophilia have yet to be elucidated. By analysis of three public microarray datasets related to neutrophilia (GSE64457, GSE54644, and GSE94923) and evaluation by gene ontology, pathway enrichment, protein-protein interaction networks, and hub genes analysis using multiple methods (DAVID, PATHER, Reactome, STRING, Reactome FI Plugin, and CytoHubba in Cytoscape), we identified the commonly up-regulated and down-regulated different expressed genes. We also discovered that multiple signaling pathways (IL-mediated, LPS-mediated, TNF-α, TLR cascades, MAPK, and PI3K-Akt) were involved in PMN regulation. Our findings suggest that the commonly expressed genes involved in regulation of multiple pathways were the underlying molecular mechanisms in the development of inflammatory, autoimmune, and hematologic diseases that share the common phenotypic characteristics of increased numbers of PMNs. Taken together, these data suggest that these genes are involved in the regulation of neutrophilia and that the corresponding gene products could serve as potential biomarkers and/or therapeutic targets for neutrophilia.
Collapse
Affiliation(s)
- Chengcheng He
- People's Hospital of Zhongjiang, Deyang, Sichuan, P. R. China.,College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yingchun Zhang
- People's Hospital of Zhongjiang, Deyang, Sichuan, P. R. China.,College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Hongwei Luo
- People's Hospital of Mianzhu, Deyang, Sichuan, P. R. China
| | - Bo Luo
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yancheng He
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Nan Jiang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yu Liang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jingyuan Zeng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujiao Luo
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Yujun Xian
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jiajia Liu
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Xiaoli Zheng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|